
Efficient and Provably Secure Ciphers for Storage Device
Block Level Encryption

Yuliang Zheng
SIS Department, UNC Charlotte

yzheng@uncc.edu

Yongge Wang
SIS Department, UNC Charlotte

yonwang@uncc.edu

ABSTRACT
Block ciphers generally have fixed and relatively small input length.
Thus they are often used in some mode of operations (e.g., ECB,
CBC, CFB, and CTR) that enables the encryption of longer mes-
sages. Unfortunately, all these modes of operation reveal some in-
formation on their inputs or on relationships between different in-
puts. As an example, in the CBC mode, encrypting two messages
with an identical prefix will result in identical initial blocks in the
ciphertexts. Due to the well-known birthday attack and the small
input length, the CBC mode becomes less secure as the number of
data blocks to be encrypted increases. This leads to a challenging
task, namely to design schemes for storage device block or sector
level data encryption that are efficient and do not have the disad-
vantages mentioned above. In this paper, we propose an efficient
cipher whose data/cipher blocks can be specified flexibly to match
the length of a block unit for current and foreseeable future storage
devices. We show that our encryption scheme is provably secure
under the assumption that the underlying one-way hash function is
a random function.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption—standards

General Terms
Algorithms, performance, security, theory

Keywords
Symmetric cipher, hash function, storage device encryption

1. INTRODUCTION
Recent years have seen an increasing demand for properly de-

signed encryption schemes that could be used to encrypt storage
devices at the block (sector) level. Since data are read from/written
to storage devices per storage block unit (e.g., one kilobyte), chains
between ciphertext should be limited within storage blocks to main-
tain good performance. Thus, storage device block encryptions are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’05, November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-223-X/05/0011 ...$5.00.

generally done by using block ciphers (e.g., AES) in some mode of
operation such as CBC (note that the term “block” in “block cipher”
has a different meaning from the term “block” in “storage block”).
CBC encryption becomes insecure once 2n/2 blocks have been en-
crypted, in the sense that at this point partial information about
the message begins to leak, due to the well-known birthday attacks
(see, e.g., [1]), where n is the cipher-block length. Furthermore,
this is true for many other common modes of operations too. Thus
direct use of a 128-bit block size cipher (like AES-128) usually en-
ables one to safely encrypt no more than 264 128-bit data blocks,
which is not acceptable in many other applications such as terabyte
disk encryptions and global scale storage systems. Thus better ci-
phers for storage device block-level encryptions are desired. Based
on Luby and Rackoff’s [6] seminal work, we propose two prov-
able secure encryption schemes with arbitrary cipher-block lengths
which are ideal for storage device (indeed for general block device)
encryptions.

Motivated by the Feistel network structure in Data Encryption
Standard DES, Luby and Rackoff [6] showed a general method
(LR-construction) for constructing pseudo-random permutations from
pseudo-random functions. Their construction consists of four rounds
(or three rounds for weaker security requirements) of Feistel per-
mutations, each round involves an application of a (different) pseudo-
random function. The elegance of LR-construction is their provable
security. Recently, Naor and Reingold [8] provided a better under-
standing of the LR-construction and improved the constructions by
replacing the first and last rounds in the LR-construction with ap-
propriately designed pair-wise independent permutations based on
universal hash functions. Note that while Naor and Reingold’s con-
strution reduces the required number of pseudo-random functions,
it does not reduce the required number of rounds.

In this paper, we design efficient, arbitrary input length, and
provable secure ciphers based on LR-construction by replacing the
pseudo-random functions in the LR-construction with random func-
tions constructed from efficient hash functions. Naor and Rein-
gold’s improvement is also applicable to our ciphers. That is, if
preferred, the first and the last rounds in our ciphers could also be
replaced with properly designed permutations. Note that our con-
structions have several practical advantages over other construc-
tions. Firstly, our encryption schemes are only based on fast hash
functions such as SHA-1 or SHA-256 which are extensively used
in industry. Secondly, the code size for our scheme is very small
(the code for hash function is enough). Thirdly, our schemes are
very efficient. Fourthly, since the cipher-block for our scheme is
larger, our scheme is more immune against the birthday attacks.
Thus our schemes are more suitable for storage device encryptions.
Due to their efficiency and small code size, our schemes are also
suitable for small device or embedded device storage encryptions.

103

Note that for Naor and Reingold’s improvement, further code for
universal hash functions is required, which could be expensive in
some small devices.

Instead of constructing a cipher of larger block size, Liskov,
Rivest, and Wagner [5] and Halevi and Rogaway [4] proposed modes
of operations to address the similar problems. In particular, Halevi
and Rogaway [4] proposed tweakable the following tweakable en-
ciphering mode for storage block level encrypitons: derive the ci-
phertext c of a plaintext m as c = Et

K(m) where t is the hard disk
position that m (c indeed) is stored. Specifically, they proposed an
enciphering mode CBC-Mask-CBC CMC. CMC starts with a block
cipher E : K × {0, 1}n → {0, 1}n and turns it into an encipher-
ing scheme CMC[E] : K′ × T × M → M where T = {0, 1}n

contains the position information and M contains strings with any
number (at least two) of n-bit blocks. Note that the tweak construc-
tion in [4] is essentially based on the tweak construction in Liskov,
Rivest, and Wagner [5]. The interesting properties for the tweak
construction in [4] are that there is a lot of error propagation (as
opposed to CBC, etc. that purposefully have minimal error prop-
agation) and that it is very parallelizable. The cipher that we will
propose (HESS) has the same type of error propagation.

2. LR-CONSTRUCTION WITH HASH
FUNCTIONS

In this section, we present our first cipher which is a straightfor-
ward application of hash functions to the LR-construction. Let n be
a positive integer and H(·) be a random function mapping arbitrary
length binary strings to n-bit binary strings.

Let L and R denote the left and right half of a 2n-bit string L||R,
K be any fixed-length binary string, [i]8 be a 8-bit block that is
equal to the number i expressed using a binary representation, and
etci be a binary string (in practice etci, could be some known in-
formation, for example, the block device block index together with
the cipher round index in binary representations). Then, for each
i ≤ 3, we can define the function fi,K(·) (mapping from 2n-bit
binary strings to 2n-bit binary strings) by letting

fi,K(L||R) = R||(L ⊕ H(R||[i]8||K||etci)),

that is, the right half of the argument appears unchanged as the
left half of the result and the right half of the result is equal to
L ⊕ H(R||[i]8||K||etci). This corresponds to one round of DES
and is shown in Figure 1.

L R i

L i+1 R i+1

 i

etc[i] 8 K

H

i

Figure 1: One round fi,K(L||R) of the encryption scheme
EK(·)

The encryption scheme EK(·) is defined as the permutation

EK(L||R) = f3,K(f2,K(f1,K(f0,K(L||R))))

where L||R is a 2n-bit binary string and K is the secret key. For a
2n-bit string L||R, let

f−1
i,K(L||R) = (R ⊕ H(L||[i]8||K||etci))||L.

Then for a 2n-bit ciphertext L4||R4, the plaintext is computed by
the following operation:

E−1
K (L4||R4) = f−1

0,K(f−1
1,K(f−1

2,K(f−1
3,K(L4||R4))))

Pseudo-random bit generators were introduced by Blum and Mi-
cali [3] and Yao [11]. We refer to section 4 of [6] for definitions of
a pseudo-random number (or bit) generator (PRNG), of a pseudo-
random function generator (PRFG), and of a pseudo-random per-
mutation generator (PRPG). We will also use standard terms such
as (non)adaptive chosen plaintext attacks, (non)adaptive chosen ci-
phertext attacks, security against (non)adaptive chosen plaintext
and chosen ciphertext attacks. For these definitions, we refer to
[8, 6]. In the following, we show that if the random function H is
appropriately defined, then the encryption scheme EK(·) is prov-
able secure against adaptive chosen-plaintext and adaptive chosen-
ciphertext attacks.

LEMMA 2.1. Let m, n and l be three integers such that lm = n
and l << n. Assume that R is a pseudo-random function map-
ping arbitrary length input binary strings x to m-bit binary strings
R(x). Define the function H(·) by letting

H(x) = R([0]8||x)||R([1]8||x)|| · · · ||R([l − 1]8||x)

where [0]8, [1]8, . . ., and [l − 1]8 are 8-bit blocks that are equal to
the numbers 0, 1, . . ., and l− 1 expressed using a binary represen-
tation, respectively. Then H(·) is a pseudo-random generator.

PROOF. The proof for this lemma is similar to those proofs in
Blum and Micali [3] and Yao [11]. The details will be given in the
final version of this paper. Q.E.D.

THEOREM 2.2. Let H(·) be a pseudo-random generator con-
structed from a pseudo-random function R as in Lemma 2.1. Then
the encryption scheme EK(·) is provable secure against adaptive
chosen-plaintext and adaptive chosen-ciphertext attacks.

PROOF. Assume that R is a pseudo-random function and H is
a pseudo-random generator constructed from R as in Lemma 2.1.
For i ≤ 3, let gi(·) be defined by letting

gi(x) = H(x||[i]8||K||etci)

where K is the secret key. Then it can be shown that the pseudo-
random function set {g0, g1, g2, g3} is indistinguishable from a
set of four pseudo-randomly chosen functions mapping arbitrary
length binary strings to n-bit binary strings. Thus the theorem fol-
lows from the results in Luby and Rackoff [6]. The details of the
proof will be given in the final version of this paper. Q.E.D.

If security against non-adaptive attacks is sufficient in some sce-
narios, then one round in EK(·) could be reduced. That is, let

E ′
K(L||R) = f2,K(f1,K(f0,K(L||R))).

THEOREM 2.3. Let H(·) be a pseudo-random generator con-
structed from a pseudo-random function R as in Lemma 2.1. Then
the encryption scheme E′

K(·) is provable secure against non-adaptive
chosen-plaintext and non-adaptive chosen-ciphertext attacks.

104

PROOF. The proof is similar to the proof of Theorem 2.2 using
the results from Maurer [7]. Q.E.D.

If it is preferred, Naor and Reingold’s [8] technique could be
used to replace the functions f3,K and f0,K in EK(·) with two
pair-wise independent permutations. That is, let h1(·) and h2(·)
be two pair-wise independent permutations on the set of 2n-bit bi-
nary strings. Then

E ′′
K(L||R) = h−1

2 (f1,K(f0,K(h1(L||R))))

is a provable secure encryption scheme against adaptive chosen-
plaintext and adaptive chosen-ciphertext attacks.

The encryption scheme EK(·) has several advantages for storage
device block-level data encryptions. In practice, we can replace the
random function R in Lemma 2.1 with appropriately chosen hash
functions such as SHA-1 or SHA-256 [10]. In the following, by
replacing R with SHA-256 (that is, the pseudo-random bit gener-
ator H is constructed from SHA-256 as in Lemma 2.1), we give
an exemplar analysis of using the cipher EK(·) to encrypt storage
devices at sector (block) level.

Assume that the block unit of a storage device is 1024 bytes.
Note that in modern high performance filesystems, the block size
could be much larger than 1024 bytes, thus our techniques could
have more benefits. Then EK(·) can be used with the parame-
ter n = 4096 (note that 1024 bytes are 8162 = 2 × 4096 bits).
That is, each storage device block unit is one cipher-block of EK(·)
and is divided into two parts L and R, each of 4096 bits. Since
the output of SHA-256 is 256 bits, the function H consists of
l = 4096/256 = 16 times applications of SHA-256. The most
computation intensive part of the scheme EK(·) is the evaluation
of the functions H . Thus the computation complexity of the en-
cryption of one block unit of the storage device is approximately
4× 16 = 64 applications of SHA-256 on (4096 +8+ k + |etci|)-
bit inputs, where k is the bit-length of the secret key and |etci|
is the bit-length of the additional input etci. Assume that 128-
bit key is used and etci is the storage device block number plus
the cipher round index in binary representations. Then 32 bits are
enough for etci if the volume of the storage device is about one
terabyte. Thus the input to each application of SHA-256 is 4264
bits. Since the block size for SHA-256 is 512 bits, for inputs of
4264 bits, SHA-256 needs a total of 9 times of the basic four-step
SHA-256 operation. In a summary, if SHA-256 is used as the un-
derlying pseudo-random function and 128 bits secret key is used,
then a total of 9 × 64 = 576 times of the basic four-step SHA-256
operations are needed to encrypt a 1024 bytes storage device block
unit. Similar analysis shows that if SHA-512 (SHA-512 has a block
size of 1024 bits) is used as the underlying pseudo-random function
and 256-bit secret key is used, then a total of 5 × 32 = 160 times
of the basic four-step SHA-512 operation are needed to encrypt a
1024 bytes storage device block unit.

Naor and Reingold’s [8] method can be applied to the scheme
EK(·) by replacing the first and last rounds with pair-wise indepen-
dent permutations. The new scheme is still provable secure against
adaptive chosen plaintext and adaptive chosen ciphertext attacks.
The speed of the new scheme is two times faster than the speed of
the original scheme EK(·) if we ignore the time required for the two
permutation operations. However, in several applications, we may
prefer not to use Naor and Reingold’s method in the scheme EK(·)
if the universal hash function-based permutations are not preferred
in the application.

The above analysis shows that the encryption scheme EK(·) could
be implemented with very good performance. In addition, the scheme
EK(·) has a few advantages over AES or other fixed block size ci-
phers.

• The scheme EK(·) is provable secure assuming that the un-
derlying hash function is a pseudo-random function.

• If a cipher’s block size is n-bit and CBC mode is used, then
the scheme becomes insecure when 2n/2 blocks have been
encrypted. Since the encryption scheme EK(·)’s cipher-block
size is equal to the storage device block unit size (which
is generally 1024 bytes), EK(·) achieves the best security
bound against birthday attacks that an encryption scheme
for storage device can have. Naor and Reingold [8, 9] con-
structed an encryption scheme for storage devices based on
ciphers such as AES. As they have pointed out, however,
their scheme is also vulnerable to a birthday attack on the
size of the original block size.

• The scheme EK(·) has a very simple internal structure and
the main code needed for implementation is the code for hash
functions. Thus this encryption scheme may be preferred in
small embedded device storage encryptions.

3. EFFICIENT HASH BASED ENCRYPTION
FOR STORAGE SECTORS: HESS

In the encryption scheme EK(·) from last section, each hash
function is applied to the entire string “R||[i]8||K||etci”. For stor-
age devices with larger block unit, this string could be very longer.
Since most hash functions such as SHS has a relatively small block
size, the speed of the encryption scheme EK(·) could be signif-
icantly improved if the input to the hash functions are relatively
short. In this section, we introduce an efficient hash based encryp-
tion scheme for storage sectors: HESS, which is an improvement
of the scheme EK(·).

Let n, m and l be three non-negative integers such that lm = n
and l ≤ 64. Let H be a pseudo-random function mapping arbitrary
length binary strings to m-bit binary strings. For each i = 0, 1, 2,
and 3, we define a function gi,K(·) (Figure 2) mapping n-bit binary
strings to n-bit binary strings as follows:

H H H

[0] [1]

... ...

... ...

... ...

[l-1]

H

y y y

8 8 8

 0 1 l-1

x 0 x 1 x... ...
 l-1 [i] 8 K etc i

Figure 2: The function gi,K(·)

1. Let x = x0 . . . xl−1 where x is an n-bit binary string, xj’s
are m-bit binary strings for j = 0, . . . , l − 1.

2. Let z′ = H(x||[i]8||K||etci), where [i]8 is a 8-bit block that
is equal to the number i expressed using a binary representa-
tion, K is any fixed-length binary string, and etci is a binary
string (in practice, etci could be some known information,

105

for example, the block device block index together with the
cipher round index in binary representations), and let z be
the leftmost m − 8 bits of z′.

3. Let yj = H(xj ||z||[j]8) for j = 0, . . . , l − 1.

4. Let gi(x) = y0y1 . . . yl−1.

L R

L R

L R

L R

L R

g

g

g

g

0 0

1 1

2 2

3 3

4 4

1,K

3,K

K

0,K

2,K

Figure 3: The encryption scheme HESSK(·)

Let L and R denote the left and right half of a 2n-bit string L||R,
K be any fixed-length binary string. Then, for each i ≤ 3, we can
define the function fi,K(·) (mapping from 2n-bit binary strings to
2n-bit binary strings) by letting

fi,K(L||R) = R||(L ⊕ gi,K(R)),

that is, the right half of the argument appears unchanged as the
left half of the result and the right half of the result is equal to
L ⊕ gi,K(R||K). The encryption scheme (see Figure 3) is defined
as the permutation

HESSK(L||R) = f3,K(f2,K(f1,K(f0,K(L||R))))

where K is the secret key. For a 2n-bit string L||R, let

f−1
i,K(L||R) = (R ⊕ gi,K(L)||L.

Then for a 2n-bit ciphertext L4||R4, the plaintext is computed by
the following operation:

HESS−1
K (L4||R4) = f−1

0,K(f−1
1,K(f−1

2,K(f−1
3,K(L4||R4))))

In the following, we show that if H is a pseudo-random function,
then the encryption scheme HESSK(·) is provable secure against
adaptive chosen-plaintext and adaptive chosen-ciphertext attacks.

LEMMA 3.1. Let n, m and l be three integers such that lm = n
and l << n. Assume that H is a pseudo-random function map-
ping arbitrary length input binary strings x to m-bit binary strings
H(x). For each i ≤ 3 and any fixed binary string K, let gi,K be
defined as in Figure 2. Then the function set {gi,K : i = 0, 1, 2, 3}
is indistinguishable from a set of four pseudo-randomly chosen
functions mapping arbitrary length binary strings to n-bit binary
strings.

PROOF. The details of the proof will be given in the final version
of this paper. Q.E.D.

THEOREM 3.2. Let H be a pseudo-random function and {gi,K :
i = 0, 1, 2, 3} be a set of functions constructed from H as in Fig-
ure 2. Then the encryption scheme HESSK(·) is provable secure
against adaptive chosen-plaintext and adaptive chosen-ciphertext
attacks.

PROOF. This follows from Lemma 3.1 and the results in Luby
and Rackoff [6]. Q.E.D.

If it is preferred, Naor and Reingold’s [8] technique could be
used to replace the functions f3,K3 and f0,K0 in HESSK(·) with
two pair-wise independent permutations, which may improve the
performance in some applications. That is, let h1(·) and h2(·) be
two pair-wise independent permutations on the set of 2n-bit binary
strings. Then

HESS′′
K(L||R) = h−1

2 (f1,K(f0,K(h1(L||R))))

is a provable secure encryption scheme against adaptive chosen-
plaintext and adaptive chosen-ciphertext attacks.

In the following, we show that the encryption scheme HESSK(·)
is a very efficient scheme. In practice, we can replace the pseudo-
random function H in Figure 2 with appropriately chosen hash
functions such as slightly modified SHA-256 [10] algorithms. In
the following, by replacing H with the SHA-256 algorithm with-
out the preprocessing padding procedure [10]1 (that is, the value
H(x) is computed by applying SHA-256 to the string x without
the padding procedure in the SHA-256 algorithm), we give an ex-
emplar analysis of using the cipher HESSK(·) to encrypt storage
devices at sector (block) level.

Assume that the block unit of the storage device is 1024 bytes
and SHA-256 will be used as the underlying hash function. Then
HESSK(·) can be used with the parameter n = 4096, m = 256,
and l = 16 (note that 1024 bytes are 8162 = 2 × 4096 bits).
That is, each storage device block unit is divided into two parts
L and R, each of 4096 bits. The input to the first H function is
4096 + 8 + k + |etci| bits, where k is the bit-length of the secret
key and |etci| is the bit-length of the additional input etci. As in
the analysis for the encryption scheme E , we may assume that 128-
bit key is used and 32 bits are enough for etci. Thus the length of
1In the algorithm SHA-256, j-bit input strings are padded to a mul-
tiple of 512 bits as follows: append the bit “1” to the end of the in-
put, followed by k zero bits, where k is the smallest, non-negative
solution to the equation j + 1 + k ≡ 448 mod 512. Then append a
64-bit block that is equal to the number j expressed using a binary
representation.

106

the input to the first H function is 4264 bits. Since the block size of
SHA-256 is 512 bits, SHA-256 (without the preprocessing padding
procedure) needs a total of 9 times of the basic four-step SHA-256
operation. For inputs x of 512 bits, the evaluation of H(x) is just a
single application of the basic four-step SHA-256 operation (with-
out the preprocessing padding procedure). Thus the evaluation of
the function gi,K on a 4264-bit input needs a total of l + 9 = 25
times of the basic four-step SHA-256 operation. In a summary, if
SHA-256 without the processing padding procedure is used as the
pseudo-random function H and 128 bits secret key is used, then a
total of 4 × 25 = 100 (note that E needs 576) times of the basic
four-step SHA-256 operations are needed to encrypt a 1024-byte
storage device block unit. This will certainly be much faster than
CBC-AES mode used to encrypt such a 1024-byte storage device
block unit. Additionally, the scheme HESS can be used to encrypt
2n (= 24096 for one kilobyte storage block device unit) blocks of
data securely (against birthday attacks) which is extremely larger
than the blocks (= 264) of data that AES-128 can be used to en-
crypt securely.

For SHA-512, HESSK(·) can be used with the parameter n =
4096, m = 512, and l = 8. A similar analysis shows that if
SHA-512 without the preprocessing padding procedure is used as
the pseudo-random function H and 256 bits secret key is used, then
a total of 4 × 13 = 52 (note that E needs 160) times of the basic
four-step SHA-512 operations are needed to encrypt a 1024-byte
storage device block unit.

Naor and Reingold’s [8] method can be applied to the scheme
HESSK(·) by replacing the first and last rounds with pair-wise in-
dependent permutations. The new scheme is still provable secure
against adaptive chosen plaintext and chosen ciphertext attacks.
The speed of the new scheme is two times faster than the speed
of the original HESSK(·) scheme if we ignore the time required
for the two permutations.

In the final version of this paper, we will implement and compare
the performances of AES-128 and HESS for storage encryption. In
table 1, we list a comparison of calls to the basic operations when
encrypting a kilobyte storage block. For example, the table shows
that in order to encrypt a kilobyte storage block, AES-128 needs 64
calls to the encryption subroutine on 128-bit inputs, while HESS-
SHA-256 with Naor and Reingold’s method needs 50 calls to the
SHA-256 basic operation on 512-bit inputs (without the padding
procedure). In another word, if we use HESS-SHA-256 to encrypt
a kilobyte storage device block, then the time needed is approxi-
mately the time needed for HESS-SHA-256 to hash a data block of
50 × 512 bits (which is approximately 3KB).

Table 1: AES and HESS comparison for one kilobyte block

cipher
primitive
operation calls

primitive block
size (bits)

AES-128 64 128
HESS-SHA-256 100 512

HESS-SHA-256 (NR) 50 512
HESS-SHA-512 52 1024

HESS-SHA-512 (NR) 26 1024

In summary, we have proposed a new encryption scheme HESSK(·)
that has the following desirable properties:

• The scheme is built on a single one-way hash function which
is used as a black box, without the need to tweak the program
for the hash function.

• The performance of the cipher is very good.

• It is flexible. It can accommodate more rounds when nec-
essary, and cater for different key lengthes as well as large
block sizes.

• It allows applications to specify the etci part which may in-
clude such information as block index, time stamp, even file
name etc. This provides an avenue for integrity checking by
application programs.

• It is provably secure under the assumption that the one-way
hash function is a pseudo-random function.

• It enjoys a compact code footprint, an especially useful prop-
erty for small devices.

• It allows users to choose their favorite one-way hash function
in implementing the cipher in practice.

Acknowledgement
The authors would like to thank the anonymous referees for their
comments on improving the presentation of this paper.

4. REFERENCES
[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete

security treatment of symmetric encryption. In Proc. of the
38th FOCS, IEEE Press, 1997.

[2] M. Bellare, T. Krovetz, and P. Rogaway. Luby-Rackoff
backwards: increasing security by making block ciphers
non-invertible. In: Proc. Eurocrypt 98, LNCS 1403.
Springer-Verlag 1998.

[3] M. Blum and S. Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM J. Comput.
13:850–864, 1984.

[4] S. Halevi and P. Rogaway. A tweakable enciphering mode.
In: Crypto 03, LNCS 2729, pages 482–499, Springer-Verlag.

[5] M. Liskov, R, Rivest, and D. Wagner. Tweakable block
ciphers. In: Crypto 02, LNCS 2442, pages 31–46,
Springer-Verlag.

[6] M. Luby and C. Rackoff. How to construct pseudorandom
permutations and pseudorandom functions. SIAM J.
Comput., 17:373–386, 1988.

[7] U. Maurer. A simplified and generalized treatment of
Luby-Rackoff pseudorandom permutation generators. In
Proc. Eurocrypt 92, LNCS 658, pages 239–255,
Springer-Verlag, 1992.

[8] M. Naor and O. Reingold. On the construction of
pseudo-random permutations: Luby-Rackoff revisited. In
Proc. of the 29th ACM STOC, pages 189–199, 1997.

[9] M. Naor and O. Reingold. A pseudorandom encryption
mode. Technical report submitted to IEEE Storage Device
Standard Working Group.

[10] NIST. Secure Hash Standards (SHS), FIPS 180-2. August,
2002.

[11] A. Yao. Theory and applications of trapdoor functions. Proc.
23rd IEEE FOCS, pages 80–91, 1982.

[12] Y. Zheng, T. Matsumoto, and H. Imai. Impossibility and
optimality results on constructing pseudorandom
permutations. In Eurocrypt 89, LNCS 434, pages 412–422,
Springer-Verlag, 1990.

107

