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Abstract. This paper studies the properties and constructions of non-
linear functions, which are a core component of cryptographic primi-
tives including data encryption algorithms and one-way hash functions.
A main contribution of this paper is to reveal the relationship between
nonlinearity and propagation characteristic, two critical indicators of the
cryptographic strength of a Boolean function. In particular, we prove that
(i) if f, a Boolean function on V,, satisfies the propagation criterion
with respect to all but a subset R of vectors in V,,, then the nonlin-
earity of f satisfies Ny > 2"~! — 2%(”“)_1, where t is the rank of
R, and
(ii) When |R| > 2, the nonzero vectors in R are linearly dependent.
Furthermore we show that
(iii) if |R| = 2 then n must be odd, the nonlinearity of f satisfies Ny =
9n~1 _ 231 and the nonzero vector in R must be a linear struc-
ture of f.
(iv) there exists no function on V; such that |R| = 3.
(v) if |[R| = 4 then n must be even, the nonlinearity of f satisfies Ny =
on—t 2%”, and the nonzero vectors in ® must be linear structures
of f.
(vi) if |R| = 5 then n must be odd, the nonlinearity of f is Ny = 2"~" —
2%(”71), the four nonzero vectors in R, denoted by (i, B2, B3 and
B4, are related by the equation 81 & B2 @ O3 @ B4 = 0, and none of
the four vectors is a linear structure of f.
(vii) there exists no function on V, such that || = 6.
We also discuss the structures of functions with || = 2,4, 5. In particular
we show that these functions have close relationships with bent functions,
and can be easily constructed from the latter.

1 Introduction

Cryptographic techniques for information authentication and data encryption
require Boolean functions with a number of critical properties that distinguish
them from linear (or affine) functions. Among the properties are high nonlin-
earity, high degree of propagation, few linear structures, high algebraic degree
etc. These properties are often called nonlinearity criteria. An important topic



is to investigate relationships among the various nonlinearity criteria. Progress
in this direction has been made in [9], where connections have been revealed
among the strict avalanche characteristic (SAC), differential characteristics, lin-
ear structures and nonlinearity, of quadratic functions.

In this paper we carry on the investigation initiated in [9] and bring together
nonlinearity and propagation characteristic of a Boolean function (quadratic or
non-quadratic). These two cryptographic criteria are seemly quite separate, in
the sense that the former indicates the minimum distance between a Boolean
function and all the affine functions whereas the latter forecasts the avalanche
behavior of the function when some input bits to the function are complemented.

We further extend our investigation into the structures of cryptographic func-
tions. A short summary of the results is presented in Table 1.

Due to the limit on space, detailed proofs will be left to the full version of
the paper.

2 Basic Definitions

We consider Boolean functions from V,, to GF(2) (or simply functions on V4,), V,,
is the vector space of n tuples of elements from GF'(2). The truth table of a func-
tion f on V,, is a (0, 1)-sequence defined by (f(ao), f(a1),..., f(aan_1)), and the

sequence of f is a (1, —1)-sequence defined by ((—1)7(@0) (—1)f(a)  (_1)f(e2n—1))

where ag = (0,...,0,0), a1 =(0,...,0,1), ..., @gn-1_1 = (1,...,1,1). The ma-
triz of f is a (1, —1)-matrix of order 2" defined by M = ((—1)/(@:®))_ f is said
to be balanced if its truth table contains an equal number of ones and zeros.

An affine function f on V,, is a function that takes the form of f(z1,...,z,) =
a1z1 B -+ B ap®y & ¢, where aj,c € GF(2), j = 1,2,...,n. Furthermore f is
called a linear function if ¢ = 0.

Definition 1. The Hamming weight of a (0,1)-sequence s, denoted by W (s),
is the number of ones in the sequence. Given two functions f and g on V,,
the Hamming distance d(f, g) between them is defined as the Hamming weight
of the truth table of f(z) ® g(x), where z = (x1,...,2,). The nonlinearity of
f, denoted by Ny, is the minimal Hamming distance between f and all affine
functions on Vj,, i.e., Ny = min;_y 5 _on+1 d(f, ;) where @1, @2, ..., Qont1 are
all the affine functions on V,.

Now we introduce the definition of propagation criterion.
Definition 2. Let f be a function on V,,. We say that f satisfies
1. the propagation criterion with respect to a if f(x) ® f(x ® a) is a balanced
function, where x = (21, ...,2,) and « is a vector in V},.

2. the propagation criterion of degree k if it satisfies the propagation criterion
with respect to all @ € V,, with 1 < W(a) < k.

)



The above definition for propagation criterion is from [7]. Further work on
the topic can be found in [6]. Note that the strict avalanche criterion (SAC)
introduced by Webster and Tavares [10, 11] is equivalent to the propagation
criterion of degree 1 and that the perfect nonlinearity studied by Meier and
Staffelbach [4] is equivalent to the propagation criterion of degree n where n is
the number of the coordinates of the function.

While the propagation characteristic measures the avalanche effect of a func-
tion, the linear structure is a concept that in a sense complements the former,
namely, it indicates the straightness of a function.

Definition 3. Let f be a function on V,,. A vector a € V,, is called a linear
structure of f if f(z) & f(xz ® @) is a constant.

By definition, the zero vector in V,, is a linear structure of all functions
on V,. It is not hard to see that the linear structures of a function f form
a linear subspace of V,,. The dimension of the subspace is called the linearity
dimension of f. We note that it was Evertse who first introduced the notion of
linear structure (in a sense broader than ours) and studied its implication on
the security of encryption algorithms [3].

A (1, —1)-matrix H of order m is called a Hadamard matrix if HH' = mI,,,
where H! is the transpose of H and I, is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2", denoted by H,, is generated by the
following recursive relation

Hn—l Hn—l

Hy=1, H, =
0 ’ |:Hn—1 _Hn—l

],n:l, 2,....

Definition4. A function f on V,, is called a bent function if

2% Z (_1)f(96)69(,3796) = 41,
z€V,

for all g € V. Here (83,z) is the scalar product of § and z, namely, (3,z) =
Sor . bizg, and f(z) ® (8, ) is regarded as a real-valued function.

Bent functions can be characterized in various ways [1, 2, 8, 12]. In particular
the following four statements are equivalent:

(i) f is bent.
(ii) (£,€) = +£227 for any affine sequence £ of length 2", where £ is the sequence
of f.
(iii) f satisfies the propagation criterion with respect to all non-zero vectors in
Vi
(iv) M, the matrix of f, is a Hadamard matrix.

Bent functions on V,, exist only when n is even. Another important property
of bent functions is that they achieve the highest possible nonlinearity 2"~! —
23m-1,



3 Propagation Characteristic and Nonlinearity

Given two sequences a = (a1,...,a,) and b = (by,...,by), their component-
wise product is defined by a xb = (a1by,...,amby,). Let f be a function on V,,.
For a vector a € V,,, denote by () the sequence of f(z @ ). Thus £(0) is the
sequence of f itself and £(0) x £(a) is the sequence of f(z) ® f(z & a).

Set
Ala) = (£(0), (@),
the scalar product of £(0) and &(a). Obviously, A(a) = 0 if and only if f(z) ®
f(z @ «) is balanced, i.e., f satisfies the propagation criterion with respect to a.
On the other hand, if |A(a)| = 2™, then f(z) ® f(z ® a) is a constant and hence

« is a linear structure of f.

Let M = ((—1)/(®®2)) be the matrix of f and & be the sequence of f. Due
to a very pretty result by R. L. McFarland (see Theorem 3.3 of [2]), M can be
decomposed into

M = 27"H, diag({(£, lo), -+, (€, lan_1))H,

where ¢; is the ith row of H,, a Sylvester-Hadamard matrix of order 2". By

Lemma 2 of [8], ¢; is the sequence of a linear function defined by ¢;(z) = (o, ),

where ¢; is the ¢th vector in V}, according to the ascending alphabetical order.
Clearly

MMT = 27an diag(<€7£0>2a Ty <£7£2"71>2)Hn' (1)
On the other hand, we always have
MMT = (Al © ),

where i,7 =0,1,...,2" — 1.

Let S be a set of vectors in V,,. The rank of S is the maximum number of
linearly independent vectors in S. Note that when S forms a linear subspace of
Va, its rank coincides with its dimension.

Lemma 6 of [8] states that the distance between two functions f; and fo on
V,, can be expressed as d(fy, f2) =271 — %(§f1,§f2>, where &, and &y, are the
sequences of f; and f> respectively. As an immediate consequence we have:

Lemma5. The nonlinearity of a function f on V, can be calculated by
1
Ny =2""1 = cmax{|(§,:)],0 <i < 2" — 1}

where & is the sequence of f and Ly, ..., lan_1 are the sequences of the linear
functions on V,,.

Now we prove a central result of this paper:

Theorem 6. Let f be a function on V), that satisfies the propagation criterion
with respect to all but a subset R of vectors in V,. Then the nonlinearity of f
satisfies Ny > 271 — 23(v D=1 where t is the rank of R.



It was observed by Nyberg in Proposition 3 of [5] (see also a detailed discus-
sion in [9]) that knowing the linearity dimension, say ¢, of a function f on V,,,
the nonlinearity of the function can be expressed as Ny = 2¢N,., where N, is the
nonlinearity of a function obtained by restricting f on an (n — £)-dimensional
subspace of V,,. Therefore, in a sense Theorem 6 is complementary to Proposi-
tion 3 of [5].

In the next section we discuss an interesting special case where |R| = 2. More
general cases where |R| > 2, which need very different proof techniques, will be
fully discussed in the later part of the paper.

4 Functions with |R| = 2

Since R consists of two vectors, a zero and a nonzero, it forms a one-dimensional
subspace of V,,. The following result on splitting a power of 2 into two squares
will be used in later discussions.

Lemma7. Letn > 2 be a positive integer and 2" = p?+q> where both p > 0 and
1 1

q > 0 are integers. Then p = 22" and g = 0 when n is even, and p = g = 27"~

when n is odd.

Now we can prove

Theorem 8. If f, a function on V), satisfies the propagation criterion with
respect to all but two (a zero and a nonzero) vectors in Vy,, then

(i) n must be odd,
(ii) the monzero vector where the propagation criterion is not satisfied must be a
linear structure of f and
. ) . ) 1
(iii) the nonlinearity of f satisfies Ny = 27~ —23(n=1),

A further examination of the proof for Theorem 8 reveals that a function
with |R| = 2 has a very simple structure as described below.

Corollary 9. A function f on V, satisfies the propagation criterion with respect
to all but two (a zero and a nonzero) vectors in Vy,, if and only if there exists a
nonsingular linear matriz of order n over GF(2), say B, such that g(x) = f(zB)
can be written as

g(x) = cxn ® h(z1,...,Tp—1)
where h is a bent function on V,,_1 and c is a constant in GF(2).

By Theorem 8 and Corollary 9, functions on V;, that satisfy the propagation
criterion with respect to all but two vectors in V), exist only if n is odd, and such
a function can always be (informally) viewed as being obtained by repeating
twice a bent function on V;,—; (subject to a nonsingular linear transformation
on the input coordinates).

When R has more than two vectors, it does not necessarily form a linear
subspace of V,,. Therefore discussions presented in this section do not directly
apply to the more general case. Nevertheless, using a different technique, we
show in the next section a significant result on the structure of R, namely, the
nonzero vectors in $ with |R| > 2 are linearly dependent.



5 Linear Dependence in R

The following result on vectors will be used in the proof of the main result in
this section.

Lemma10. Let vy, ...,% be linear functions on V, which are linearly inde-
pendent. Set
01 b
Q=1": and P =
ok Uy,

where o; is the truth table and {; is the sequence of v;, i = 1,...,k. Then

(i) each vector in Vi appears as a column in Q precisely 2% times and
(ii) each k-dimensional (1,—1)-vector appears as a column in P precisely 2" *
times.

Proof. Note that (i) and (ii) are equivalent. Clearly, any nonzero linear combi-
nation of ¢1,...,px is a nonzero linear function and thus it is balanced. Conse-
quently, this lemma is equivalent to Lemma 7 of [9]. O

Next we show the linear dependence of nonzero vectors in .

Theorem 11. Suppose that f, a function on V,, satisfies the propagation crite-
rion with respect to all but k + 1 vectors 0,31, ...,8; in V,, where k > 1. Then
Bi,---, 0k are linearly dependent, namely, there exist k constants c1,...,cp €
GF(2), not all of which are zeros, such that 18, ® - - & cxfr = 0.

Proof. The theorem is obviously true if £ > n. Now we prove the theorem for
k < n by contradiction. Assume that (31,..., 3 are linearly independent. Let &
be the sequence of f.

Compare the first row of the two sides of (1), we have

(A(Oéo), A(al)a ceey A(Oé?"*l)) = 27n(<£7£0>27 R <£7£2"71>2)Hn

where «; is the jth vector in V}, in the ascending alphabetical order. Equivalently
we have

(Alao), Alon), - .., Alazn 1)) Hyp = ((§,40), .., (€, lan 1)) (2)

Now let P be a matrix that consists of the Oth, 8ith, ..., Bxth rows of H,.
Here we regard f3; as an integer. Set a? =(£¢;)% j=0,1,...,2" — 1. Note that
Ala) =0if a & {0,01,...,0k}- Hence (2) can be written as

(A(0), A(Br), .-, A(Br))P = (a, ai, ..., a35. 1) (3)

where 0 in (3) is identical to ap in (2).



Write P = (p;;), 4 =0,1,...k,j =0,1,...,2" — 1. As the top row of P is

(1,1,...,1), a? in (3) can be expressed as

k
A0) + > pi; A(Bi) = a)
i=1

j=0,1,...,2"—1. Let P* be the submatrix of P obtained by removing the top
row from P. As was mentioned earlier, the 3;th row of H, is the sequence of a lin-
ear function defined by v;(z) = (8;, =) (see Lemma 2 of [8]). The linear indepen-
dence of the vectors (3, ..., B implies the linear independence of the linear func-
tions ¢1(z) = (B1,x),...,¥r(x) = (Bk,z). By Lemma 10, each k-dimensional
(1, —1)-vector appears in P*, as a column vector, precisely 2% times. Thus
for each fixed j there exists a jo such that (pij,...,Pk;) = —(P1jo,- .- »Prjo) and
hence

k
A(0) + ZpijoA(ﬂi) = aj,.
i—1

Adding together both sides of the above two equations, we have 2A(0) = a3 +a3 .
Hence a? + a5 = 2"*". There are two cases to be considered: n even and n odd.

Case 1: n is even. By Lemma 7, a} = a3 = 2". This implies that (¢, ¢;) = 2"
for any fixed j, which in turn implies that f is bent and that it satisfies the
propagation criterion with respect to every nonzero vector in V;, (see also the
equivalent statements about bent functions in Section 2). This clearly contra-
dicts the fact that f does not satisfy the propagation criterion with respect to

ﬂla"'aﬁk-

Case 2: n is odd. Again by Lemma 7, a7 = 2"*" or 0. If a7 = 2"*!, then
Ele pijA(B;) = 2". Otherwise if a7 = 0, then Zle pi; A(B;) = —2™. Thus we
can write

k
> piiAB) = ;2" (4)

i=1

where ¢; = +1, j =0,1,...,2" — 1. For each fixed j rewrite (4) as

k
p1;A(BL) + ZpijA(ﬁi) =¢;2".
=2

From Lemma 10, there exists a j; such that p;;, = pi; and p;;;, = —psij, @ =
2,...,k. Note that

k
P ABY) + D pig AB:) = ¢, 2"
=2

Adding the above two equations together, we have

2p1;A(Br) = (¢ +¢4,)2".



As f does not satisfy the propagation criterion with respect to 31, we have
A(B1) # 0 and ¢; +¢j, # 0. This implies ¢; +¢j, = +2, and hence A(By) = £2".
By the same reasoning, we can prove that A(8;) = £27, j = 2,...,k. Thus we
can write

(A(B1), .-, A(Br)) = 2" (b, .-, br)

where each b; = £1. By Lemma 10, there exists an s such that

(plsa"'apks) = (bla"'abk)-

This gives us
k k k
S pisAB) =Y b:AB) =Y bib2" = k2. (5)
i=1 i=1 i=1

Since k > 1, (5) contradicts (4).
Summarizing Cases 1 and 2, we conclude that the assumption that 31, . .., Gk
are linearly independent is wrong. This proves the theorem. O

We believe that Theorem 11 is of significant importance, as it reveals for the
first time the interdependence among the vectors where the propagation criterion
is not satisfied by f. Of particular interest is the case when ® = {0, 31,..., 0}
forms a linear subspace of V,. Recall that linear structures form a linear sub-
space. Therefore, when  is a subspace, a nonzero vector in R is a linear structure
if and only if all other nonzero vectors are linear structures of f.

In the following sections we examine the cases when |®| = 3,4, 5, 6.

6 Functions with |R| =3

When |R| = 3, the two distinct nonzero vectors in & can not be linearly depen-
dent. By Theorem 11 we have

Theorem 12. There exists no function that does not satisfy the propagation
criterion with respect to only three vectors.

7 Functions with |R| =4

Next we consider the case when |R| = 4. Similarly to the case of |R| = 2, the
first step we take is to introduce a result on splitting a power of 2 into four, but
not two, squares.

Lemma13. Letn > 3 be a positive integer and 2™ = Z§:1 p? where each p; > 0
is an integer. Then

(i) p =p} =2""1, ps =ps =0, if n is odd;
(ii) pd =27, py =p3 =ps =0 or p} =p3 =p =p3 =2"2, if n is even.



Now we can prove a key result on the case of |R| = 4.

Theorem 14. If f, a function on V,, satisfies the propagation criterion with
respect to all but four vectors (0, 1, B2, B3) in V. Then

(i) ® =10, 51, 02,05} forms a two-dimensional linear subspace of V,,,
(i) n must be even,
(iii) B1, B2 and B3 must be linear structures of f,

(iv) the nonlinearity of f satisfies Ny =2"~! — 237,

As a result we have

Corollary 15. A function f on V,, satisfies the propagation criterion with re-
spect to all but four vectors in V,, if and only if there exists a nonsingular linear
matriz of order n over GF(2), say B, such that g(x) = f(xB) can be written as

g(m) =cC1Tp—1 D c2xp, O h(:l?l, ey wn_g)
where ¢1 and ¢ are constants in GF(2), and h is a bent function on Vy,_o.

In [8], it has been shown that repeating twice or four times a bent function on
V., n even, results in a function on V,,_; or V;,_» that satisfies the propagation
criterion with respect to all but two or four vectors in V,,—; or V,,_5. Combining
Corollaries 15 and 9 with results shown in [8], we conclude that the methods of
repeating bent functions presented in [8] generate all the functions that satisfy
the propagation criterion with respect to all but two or four vectors.

8 Functions with |R| =5

Let f be a function on V,, with |R| = 5 and let & = {0, 1, 82, 53, 84} In the full
paper we show the following result:

Theorem 16. Let f be a Boolean function on V,, that satisfies the propagation
criterion with respect to all but a subset % = {0, 81, B2, B3, B1}. Then

(i) n is odd,
(i) B @ B2 @ B3 @ s =0,
(iii) |A(B;)] = 2", j =1,2,3,4, and three A(B;) have the same sign while the
remaining has a different sign, and
(iv) the nonlinearity of f satisfies Ny =2"~! — 23(n-1),

Recall that when |R| = 2 or 4, all nonzero vectors in R are linear structures
of f, and the structure of f is very simple — it can be (informally) viewed as
the two- or four-repetition of a bent function on V,,_1 or V,,_5. In contrast, when
|R| = 5, none of the nonzero vectors in # is a linear structure of f. Thus if a
non-bent function does not possess linear structures, then |R| must be at least
5. In this sense, functions with |R| = 5 occupy a very special position in our
understanding of the structures of functions.



8.1 Constructing Functions with |[R| =5

The structure of a function with |R| = 5 is not as simple as the cases when
|R| < 5. Unlike the case with || = 2 or 4, there seem to be a number of
different ways to construct functions with |R| = 5. The purpose of this section
is to demonstrate one of such construction methods.

We start with » = 5. Let w(y) be a mapping from V5 into V3, defined as
follows

w(0,0) = (1,0,0),w(0,1) = (0,1,0),w(1,0) = (1,1,0),w(1,1) = (0,1,1).

Set,
f5(2) = fs(y,z) = (w(y), z) (6)
where y € V5 and z € V3, z = (y,z). Obviously f5 is a function on Vi and
f5(0,0,1'1,1'2,l'3) =T,
f5(05 1,:171,:172,(173) = T2,
f5(1,0,€171,$2,{173) =T 69:1727
fs(]., 1,1‘1,1‘2,1‘3) = T3 EBI'?,

Hence f5 can be explicitly expressed as

fs(y1,y2,71,02,23) = (1D y1) (1 Dy2)2 © (1D y1)y222 D
Y1(L® y2)(z1 © 22) B y1y2(z2 B x3) (7

Let £100, lo10, £110, Lo11 denote the sequences of p100 (1, 22, ¥3) = =1, Yo10(T1, T2, 3) =
T2, p110(T1, %2, x3) = 1 D T2, po11(T1, T2, T3) = T2 D3 respectively, where each
 is regarded as a linear function on V3. By Lemma 1 of [8], £100, Y010, ¢110, Y011
are four different rows of H3. By Lemma 2 of [8], the sequence of f5 is

EZ (61007 60107 61107 6011)-

Let £(7y) denote the sequence of

f5(z@7) =(wly®B),z® )

where 3 € V; and a € V3, v = (8, a). We now consider A(7) = (£, £(7))-
Case 1: 8 # 0. In this case we have

f5(2) ® fs(z©7) = (w(y) @w(y © f), z) & (w(y © B), ).

Note that w(y) Pw(y ® B) is a nonzero constant vector in V3 for any fixed y € V5.

Thus f5(z) ® f5(z @ ) is a nonzero linear function on V3 for any fixed y € Vs

and hence it is balanced. This proves that A(y) = 0 with v = (3,«) and 3 # 0.
Case 2: 8 = 0. In this case

f5(2) ® fs(2 ®7) = (w(y), @)



is balanced for a = (0,1,1), (1,0,0) and (1,1,1). In other words, A(y) = 0, if
v = (0,a) and a = (0,1,1), (1,0,0) or (1,1,1). It is straightforward to verify
that A(y) = 2%, —2*, —2* and —2* with v = (0,a) and a = (0,0,1), (0, 1,0),
(1,0,1) and (1,1,0) respectively. Obviously A(0) = 2°. Thus f5 satisfies the
propagation criterion with respect to all but five vectors in V3.

With f5 as a basis, we now construct functions with |R| = 5 over higher
dimensional spaces. Let ¢ > 5 be odd and s be even. And let g be a function on
V; that satisfies the propagation criterion with respect to all but five vectors in
Vi, and h be a bent function on V. Set

f(w) = g(v) ® h(u) (8)
where w = (v,u), v € V; and u € V. Then we have

Lemmal7. A function constructed by (8) satisfies |R| = 5.

Proof. Let £(8) and n(«) be the sequences of g(v @ 3) and h(u @ «) respectively.
Write ((7y) as the sequence of f(w®v) = g(v® ) ® h(u ® a), where v = (4, a).
By definition, () = &(8) x n(a), where X is the Kronecker product. Hence we
have

= An(B)Ay(a)

where Ay, Ay and Ay, are well defined and the subscripts are used to distinguish
the three different functions f, g and h.

Since h(u) is a bent function, Ap(a) # 0 if and only if & = 0. On the
other hand, since g satisfies the propagation criterion with respect to all but five
vectors 0, 31, 32, B3 and B4 in Vi, Ap(B8) = 0 if and only if 3 € {0, 51, B2, B3, Ba}-
Thus Ay(y) =0 if and only if v = (8, ) with « =0 and 8 € {0, 41, B2, B3, Ba}.
This proves that f satisfies the propagation criterion with respect to all but five
vectors in Vi4s. a

A function f constructed by (8) is balanced if g is balanced. As the function
f5 on Vs defined in (7) is balanced, we have

Theorem 18. For any odd n > 5, there exists a balanced function satisfying the
propagation criterion with respect to all but five vectors in V.

As an example, set h(zg,z7) = xex7 and
f7(mlam2ax3ax4am5amﬁam7) = f5(l‘1,l'2,l'3,1’4,1’5) @ h(l’ﬁ,l”r)

where f5 is defined in (7). Note that h(xg,z7) is a bent function on Vs, by
Theorem 18, f7 is a balanced function on V7 that satisfies |R| = 5.

To close this section we note that one can also start with constructing a
function f; on V7 with || = 5 by using the same method as that for designing

fs.



9 Functions with |R| = 6
In the full paper we prove that there is no function with |R| = 6.

Theorem 19. There ezists no function on V,, such that || = 6.

10 Degrees of Propagation

In [8] it has been shown that if f is a function on V;, with |®| = 2, then, through
a nonsingular linear transformation on input coordinates, f can be converted
into a function satisfying the propagation criterion of degree n — 1. Similarly,
when |R| = 4, the degree can be ~ 2n. In this section we show that with |R| = 5,
the degree can be n — 3.

Assume that the four nonzero vectors in £ are 81, B2, 83 and 3, and that
B1, B> and B3 are a basis of R = {0, 81, B2, 03, B4 }- Let B be an n x n nonsingular
matrix on GF(2) with the property that

ﬁlB: (17"'71707071)
52B: (17"'71707170)
ﬂ3B: (17"'71717070)

As By = 1 @ B2 @ (B3, we have
BB = (1 ®B®Bs)B=(1,...,1,1,1,1).

Now let g(x) = f(xB). Then g satisfies the propagation criterion of degree
n — 3, as the only exceptional vectors are (0,...,0,0,0,0), (1,...,1,0,0,1),
(1,...,1,0,1,0), (1,...,1,1,0,0) and (1,...,1,1,1,1). These discussions, to-
gether with Theorem 18, show that for any odd n > 5, there exists balanced
functions on V), that satisfy the propagation criterion of degree n —3 and do not
possess a nonzero linear structure.

Table 1 shows structural properties of functions with |®| < 6.
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