
LITESET: a Light-Weight Secure Electronic
Transaction Protocol

Goichiro Hanaoka1, Yuliang Zheng2 and Hideki Imai1

1 The 3rd Department, Institute of Industrial Science
the University of Tokyo

Roppongi 7-22-1, Minato-ku, Tokyo 106, Japan
Phone & Fax: +81-3-3402-7365

E-Mail: {hanaoka,imai}@imailab.iis.u-tokyo.ac.jp
2 The Peninsula School of Computing and Information Technology

Monash University, McMahons Road, Frankston
Melbourne, VIC 3199, Australia

Email: yzheng@fcit.monash.edu.au
URL: http://www-pscit.fcit.monash.edu.au/~yuliang/

Phone: +61 3 9904 4196, Fax: +61 3 9904 4124

Abstract. The past few years have seen the emergence of a large num-
ber of proposals for electronic payments over open networks. Among
these proposals is the Secure Electronic Transaction (SET) protocol pro-
moted by MasterCard and VISA which is currently being deployed world-
wide. While SET has a number of advantages over other proposals in
terms of simplicity and openness, there seems to be a consensus regard-
ing the relative inefficiency of the protocol. This paper proposes a light-
weight version of the SET protocol, called “LITESET”. For the same
level of security as recommended in the latest version of SET specifica-
tions, LITESET shows a 53.1/53.7% reduction in the computational time
in message generation/verification and a 79.9% reduction in communica-
tion overhead. This has been achieved by the use of a new cryptographic
primitive called signcryption. We hope that our proposal can contribute
to the practical and engineering side of real-world electronic payments.

1 Introduction

There is a growing demand for global electronic payments. The Secure Electronic
Transaction (SET) protocol is being regarded as one of the important candidates.
However, straightforward implementation of SET may impose heavy computa-
tion and message overhead on a system that employs SET, primarily due to its
use of the RSA digital signature and encryption scheme [7]. This article makes
an attempt to improve the efficiency of SET by using a new cryptographic tech-
nology called signcryption[1], which simultaneously fulfills both the functions of
digital signature and public-key encryption in a logically single step. We show
how to incorporate signcryption into SET, and evaluate the efficiency of our
implementation. Our improved SET will be called “LITESET” or a light-weight
Secure Electronic Transaction protocol.

Detailed analysis and comparison shows that LITESET represents a 53.1%
reduction in the computational time in message generation, a 53.7% reduction
in the computational time in message verification, and a 79.9% reduction in
communication overhead.

Section 2 gives a brief review of the SET protocol. Problems with the effi-
ciency of SET are summarized in Section 3. Section 4 proposes an adaptation
of signcryption for SET. Our LITESET protocol is also specified in the same
section. This is followed by Section 5 where significant improvements of LITE-
SET over SET are presented. Section 6 closes the paper with some concluding
remarks.

2 An Overview of SET

The payment model on which SET is based consists of three participants: a
cardholder, a merchant, and a payment gateway. The card holder initiates a
payment with the merchant. The merchant then has the payment authorized;
the payment gateway acts as the front end to the existing financial network,
and through this the card issuer can be contacted to explicitly authorize each
and every transaction that takes place. In the SET protocol, there are in total
32 different types of messages[3]. There messages are summarized in Table 1.
Among these messages, among which the most important and transmitted at the
highest frequency are the following six [2],[4]: PInitReq, PInitRes, PReq, PRes,
AuthReq and AuthRes. Each abbreviated message is summarized in Table 2.
Other messages are used mainly for administrative purposes, such as creating
certificates, canceling messages, registration, error handling etc. Hence these
message are transmitted at a far smaller frequency than the above mentioned
six messages, which in turn implies that any attempt to improve the efficiency
of SET must focus on the six main messages. The flow of the six main messages
is shown in Figure 1.

Next we discuss in detail the functions of the six messages. A few frequently
used notations are summarized in Table 2.

The SET protocol starts with Purchase Initialization (implementation of
PInitReq and PInitRes is shown in Table 3). Purchase Request is then exe-
cuted conforming to the structure described in Table 4. In PReq, PI and OI are
destined to different entities but sent in the same cryptographic envelope. They
share a signature called Dual signature[3],[4] which can be verified by either
entity. Dual signature used in SET is constructed as illustrated in Table 4.

On receiving PReq, the merchant verifies it (especially, Dual signature). If
it is valid, he produces AuthReq and sends it to the payment gateway (P).
AuthRseq includes AuthReqData and PI, where PI is copied from PReq.

On receiving AuthReq, the payment gateway verifies it. If successful, the pay-
ment gateway sends AuthRes back to the merchant. AuthRes includes CapToken
and AuthResData, which shows the state of the transaction. If the verification
of AuthReq fails, only AuthResData is sent as AuthRes. Table 5 shows the
structure of AuthReq/Res.

Table 1. SET messages.

PInitReq,PInitRes Purchase initialization request/response.

PReq,PRes Purchase request/response.

AuthReq,AuthRes Authorization request/response.

AuthRevReq,AuthRevRes Authorization reversal request/response.

InqReq,InqRes Inquiry request/response.

CapReq,CapRes Capture request/response.

CapRevReq,CapRevRes Capture reversal request/response.

CredReq,CredRes Credit request/response.

CredRevReq,CredRevRes Credit reversal request/response.

PCertReq,PCertRes Payment gateway’s certificate request/response.

BatchAdminReq,BatchAdminRes Batch Administration request/response.

CardCInitReq,CardCInitRes Cardholder’s certificate initialization request/response.

Me-AqCInitReq,Me-AqCInitRes Merchant’s or acquirer’s certificate initialization
request/response.

RegFormReq,RegFormRes Registration form request/response.

CertReq,CertRes Certificate request/response.

CertInqReq,CertInqRes Certificate inquiry request/response.

Table 2. Notations

Ek(t) to encrypt t by using a key k.

Dk(t) to decrypt t by using a key k.

H(t) to hash t

Pve participant e’s private key

Pbe participant e’s public key

Finally, the protocol is finished with PRes produced by the merchant (the
structure of PRes is shown in Table 6).

3 Problems with the Efficiency of SET

As mentioned above, all the public-key encryption and digital signature used
in SET are based on the RSA scheme. RSA requires a relatively large com-
putational cost and large message overhead. Based on “square-and-multiply”
and “simultaneous multiple exponentiation”[5], the main computational cost for
one public-key encryption or one digital signature generation is estimated to be
1.5
4 · |n| modulo multiplications where n is a composite of the RSA scheme. For

PReq generation, for example, one public-key encryption and one digital signa-
ture generation are required, therefore the computational cost is estimated to be
768 modulo multiplications (n = 1024bits). Part of Table 9 shows computational
costs for message generations and verifications in SET, respectively.

Fig. 1. Flows of SET messages

Table 3. Structure of PInitReq/Res.

message message factor

PInitReq {RRPID,LID-C,Chall C,BrandID,BIN}
PInitRes {PInitResData,EPvM (H(PInitResData))}
RRPID UniqueID for one pair of request and response.

LID-C LocalID of cardholder’s transaction.

Chall C Cardholder’s challenge.

BIN Cardholder’s account number.

PInitResData {TransID,RRPID,Chall C, Chall M,PEThumb}
TransID TransactionID.

Chall M Merchant’s challenge.

BrandID Brand of card.

PEThumb Thumbprint of payment gateway public key certificate.

Turning now to message or communication overhead, digital signatures and
public-key encrypted session keys are regarded as the main overhead. Besides
them, hashed variables (160bits) for message linking are also regarded as message
overhead. The message overhead for one digital signature or public-key encrypted
session key is estimated to be n. Hence, as an example, for PReq generation,
there are one public-key encryption, one digital signature, and three hashed
variables, so the message overhead is estimated to be 2008 bits (PANData and
the session key are altogether encrypted with the cardholder’s public key, so that
the message overhead is less than the total amount mentioned above). Part of
Table 10 shows the message overhead in SET.

4 LITESET — a Light-Weight Version of SET

In this section, we will show how to improve SET in terms of efficiency: specifi-
cally, how to adapt signcryption for SET. The most important part of this work

Table 4. Structure of PReq.

message message factor

PReq {PI,OI}
PI {EPbP (k,PANData, nonce),

Ek(PI-OILink,H(PANData,nonce)), Dual signature }
OI { OIData,H(PIData) }

PANData Primary account number data.

PIData Purchase instruction data.

OIData Order information data.

PI-OILink {PIData(except PANData),H(OIData)}
Dual signature EPvC{H(H(PIData),H(OIData))}

Table 5. Structure of AuthReq/Req.

message massage factor

AuthReq {EPbP (k),Ek(AuthReqData,H(PI),
EPvM (H(AuthReqData,H(PI)))), PI}

AuthRes {EPbM (k),Ek(AuthResData,H(Captoken),
EPvP (H(AuthResData,H(CapToken))), CapToken}

AuthReqData Authorization request data.

AuthResData Authorization response data.

is how to link a message to another message. In our improvement, there are two
kinds of efficient linking: LinkedData and CoupledData. The details appear in
the following subsection.

4.1 Notation

Table 7 shows the parameters which are used in this paper (notice that Ex(t),
Dx(t), H(t), Pve and Pbe are defined in Table 2). In the following, we define the
public key of entity e as Pbe = gPve mod p.

4.2 LinkedData

In SET, we often find a situation where the sender (S) has to

Table 6. Structure of PRes.

message message factor

PRes {PResData,EPvM (H(PResData))}
PResData Purchase response data.

Table 7. Parameters for LITESET messages.

KHk(t) to hash t with a key k

p a large prime

q a large prime factor of p− 1

g an integer in [1, · · · , p− 1] with order q modulo p

· sign the message M1,
· encrypt it with the recipient (R)’s public key,
· and show the relationship between M1 and M2.

In conventional SET, to satisfy such demands, H(M2) is attached to M1, and
these messages are signed by using S’s private key and then encrypted by using
R’s public key. Then, R can verify the linking between M1 and M2 by checking
the value of H(M2). Namely, if someone falsifies M2, R can find that M2 is
falsified.

To efficiently apply signcryption scheme, we use hashed M2 in the verification
of the signcrypted M1. These linked messages are referred to as LinkedData.

Now let us proceed to show how to construct LinkedData. The message to
be sent by S to R is LinkedDataS,PbR

(M1,M2) which is composed as follows:

– LinkedDataS,PbR(M1, M2) = {LSCS,PbR,M2(M1), M2}
where LSCS,PbR,M2(M1) = {r, s, c}, and r, s, c are defined by:
x ∈R [1, · · · , q − 1]
(k1, k2) = H(PbR

x mod p)
r = KHk1(H(M1), H(M2))
s = x

r+PvS
mod q

c = Ek2(M1)
On receiving LinkedDataS,PbR(M1, M2), R verifies it as follows:
1. (k1, k2) = H((PbS · gr)s·PvR mod p)
2. M1 = Dk2(c)
3. If r = KHk1(H(M1), H(M2)), R accepts M1, M2.

As one can see immediately, in order to be able to verify the message M1,
unfalsified H(M2) is required. Thus, if someone falsifies M2, R can detect that
it is indeed falsified. As examples, AuthReq and AuthRes are described as
LinkedData.

4.3 CoupledData

Generally, dual signature is used for linking two messages whose recipients are
different. Thus, although one recipient can only see the contents of the message
M1 he receives, he can be confident of the digest H(M2) of the other message M2.
Hence, if one recipient wants to confirm the linking of the two messages, the two
recipients send dual signatures EPvS

(H(H(M1),H(M2))), messages and message
digests they received to a reliable institution. By using them and sender’s public

key, the reliable institution can detect a dishonest act. If DPbS
(Dualsignature) is

not identical to H(H(M1),H(M2)) which is made from components sent by one
recipient, the reliable institution knows this recipient forged M1 and/or H(M2).
And, if dual signatures are valid and M1(M2) which is received by one recipient
is not hashed to be H(M1(M2)) which is received by the other recipient, the
reliable institution knows the sender conducted a dishonest act.

Here we show how to realize the function of dual signature by applying
signcryption. Let the messages which are linked by using this scheme be called
CoupledData.

When S sends PReq to R, S must

· sign the messages, M1 and M2,
· encrypt only M1,
· send M1 and M2 to R,
· let R send M1 to R′ with keeping M1 unread,
· and show the relationship between M1 and M2

where R′ is the true recipient of M1. In SET, C acts S, M acts R, and P acts
R′.

In our implementation, S send CoupledDataS,PbR′ (M1,M2) to R as follows:

– CoupledDataS,PbR′ (M1, M2) = {CSCS,PbR′ ,M2(M1), CSigS,M1(M2)}
3 CSigS,M1(M2) = {s1, r1, M2, H(M1)}

x1 ∈R [1, · · · , q − 1]

r1 = H(gx1 , H(M1), H(M2)[, etc])

s1 = x1
r1+PvS

mod q

On receiving CoupledDataS,PbR′ (M1, M2), R verifies it as follows:

1. (gx1) = H((PbS · gr1)s1 mod p)
2. If r1 = H(gx1 , H(M1), H(M2)[, etc]),

R accepts M2, and sends CSCS,PbR′ ,M2(M1) and H(M2) to R′.

3 CSCS,PbR′ ,M2(M1) ={r2, s2, c2}
x2 ∈R [1, · · · , q − 1]

(k1, k2) = H(PbR′
x2 mod p)

r2 = KHk1(H(M1), H(M2)[, etc])

s2 = x2
r2+PvS

mod q

c2 = Ek2(M1)

R′ verifies CSCS,PbR′ ,M2(M1) as follows:

1. (k1, k2) = H((PbS · gr2)s2·PvR′ mod p)
2. {M1} = Dk2(c2)
3. If r2 = KHk1(H(M1), H(M2)[, etc]), R′ accepts M1.

If S wants to designate the recipient of the message, S should put the recip-
ient’s public key in etc.

If S wants to encrypt M2, S should send CoupledData as follows:

– CoupledDataS,PbR′ ,PbR(M1, M2) = {CSCS,PbR′ ,M2(M1), CSCS,PbR,M1(M2)}

3 CSCS,PbR,M1(M2) = {s1, r1, c1}
x1 ∈R [1, · · · , q − 1]

(k3, k4) = H(PbR
x1 mod p)

s1 = x1
r1+PvS

mod q

r1 = KHk3(H(M1), H(M2)[, etc])

c1 = Ek4(M1)

R verifies CSCS,PbR,M1(M2) = {s1, r1, c1} as follows:

1. (k3, k4) = H((PbS · gr1)s1·PvR mod p)
2. {M2} = Dk4(c1)
3. If r1 = KHk3(H(M1), H(M2)[, etc]), R accepts M1 (of course, S has

to send H(M1) with CoupledDataS,PbR′ ,PbR(M1, M2)), and should send
CSCS,PbR′ ,M2(M1) and H(M2).

Although dishonest acts are detected in almost the same way as in Dual
signature scheme, there exist several differences. (1) recipient’s private keys are
required for detection. (2) although the two recipients can be confident that they
have received the same signature in the conventional SET, recipients cannot
be confident of the signature which is received by the other recipient in our
scheme. With our scheme, more computational costs need to be invested to detect
dishonest acts. However, as the need of detection of dishonest acts should arise in
very rare situations, we believe that the extra computational costs for detecting
dishonest acts with our scheme should not be a disadvantage in practice.

4.4 Messages in LITESET

Embodying LinkedData and CoupledData in SET results is a light weight ver-
sion of the protocol called LITESET. For the six main messages, LinkedData is
adapted to AuthReq((M1, M2) =(AuthReqData, PI)) and AuthRes((M1, M2) =
(AuthResData, CapToken)), and CoupledData is adapted to PReq((M1, M2) =
(PIData, OIData)). Moreover, to sign only, such as PInitRes and PRes, SDSS1
[1] is adapted to such messages. The six main messages in LITESET are de-
scribed in Table 8

Table 8. Six Main Messages of LITESET.

message message factor

PInitReq {RRPID,LID-C,Chall C,BrandID,BIN}
PInitRes {SigM (PInitResData)}
PReq {CoupledDataC,PbP (PIData,OIData)}

If OIData is encrypted,
{CoupledDataC,PbP ,PbM (PIData,OIData), H(PIData)}

AuthReq {LinkedDataM,PbP (AuthReqData,
{CSCS,PbP ,OIData(PIData),H(OIData)})}

AuthRes {LinkedDataP,PbM (AuthReqData, CapToken)}
PRes {SigM (PResData)}

For other messages, operations mentioned above are adapted similarly ac-
cording to their message type. A detailed description of the messages will be
given in the final version of this paper.

5 LITESET v.s. SET

LITESET relies for its security on the computational infeasibility of the discrete
logarithm problem. Assuming the difficulty of computing the discrete logarithm,
the signcryption scheme embodied in LITESET has been known to be secure
against adaptively chosen ciphertext attacks (the most powerful attacks that
one can conceive in the real world). Similar to the original SET protocol, the
LITESET protocol is secure in practice. The rest of this section is devoted to a
detailed comparison of the efficiency of LITESET against that of SET. Here, we
compare LITESET with SET based on RSA, which is the most common imple-
mentation. Elliptic cryptosystems1 are known as a quite efficient cryptgraphical
technology. But, we don’t investigate them here.

5.1 Computational costs

The computational cost depends mainly on modulo exponentiations in encryp-
tion or signature generation. Hence, the number of modulo multiplications in
modulo exponentiation can be used as the computational cost. We estimate the
number of modulo multiplications by using “square-and-multiply” and “simulta-
neous multiple exponentiation”. Namely, the number of modulo multiplications
for one gx or Pbe

x is 1.5 · |q|, and that for (Pbe1 · gr)s·Pve2 is 7
4 · |q|. In conven-

tional SET, 1024-bit RSA composite is used. To achieve the same security level,
|q| = 160bits and |p| = 1024bits should be chosen for our scheme [1]. Table 9(a)
shows the costs of message generation and verification of the six main messages.
We see that the computational costs are saved over 50%2. For other messages,
Table 9(b) shows the costs of message generation and verification respectively
where we can also see the significant cost reduction.

In a most probable situation, cardholder’s computer is much slower than
merchant’s and payment gateway’s. Hence, the efficiency depends largely on
the load on cardholder’s computer. Our proposal reduces this load significantly;
PReq(generation), PInitRes(verification) and PRes(verification) are managed
on cardholder’s computer, and their computational costs are saved as much as
37.0%.

1 Signcryption on elliptic curves[8] has been already proposed, and we can realize
LITESET on elliptic curves easily.

2 It is difficult to make quantitative analysis of computational costs involved in cer-
tificate verification, which heavily depends on the structure of a cerrification infras-
tructure employed. Thus, we don’t investigate them here.

5.2 Message overhead

In our evaluation, digital signature and public key encrypted session key are
regarded as message overhead. Namely, for our scheme, r(|r| = 80bits), s(|s| =
160bits) and hashed variables(|H(t)| = 160bits) for message linking are message
overhead. Table 10(a) shows the message overhead of the six main messages.
We see that message overhead is saved over 70% for each message. Table 10(b)
shows the message overhead of other messages; hence the reduction of message
overhead is also significant.

6 Conclusion

In this paper, a new and very practical method which reduces computational cost
and message overhead of SET messages is proposed by applying signcryption. In
SET, messages are often signed, encrypted and linked to other messages. With
the help of signcryption, all of these functions are fulfilled, but with a far smaller
cost than that required by SET. In the future, security parameters will be larger
to compensate advances in cryptanalysis, and the advantages of our proposed
LITESET over the current version of SET based on RSA will be more apparent.

References

1. Y. Zheng, “Digital signcryption or how to achieve cost(signature & encryption)
<< cost(signature) + cost(encryption)”, In Advances in Cryptology - CRYPTO’97,
volume 1294 of Lecture Notes in Computer Science, page 165-179, 1997. Springer-
Verlag.

2. MasterCard and Visa, “ Secure electronic transaction (SET) specification book 1:
Business Decryption”, May 1997.

3. MasterCard and Visa, “Secure electronic transaction (SET) specification book 2:
Programmer’s Guide”, May 1997.

4. Donal O’Mahony, Michael Peirce and Hitesh Tewari, “Electronic Payment Sys-
tems”, Artech House Publishers, 1997

5. T. ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based on dis-
crete Logarithms”, IEEE Trans. Information Theory, Vol. IT-31, No. 4, pp. 468-
472, 1985.

6. National Institute for Standards and Technology, “Specifications for a digital signa-
ture standard (DSS),” Federal Information Processing Standard Publication 186,
U.S Department of Commerce, May 1994.

7. R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptsystems,” Communications of the ACM, 21(2):120-128,
1978.

8. Y. Zheng and H. Imai, “Efficient Signcryption Schemes on Elliptic Curves,” Proc.
of IFIP SEC’98 , Chapman & Hall, Sept 1998, Vienna. (to appear)

Table 9. Computational cost for message generation/verification.

(a)main messages

message conventional scheme our scheme ourscheme
conventionalscheme

PInitReq -/- -/- -/-

PInitRes 384/384 240/280 0.625/0.729

PReq 768/384 480/280 0.625/0.729

AuthReq 768/1536 240/560 0.313/0.365

AuthRes 1536/768 480/280 0.313/0.365

PRes 384/384 240/280 0.625/0.729

Total 3072/3456 1440/1600 0.469/0.463

(b)other messages

message conventional scheme our scheme ourscheme
conventionalscheme

AuthRevReq 768/1536 240/560 0.313/0.365

AuthRevRes 768/768 240/280 0.313/0.365

CapReq 768/768 240/280 0.313/0.365

CapRes 768/768 240/280 0.313/0.365

CapRevReq 768/768 240/280 0.313/0.365

CapRevRes 768/768 240/280 0.313/0.365

CredReq 768/768 240/280 0.313/0.365

CredRes 768/768 240/280 0.313/0.365

CredRevReq 768/768 240/280 0.313/0.365

CredRevRes 768/768 240/280 0.313/0.365

PCertReq 384/384 240/280 0.313/0.729

PCertRes 384/384 240/280 0.313/0.729

BatchAdminReq 768/768 240/280 0.313/0.365

BatchAdminRes 768/768 240/280 0.313/0.365

CardCInitReq -/- -/- -/-

CardCInitRes 384/384 240/280 0.313/0.729

Me-AqCInitReq -/- -/- -/-

Me-AqcInitRes 384/384 240/280 0.625/0.729

RegFormReq 384/384 240/280 0.625/0.729

RegFormRes 384/384 240/280 0.625/0.729

CertReq 768/768 240/280 0.313/0.365

CertRes 384/384 240/280 0.625/0.729

CertInqReq 384/384 240/280 0.625/0.729

CertInqRes 384/384 240/280 0.625/0.729

Table 10. Message overhead.

(a)main messages

message conventional scheme our scheme ourscheme
conventionalscheme

PInitReq - - -

PInitRes 1024bit 320bit 0.313

PReq 2008bit 720bit 0.359

AuthReq 4056bit 640bit 0.158

AuthRes 4256bit 480bit 0.113

PRes 1024bit 320bit 0.313

Total 12368bit 2480bit 0.201

(b)other messages

message conventional scheme our scheme ourscheme
conventionalscheme

AuthRevReq 6114bit 880bit 0.144

AuthRevRes 4256bit 480bit 0.113

CapReq 2208 240 '0.12
+(2048·n)bit +(240·n)bit

CapRes 2048bit 240bit 0.117

CapRevReq 2208 240 '0.12
+(2048·n)bit +(240·n)bit

CapRevRes 2048bit 240bit 0.117

CredReq 2208 240 '0.12
+(2048·n)bit +(240·n)bit

CredRes 2048bit 240bit 0.117

CredRevReq 2208 240 '0.12
+(2048·n)bit +(240·n)bit

CredRevRes 2048bit 240bit 0.117

PCertReq 1024bit 320bit 0.313

PCertRes 1024bit 320bit 0.313

BatchAdminReq 2048bit 240bit 0.117

BatchAdminRes 2048bit 240bit 0.117

CardCInitReq - - -

CardCInitRes 1024bit 320bit 0.313

Me-AqCInitReq - - -

Me-AqcInitRes 2048bit 240bit 0.117

RegFormReq 1184bit 872bit 0.736

RegFormRes 1024bit 320bit 0.313

CertReq 1528bit 240bit 0.157

CertRes 1024bit 320bit 0.313

CertInqReq 1024bit 320bit 0.313

CertInqRes 1024bit 320bit 0.313

