
A Framework for an Active Interface to Characterise Compositional Security
Contracts of Software Components

Khaled Khan
School of Computing and IT
University of Westem Sydney

NSW 1797 Australia
E-mail: k. khan @uws. edu. au

Abstract

This paper presents a framework for constructing
compositional security contracts (CsC) based on the
security property exposed by the atomic component. The
framework uses intelface structure of components in
order to determine the CsC of software components. An
active inteface provides the component a basis for
reasoning and assessing a component's suitability to meet
certain security requirements of a particular application.
Based on the security i n f o m i o n available from the
component inte face, an active intelface can reason
whether the candidate component meets the security
requirements for an envisaged systemwide application.
Any security mismatches or discrepancies between
components can be identified by the participating
components before an actual composition takes place.
Exposing the security properties of software components
can be the basis for a trust relationship among
components, and the exposed security could affect the
underlying security of the enclosing system.

1. Introduction

Software components are receiving a great deal of
interests from both industries and academia as the
component based software development paradigm
promises maximum benefits of component reusability and
distributed programming. A software component is
independently developed and delivered as an autonomous
unit and that can be composed with other components to
become a part of a larger application [15]. Research
efforts are currently being carried out mostly in defining
component models and compositions with technologies
such as OMGs CORBA, Sun's Enterprise JavaBeans
(EJB), Microsoft COM, and the most recent development
of dot Net.

By contrast, the major issue of concern regarding the
security mismatches of software components has received
less attention. The mismatches of security properties of
components may have serious consequences if they are

Jun Han, Yuliang Zheng
School of Network Computing

Monash University
Frankston, Vic 3199 Australia

{jhan, yuliang}@monash.edu.au

discovered after a composition took place. To avoid this
late discovery of security properties, the component
should be given the capability of knowing and reasoning
the precise security requirements and assurances of the
candidate components before an actual composition takes
place. In a distributed dynamic system, when two
components interact to achieve a certain functionality,
both participating components need to know upfront each
others' security properties as well as the impact of those
properties on the enclosing system. When a component is
discovered on the net dynamically by other components
for an intention to use it at run-time, it might be unclear at
which level of trust should be placed on the component
because its security properties are often unknown. In
current practice, what a user knows is the component's
interface structure on how to connect the component with
the user's system and how to get the functionality that the
component offers. It is crucial to know whether the
information sent over an open untrusted network is
protected, and how this could be actually achieved by the
component and so on. The degree of conformity between
the required security properties of one component and the
ensured security properties of another is the ultimate
compositional security contracts (CsC) of the enclosing
system participated by several components. The need for
such a security characterisation model in both human and
machine comprehensible terms has been long due as
reported in [101, [111, [121.

The characterisation of component security includes a
systematic understanding of security properties of
components and their impact on the global composed
system [6]. Exposing security properties is important
when different developers produce different components
in a system [3]. A component needs to be able to make a
run-time test with other candidate components to find the
possible security matches and mismatches. At present, no
such security characterisation framework exists in the
open literature.

One of the primary objectives of security
characterisation is to build a trust relationship among

'

0-7695-1254-2/01 $10.00 0 2001 IEEE
117

software components. The attributes that most affect a
trust relationship are the identity and origin of the
components and the security properties that components
offer to and require from other components. If the trust
related attributes of a component are missing, or unknown
then the component is not trustworthy at all.
Unfortunately, these trust related properties are often
neither expressed nor communicated to other interested
parties [3]. Today, most systems do not broadcast their
security properties and their origin identities, rather they
only publicise whether the system is secure or not. Telling
whether a component is secure or not can only lull other
components or users into a false sense of security, which
may not have any qualitied basis. The existing approach
does not tell what is the basis for such claims. Judging a
system secure or not is somewhat a subjective matter
depending on the use context, the security properties
provided, the magnitude of the data sensitivity, and the
mode of operations among others.

In component based system, a variety of common
security threats can be posed to a component such as
unauthorised disclosure of information passed between
two components, unauthorised modification of the data,
retransmitting the modified data by a third party, non-
repudiation, and unauthorised access. In this paper we
discuss the security issues such as confidentiality and
authenticity. The paper, however, does not present any
new security design or architecture, rather it proposes a
model to characterise the existing security properties of
software components. We propose what constitutes
security properties of atomic software components, and
how these can be exposed to others. We then present a
fi-amework for constructing CsC based on the security
properties exposed by atomic components. The
framework uses interface structure of components to
determine the CsC of software components. The work
reported in this paper builds on and relates to our earlier
efforts reported in [SI and [9].

In the next section, we outline our approach to
characterise the component security using component
interface structure. In section 3, we present a framework
for active interface along with the structure of
compositional security contracts (CsC). In section 4, the
proposed framework is applied to an example to
demonstrate its applicability. Section 5 outlines the
possible use of the framework and the major limitations
of its current state. We close with a conclusion in section
6.

2. Component interface and the approach

The interface of a software component makes all
compositional structural elements available to other
interested components. The availability of interface
description is used for the component's interaction with
the outside world. A structural composition consists of

components (blackbox entities that export and import
functionality), architectural style such as formahtion of
component interface and composition rules, and glue code
[4]. Current frameworks for software component models
such as EJB, CORBA, COM, and dot Net are limited for
the specification of structural interface definition and
matching of interfaces. Interface description languages
(IDLs) deal basically with the syntactic structure of the
interface such as the forms and types of the interface
elements like attributes, operations and events. These
meta-data are primarily static in nature. Interface
provided by the existing component technologies such as
CORBA, EJB, and COM comprises attributes, operations
and events. Recently proposed richer interface
specification addresses the issues of software component
interface signature (syntax), interface configurations
(structure), interface behaviour (semantics), and
interaction protocol (constraints) [l]. All these are aimed
mainly at components' functionality.

To get a clear understanding of a component's security
properties, this paper extends the model of interface
structure proposed in [l] a bit further to make it dynamic
or live' in a sense that the interface will have certain
reasoning capability. An active interface not only
contains the operations and attributes that the component
provides to serve a functionality, but it also embodies
security properties associated with a particular operation
or functionality. In our approach, the essence of active
interface is that a component knows its security
properties, and can communicate this knowledge to other
interested components. An active interface involves the
ability of the component to reason about and to deduce
the compositional security properties offered by other
components.

It would be unrealistic to store an exhaustive list of pre
defined compositional security properties for all possible
use context in the interface of a component. By contrast,
our approach provides an incremental security
specification or introspection based on the security
properties that a component exposes. This approach is
based on the notion of 'light-weight' security specification
advocated in [2]. A light weight' characterisation exposes
some externally observable properties to other
components. The active interface of a component can
capture the security properties of another component or an
existing composition, and compute the CsC of the
dynamic system configuration and re-configuration.

The principle objective is to generate computational
reflection to let components identify and capture the
various security properties of other components with
which they cooperate. In such a setting, components not
only read the meta-description of others' security
properties but also deduce the compositional impact of
those properties on the ultimate composed application.
This active interface supports a two-level negotiation
model for component composition as proposed in [5]. In

118

the first level, a component negotiates for a possible
compositional contract with other interested candidate
components. If it is successful, the negotiation results
would be used to configure and re-configure the
components dynamically. This augments a pragmatic
approach for implementing a selfxonfiguring and
composable component framework, relying partly on an
active interface structure.

3. Framework for an active interface

In component based systems, a distributed application
is composed of a set of individual software components
each having a local memory and its own executable code.
A component is autonomous as it uses its own data and
files, and usually it does not preserve state. A component
that broadcasts an event to receive a service from other is
called focal component [11. The components that respond
to the event are usually called candidate components
residing on different remote locations. The basic entities
that perform operations on components in a distributed
system are processes. An event denotes an execution of an
operation on components, and is attributed to the process
that performs the operation [13]. In an event-based
component interaction, a component generates events,
other candidate components may choose to respond to the
event. Based on the agreed contract for an event a
dynamic composition is established between the focal
component and the candidate component. We also
sometimes refer a focal component as client component,
and the candidate components as server components. A
focal component receives certain services from candidate
components. A focal component can also play the role of
a candidate component when it serves function'ality to
others.

An active interface comprises a component identity, a
static integace signature, a static security knowledge base
(read-only) of the component, and a CsC (read-write)
which is dynamic based on the security information
available from the security knowledge base and the
security information available from other components,
CsC properties are dynamic in a sense that it can only be
derived from the exposed security properties of the focal
component and the candidate components related to a
particular functionality. The following is a skeleton of
such an interface.

COMPONENT UID{
INTERFACE SIGNATURE{. . .}

SECURITY {
REQUIRED {. . .}
ENSURED {. . .}
csc {. . .}

I

The structure of the active interface is
diagrammatically shown in Figure 1.

omponent identity (read only)

Interface signature (read only

Security
Required (read only)
Ensured (read only)
CsC (read-write)

IP

b
1
i

U

C

P
1 F Executable code (execute only)

e

Figure 1. A skeleton of an active interface

3.1 Component identity

The identity of the component not only includes a
unique identity (uid), but it also shows its
origin from where it was originated, its current residing
address, its current owner, the developer of the
component, and the certification authority which
approved all information that are available from the active
interface. The identity is unique over its lifetime and is
provided by a certifying authority. The current residing
address is the URL where it is located and the owner of
the component is the owner of the URL[8]. The following
is a structure of the component identity template.

identity (uid, origin-=, developer-URL,
certificate)

It can be further decomposed with more identity related
information such as details about the certifying authority,
component sealing template, validity period and so on.

3.2 Interface signature

An interface signature consists of operations and
attributes. These properties are static in a sense that these
are 'read only' properties. No components can make any
modification to this. This interface is intended to make a
structural match before two components are composed.
Significant work on the structure of interface can be
found in [l] and a comprehensive treatment on the
structural matching of software components is available
from [141.

3.3 security

The goal of the security knowledge base is to specify
the security properties of atomic components. The
publishable security-related characteristics of any atomic
component can be categorised as required security

119

properties and ensured security properties. A required
security property is a precondition in a sense that other
interested parties should satisfy this during a composition
to get ensured security services. An ensured security
property is a post-condition in a sense that it is the
responsibility of the component to maintain the
committed security assurances during the composition.

In order to express security properties of a component,
first we need to model what a security property does. Any
ensured or required security property of individual
component can be characterised with three basic
elements: (i) operations performed by the components to
enforce security properties, (ii) security attributes used to
do the operation in (i), and (iii) rlata used or manipulated
in a compositional contract. Using these elements we can
formulate a simple structure that can capture the security
requirements and assurances of individual software
components. Thus, the security properties of individual
component can be characterised with a predicate-like
structure such as

Where
fcoi, 5. Dk)

f is the name of the securityfificnction formed with
three associated arguments as defined in [9],
o is the security related operation performed by the
component in a compositional contract, subscript
is the identity (uid) of the component,
K is a set of security attributes used by the
component, and the subscript contains additional
information about the K such as key type, owner of
the key and so on. Plus (+) or minus (-) signs as
postfix of denote a public key or a private key of
respectively, and
D is an arbitrary set of data or informution that are
affected by the operation 0. The subscript k contains
additional information attached with D such as digital
signature used or not, and so on.

An example of such structure can be

protect-in-data (encrypts, keyp+, 'amount I)

In this example, the security property is declared in a
component's interface and visible externally. This is a
public and read-only property in a sense that other
components or human user can read this readily available
fiom the component interface. It states that data 'amount'
is to be encrypted by the component Q with the public key
of component P. The name of the entire security function
is protect-in-data. More on this structure can be
found in [9]. The security characterisation must be based
on the actual security functions that a component employs
to accomplish a functionality. The accomplishment of a
functionality could be any services such as receiving
functionality fiom another component or offering services

to other components. The exposed security properties
must be mapped with the functionality that it supports and
based on the security functions implemented in the
component.

3.4 Compositional security contracts (CsC)

A CsC is based on the degree of conformity between
the required security properties of a component and the
ensured security properties of another component, The
resulting security property of the composition participated
by two components is a new security property called CsC.
The derived CsC is a security effect generated fiom the
combined security properties of the participating
components related to a particular functionality [7]. A
CsC defines rules for composing security properties on
the basis of conformance between the required security
property of one component and the ensured security
property of the another. With the security characterisation
structure of individual components, a CsC between two
components such as a and b can be modelled as

C8.b =I (Bb 3 Ra) A (Ea * Rb)

Examples of E and R are:
Ra= f 1 (veri fy, passwordb, f ilel 1
Ea=fi (encqpt, k e n + , filela.aigieigd

where
c is a compositional security contract between two
components subscripted with the identities of the
participating software components separated by a
comma in the compositional contracts such as Ca,b,

E and R are the ensured and required security
properties of the participating components in a
composition contract respectively. In an expression
such as (Eb * R~), required property R will
always be on the right-hand side in an expression
x 3 y denotes implication such as x implies y. The
evaluation of each required and ensured pair would
result a Boolean true orfalse value,
The required or ensured security property of a
compositional contract can be referred from an

respectively, where

C c , a , and SO On,

existing CSC Such aS Ca,b.Rb Or Ca,b.E8

0 the identity of the CsC and its associated
security properties are separated by a dot
when referred by another compositional
contract or component
prefix C8.b in the argument Ca,b. R,, denotes
the identity of an existing CsC in where a is
the focal component and b is the candidate
component. Note that a focal component
always follows a candidate component. The
ordering of the components identities
indicates the role of the components in a

120

composition such as whether a component is
a focal or candidate component.

0 a postfix R in a CsC denotes the required
security property of the component
identified with the corresponding subscript
and taking part in the CsC, and

0 a postfix E in a CsC denotes ensured
security property of the component
identified with the corresponding subscript
and taking part in the CsC.

The operators A and v denote Boolean "and and "or"
respectively.

0

3.5 Executable code

A complete structure of an active interface is outlined
as follows.

cbegin COMPONENT> { cUID> }
<begin INTERFACE SIGNATURES

<operation> {
eargumentl,

argument,> }
? . . . I

<end INTERFACE SIGNATURE>

cbegin SECURITY>
<begin REQUIRED>

csecuri ty-func tiom>{
esecuri ty-argumentl,

I . . . ?

securi ty-argument,>}
? . * . I

<security-function,+{
esecuri ty-argumentl,

I . . . *

securi ty-argument,>}
<end REQUIRED>

cbegin ENSURED>
<security-functionlz {

c Becur i ty-argumen tl ,
I . . . #

securi ty-argument,>}
I . . . ,

csecuri ty-f unction,,> {
e securi ty-argumen t 1,

, . . . I

securi ty-argument,>}
cend ENSURED7

<end SECURITY>
/* The following is the
structure of the live
executable section of the
interface.

<begin CsC>
R ~ D = get(<operation>,cREQUIRED>,

EmD = get (coperation>, <ENSURED>,

QualRom~confom(<Eor~>. <REQUIRED>) ;

CsC-conform cQualprom>) ;
display = out (cCsC>) ;

<end CsC> cend COMPONENT>

cUID>) ;

eUID>) ;

QualT, =COnf 01111 (< R ~ D > , <ENSURED>) ;

A binary executable code calculates and generates
CsC. The basic algorithms of such executable code are
listed in the above structure between <begin CsC>
and cend CsC>. A get function reads the security
properties fkom the interface of a candidate component
and stores it in RmD. The subscript UID is the identity of
the candidate component. Similarly, the ensured security
properties of the candidate component are read and stored
in EmD. The variable Qualerom stores the conformity
result between the required property of the focal
component (REQUIRED) and the ensured security
property of the candidate component (E ~ D) . Qual=,
stores the conformity between the required property of the
candidate component (R ~ D) and the ensured property
of thefocal component (ENSURED). A built-in function
called conf o m generates these conformity results. If a
non-conformance between the required and ensured
properties is identified, it concludes a security mismatch.
A Boolean true and false value is to be implicitly assigned
to each required and ensured pair after the evaluation as
shown in the following example.

Cx,y ((Ex * Ry)=TRUE) A

((EY * Rx) =TRUE)
The above CsC simply shows that a composition

between two components identified as X and Y has
complete compliance. Required property of Y is ensured
by the property of X, and X's required property is satisfied
by the ensured property of Y. The resulting CsC is stored
in the interface structure of the focal component. When a
component is composed with another component, the
derived CsC is automatically attached with the interface.
The entire CsC is to be added to the CsC slot in the
interface and remains in the interface as long as the
composition is valid. It should be noted that a partially
valid CsC can be accepted by a component, in such case,
the actual derived CsC needs to be stored in the interface
as well. However, a partially satisfied CsC might have a
negative security impact on the entire global system.
Even a complete mismatch CsC can be accepted by the
participating components if they decide so; in such case,
the security risks would be much higher for the
composition.

121

4. E-health care system: an example

In this section, we will describe a fictious distributed
system topology as a vehicle to discuss how our proposed
active interface would work in a distributed environment.
The applicability of the proposed framework is examined
with this example system.

Consider the information system of an e-health care
system in a country where patients' clinical information is
considered confidential. All information passed among
the stakeholders such as GPs, specialists, patients and
pharmacist must be confidential. Assume a software
system identifmi as G running on a machine at a general
practitioner's (GP) office is trying to connect with a
trusted software component S chosen from a number of
similar systems running at various specialists' office. G
would provide patient's diagnosis reports to a specialist's
system S to get a specialist prescription. After receiving a
prescription from the component S, G sends this
prescription to a component P residing on a pharmacist's
system. There are many such components developed and
managed by various developers available from various
distributed sources delivering the same functionality that
G wants. However, the security properties of all these
components vary significantly from one another.
Component G is not only interested in specific
functionality of the components but also wants to h o w
the security properties that are provided by those
components. All information passed between G and the
specialist system S is considered confidential. G requires
following security properties from a specialist component
S.

i.
ii.

Authenticity of the specialist prescription
Confidentiality of information exchanged with G.

The issue of access control is not included in this paper.

4.1 A binary compositional security contract

The main security goals of the stated scenario are
confidentiality or secrecy of information, and the
authenticity of the components regarding their origins and
identities. The aim of confidentiality is to ensure that the
data is not accessed by an unauthorised entity. The aim of
authenticity is to make sure that the identity and the origin
of the component are correct. These security policies of G
can be transformed into our active interface framework as

COMPONENT G {
INTERFACE SIGNATURE {, . . . 1 1

SECURITY {
REQUIRgD {
RQ=protect-in-data (encrypts, keys- I

8 prescrip t ion s .digisi+) }
ENSURED {

EO=protec t-out-data (encryptd, keys+ I
udiagnosisu) }
c 4 "IL 1 I 1

The security properties attached with the functionality
receivejrescription (argl, arg2 arg,) state
that G will provide a specialist component with a
diagnosis report of a patient. The diagnosis would be
encrypted by G (encryptQ) with the public key (keys+)
of the specialist system S. S can decrypt the message
using its priVafe key. In return, G expects from S that the
prescription sent by S must be digitally signed
('prescription I S.digiaign) and encrypted by the
component S (encrypts) with the private key of S
(keys-).

,*...'
event ...
broadcasting'"'...

.... ".,

-.. .%.

. . *.-
.. .. ./

81

.....* . .
..........

event
broadcasting ,,

(specialist
system)

1

Figure 2. Events broadcasted by G

Based on these, G is looking for a component S that
will satisfy the following CsC.

Assume G broadcasts an event to receive responses
from other interested components, which could offer the
functionality that G needs. In return 0 receives
responses from components sl and 82. All these
components offer the same functionality. These
components are running on different machines for
different specialists as depicted in Figure 2.

First G makes a query to a specialist's component sl.
Component sl's interface exposes the following security
properties, which are stored in its static knowledge base.

122

COMPONENT sl {
INTERFACE SIGNATURE {
make-comment s (argl , arg2, -, arg,) }

SECURITY {
REQUIRED {
R,l=pro tect-in-data (encryptG, key.1,
, I diagnosis 1 }

E,l=pro tec t-out-data (encrypt.1,
keyG+, 'prescription') }

ENSURED {

csc { N(JLL 1 1 1
The security properties attached with the functionality

make-comments (argl, arg2, ..., arg,) } state that sl
will provide a specialist prescription to a requesting
Component. Component sl expects from 0 that the
diagnosis report sent by G must be encrypted by the
component G(encryptG)with the public key of sl
(key,,,). In return, the prescription would be encrypted
by sl (encrypt.1) with the public key of G (key,),
but the prescription data would not be digitally signed by
sl. Based on these security properties, the following
algorithms of the 0 's active interface now execute and
generate a CsC.

COMPONENT G {
I . . . ,

csc {
R,l=read (make-comments, required, sl) ;
Esl=read (make-comments, ensured, sl) ;
Qual-to = conform(ReI. EG) ;
Qual-from = COnfO~(Ro, E.1) ;
CsC = derive (Qual-to, Qual-from) ;
display = out (CsC) ;

3 , 0 . .

The execution results the following CsC, which is not
quite consistent with the requirement of the entire
composition between G and sl.

We can see from the above CsC that the required
security property of the component G cannot be satisfied
with the ensured security property provided by sl. Thus
the CsC will be partially compliance with the desired
composition. The CsC failed because component sl can
not provide the prescription with a digital signature,
which could be verified by G., The authenticity of the
prescription is one of the requirements that G expects
from the component. G now decides to make a similar
security test with another component called s2.
Component s2 also provides the same functionality that
G is looking for, but the security properties of s2 needs to

be verified by G before it makes a composition with 62.
The following is the security information that 0's
interface reads from 62's interface

COMPONENT s2 {
INTERFACE SIGNATURE {

SECURITY {
make-comments (argl, argz, ..., arg,) }

REQUIRED {
R.z=pro tec t-in-da ta (encryp to, key.?,
, I diagnosis I }

E,z=protec t-out-data (encrypt.2,
key.2- I 'prescription' e2.digieign) }

ENSURED {

csc { NULL } } }

The above properties state that e2 will provide a
specialist prescription to a requesting component.
Component s2 expects from G that the diagnosis
report sent by G must be encrypted by the component G
(encryptG) with the public key of s2 (keys2+). In

return, the prescription would be digitally signed and
encrypted by s2 encrypt,^) with the private key of
e2 (keys2-). 0 can decrypt the message using the public
key of s2 to verify the signature. Based on these security
properties and the following algorithms, the interface of G
now computes a CsC such as

C G , ~ = ((Eo * Rsz)=TRUE) A

((Esz * Ro) =TRUE)

The generated CsC is now consistent with the
requirement of the entire composition between G and 62.
G finally makes a composition with 82. The resulting
system is shown in Figure 3. The CsC is stored in the
static knowledge base of GI s interface for future
reference.

Figure 3. Composition between G and S

123

4.2 A multiple compositional security contract

We extend the same scenario a bit further to examine
how a ternary or a composition with multiple components
can be supported with our framework.

After G has composed itself with 82, it further looks
for a third component P that would provide the price of
the medicine based on the prescription produced by the
component e2 to G. All components that responded to
the event generated by G are ident5ed as PI, pz, and
p3. G now makes a test With pl to verify whether p l
delivers the security property that G expects, or whether
pl's required property can be satisfied by the component
G. GIs security properties are

COMPONENT G {
INTERFACE SIGNATURE {
getgrice (arg,, arga, . . . , arg,) }
SECmZITY {
REQUIRED {
&=protect-in-data (encryptp, keyp-,

Price'p.digisia) 1
ENSURED {

&+protect-out-data (encryptG, keyp,, C G , ~ ~ .E.z)
I

csc { -L 1 1 I
G wants a price of the medicine from a component

P for the prescription provided by 82. G will provide P
the prescription of the specialist that was received from
the component s2 specified as c ~ , ~ ~ . E ~ ~ . Note that the
previous CsC made between G and e2 is stored in the GIs
interface. G will also attach the digital signature of s2 to
component P to ensure that the prescription was
authenticated by a specialist. However, in return, the
price data must be digitally signed
(Price 'p.agis ign) ,and encrypted (encryptp) by
the component P. An acceptable CsC from this
composition can be worked out as

= ((Ea * Rp)=TRUE) A

((EP * Ra) =TRUE)
On the other hand, pl exposes its security properties to

Gas

c o M p 0 " T pl {
INTERFACE SIGNATURE {
getgrice (argl, argz, . . . , argn) }
SECURITY {
REQUIRED {
%l=protec t-in-data (encryptQ, keyQ-,

(CO,S.$S) C.digisign) }
ENSURED {

Epl =protec t-out-da ta (encryp tpl , keyp-,
price ' p l .digisign) }

csc -L 1 I 1

Component pl , in fact, does not require that the
specialist component must be identified as 82 with
which G has composed. What actually it means that the
signature must be from a specialist S. The verification of
the signature by p l would reveal the actual identity and
the validity of S. In this case, the identity of the specialist
S would be obviously 82.

The algorithms of 0's interface now executes and
generates a ternary compositional contract which is not
quite consistent with the requirement of the entire
composition between G and pl based on their security
requirements as shown below.

&,el = ((8 0 * h l) = F a S E) A

((G I * &)=TRm)
The above CsC shows that the required property of the

component G is satisfied by the ensured security property
of pl, but the required property of pl cannot be satisfied
by G because pl requires a digital signature of G in
addition to a digital signature of S, before it services to
component G. Component G does not have any such
digital signature for itself. G 's security test with pl fails
due to non-compliance security properties provided by 0.
G now decides to make similar test with another
component called p3. Component p3 also provides the
same functionality that Q is looking for, but the security
properties of p3 needs to be verified by G's interface
before it makes a composition with p3. The following is
the security information that G reads from p3's interface .

COMPONENT p3 {
INTERFACE SIGNATURE {
g e t g r i c e (argl, arg2, --., argP) }
SECURITY {
REQUIRED {
%3=pro tec t-in-data (encryptQ, key,,,,

CO, S. Es) 1
%,=protect-out-data (encryptp3, keyp3-,
I Price I p3 .digisign) }

csc { -L I 1 I

ENSURED {

The interface of the component G executes and
generates the following CsC, which is now consistent
with the requirement of the entire composition between G
and p3.

G , p 3 = ((E a * Rp3)=TRUE) A

((Ep3 * &) =TRUE)
G composes itself with p3 by using the interface

signature of p3. In fact cQ,p3 involves three
components as shown below.

cG,p3= ((CG.82 * Es2) A

= ((((CO, SZ . EB~JCG, sZ - &) A

(EO)) *%3) A ($p3* %))

(C G , S Z - E G * C ~ , e a - R s a)) A EO * %a) A

(Ep3 J RG) 1

1 24

The entire resulting system composed of components
G , 62, and p3 is shown in Figure 4. There are two CsCs
in this system, one is between G and 62, and the other one
is between p3 and s2,G together. It should be noted that
if a composition is broken after a functionality is
complete then the associated CsC would not be available
to any participating components. The obsolete CsC might
be stored in a log for a future audit.

...
.........

(specialist
system)

..' :
.... system)

.

Figure 4. A CsC based on multiple components

Based on our framework, we could build a complete
CsC for a system composed of several autonomous
components. However, we believe that the framework
may require some adjustments and modifications to
accommodate more complex security properties for more
complicated compositions.

5. Use of the framework and limitations

We are currently working to examine the framework in
a real application scenario using one of the component
models available from the commercial market. IDL of
CORBA can be extended with this framework so that
security properties of a component can be specified in its
interface and stored in the interface repository. Such an
extended CORBAs dynamic interface support could be
used by client components to retrieve the security-related
information of the candidate components. A client
component even might run a security composability test

with the candidate components. Similarly, the framework
could be codified with the JavaBean's introspection
mechanism (BeanInfo) and Java's reflection capability for
JavaBeans.

We recognise that the proposed framework has some
limitations. Firstly, in this framework we made a number
of assumptions. We assume certain low level security
properties are already in place by the supporting
infrastructure such as protocols, middleware and the
operating systems. Secondly, complex compositions and
associated security features have not been discussed.
Finally, the existence of a global certifying authority is
assumed. The certification authority approves the
component with its valid interface information including
the security properties that a component exposes. How
such a certification authority approves a component in
respect to its claimed security properties is beyond the
scope of this paper. More on the certification issue can be
found in [7].

6. Conclusion

This paper has demonstrated that an active interface
can provide the basis for reasoning and assessing a
component's suitability to meet certain security
requirements of a particular application. Active interface
defines what should be expected from a component, and
what the component expects from the outside world. An
active interface not only exposes its own security
properties but it may also show what it requires from a
third component. It is almost undeniable that a software
component should be clear enough about what the
security across the dynamic composition with other
components is, what security provisions each component
requires and ensures, and what would be the ultimate
security behaviour of the entire composed system. From a
security point of view, it is unrealistic to tell the
component users or the system composers whether a
software component is secure or not, rather it is much
useful to expose what security properties are
implemented. In a distributed environment, it would not
be realistic to expect that all components would provide
same degree of security to others. The proposed
framework lets the human users and software components
judge the trustworthy of a component by reasoning the
security properties that it exposes.

One of the secondary benefits of our framework is to
separate the interface code from the application code of
the component. This framework enforces a clear
separation of concerns between the interface introspection
and the application of the functionality.

We conclude with our belief that a Security
characterisation mechanism providing a full disclosure of
security properties in both human and machine
comprehensible terms could build a confidence and trust
on a viable software component market.

125

References

[I] Han, J.,"A Comprehensive Interface Definition Eramework
for Software Components", El33 Proceedings of the 1998
Asia-Pacific Software Engineering Conference, Taipei,
December 1998, pp. 110-1 17.

[2] Perry, D., "Software Evolution and light' Semantics", IEEE
Roc. Of the 21th International Conference on Software
Engineering, Los Angeles, USA, May 1999, pp 587-550.

[3] Viega, J., Kohno, T., Potter, B., "Trust and Mistrust in
Secure Applications", Communications of the ACM, Feb.

[4] Keller, R, Lague, B., Schauer, R, "International Workshop
on Large-scale Software Composition", ACM Software
Engineering Notes Vol. 24, No. 1, January 1999, pp. 49-54.

[5] Ben-Shahul, I, Gidron, Y., Holder, O., "A Negotiation
Model for Dynamic Composition of Distributed
Applications", Roc. International Workshop on Large-
Scale Software Composition, Vienna, August 28 1998, pp.
820-825. http.Jlwww.iro.umontreal.caflabs/geIo/iw-lss~S

[6] Beugnard, A., et al., "Making Components Contract Aware",
IEEE Computer, July 1999, pp. 38-46.

[7] Voas, J., "Certifying Software for High Assurance
Environments", IEEE Software, July/August 1999, pp. 48-
54.

[SI Khan, K., Han, J., Zheng, Y., "Security Characterisation of
Software Components and Their Composition", IEEE
Proceedings 36" Intl Conference on Technology of Object-
Oriented Languages and System (TOOLS-Asia 2000), Oct.

[9] Khan, K., Han, J., Zheng, Y., "Characterising User Data
Protection of Software Components", IEEE Proc. Australian
Software Engineering Conference 2000, Canberra, April 28-

[lo] Thomson, C.: Workshop Reports. 1998 Workshop on
Compositional Software Architectures, organised and
sponsored by OMG, DARPA, MCC, OSC, Monterery,
California
http~lwww.objs.com/workshops/ws98Ollreport-~

[l l] Szyperski, C.: Component Software -Beyond Object-
Oriented Programming, Addision-Wesley, 1998.

[E] Michener, J., Acar, T., "Managing System and Active-
Content Integrity", IEEX Computer, 33-7, July 2000, pp.

[13] KO, C., Ruschitzka, M., bvitt, K, "Execution Monitoring
of Security-Critical Programs in Distributed Systems: A
Specification-based Approach, IEEE Roc. Symposium on
Securityand Privacy, 1997, pp. 175-187.

[14] Zaremski, A., Wing, J., "Specification Matching of
Software Components", ACM Transactions on Software
Engineering and Methodology, Vol. 6, No 4, October 1997,

[15] Repenning, A., et al., "Using Components for Rapid
Distributed Software Development", IEEE Software,
MaxcWApd 2001, pp. 38-46.

2001, Vol. 44, NO. 2., pp 31-36.

30- NOV. 4 2000, Xi's china, pp. 240-249.

29 u)oo, pp. 3-12.

108-1 10.

pp. 333-369.

126

