
A Single Key Pair is Adequate for the Zheng

Signcryption

Jia Fan1,2, Yuliang Zheng2, and Xiaohu Tang1

1 Southwest Jiaotong University, 610031, P.R.China
2 University of North Carolina at Charlotte, NC 28223, USA

fanjia@mars.swjtu.edu.cn, yzheng@uncc.edu, xhutang@ieee.org

Abstract. We prove that the original Zheng signcryption scheme pub-
lished at Crypto’97, with a couple of minor tweaks, requires only a single
public/private key pair for each user. That is the user can employ the
same public/private key pair for both signcryption and unsigncryption
in a provably secure manner. We also prove that the Zheng signcryption
scheme allows a user to securely signcrypt a message to himself. Our first
result confirms a long-held belief that signcryption reduces the overhead
associated with public keys, while our second result foretells potential
applications in cloud storage where one with a relatively less resourceful
storage device may wish to off-load data to an untrusted remote storage
network in a secure and unforgeable way.

Keywords: Public key, Security proof, Signcryption, Single key pair.

1 Introduction

The concept and first instantiation of signcryption were proposed by Zheng in
1997 [9]. As a cryptographic primitive, signcryption combines both the functions
of public key encryption and those of digital signature, in such a way that its
overhead is far less than that required by performing encryption and signature
separately. At PKC’02, Baek, Steinfeld and Zheng [2] successfully established a
security model for signcryption, and proved that with a couple of minor tweaks,
the original Zheng signcryption scheme was indeed provably secure under com-
monly accepted computational assumptions. In the journal version [3] of the
same paper, their security model was further enhanced and security proofs were
made more rigorous. Their papers, however, still leave two interesting questions
unanswered.

The first question has to do with the number of public/private key pairs a
user has to keep in order to apply the Zheng signcryption in a provably secure
manner. The security models and proofs presented in [2,3] all assume that a user
holds two separate public/private key pairs. One of the two key pairs serves as
a sender signcryption key pair for signcrypting messages originated from that
user to other users, while the other key pair serves as a receiver unsigncryption

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 371–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

372 J. Fan, Y. Zheng, and X. Tang

key pair for unsigncrypting ciphertexts received by that user from other users.
A natural question is whether the requirement of two separate public/private
key pairs can be relaxed to a single key pair. An obvious benefit of the use of
a single key pair is that it will minimize the cost associated with the creation
and maintenance of public/private key pairs, especially the cost of public key
verification prior to the execution of signcryption and unsigncryption.

The second question is whether the signcryption scheme can be employed by
a user to securely signcrypt a message to the user himself. An ability to do so
would have applications in emerging computing and communicating platforms
such as cloud storage. Cloud storage is a model of networked data storage where
data is stored on multiple virtual servers, generally hosted by third parties,
rather than being hosted on dedicated servers. In practice, users with limited
storage may wish to store data on a not always trusted cloud in a secure and
unforgeable manner. In such a scenario, the user could signcrypt the data to
himself first, then store the signcryptext to the cloud. When this user downloads
the signcryptext from the cloud, it may check whether the signcryptext is valid,
and decrypt the signcryptext if it is.

It turns out that the security models in [2, 3] in their original forms do not
appear to be capable to address the two open questions. This calls for new
ideas in security proofs, especially new security models that capture a real-world
scenario where a single public/private key pair is used by each user as well as
scenario where one wishes to signcrypt messages to oneself.

Our main contributions are to give affirmative answers to both questions
outlined above. To this end we define a strengthened security model for sign-
cryption allowing a user to have only a single public/private key pair and also
allowing a user to signcrypt a message to himself. We then prove that the Zheng
signcryption scheme, with a minor tweak, is indeed secure in that model, un-
der commonly accepted assumptions including the Gap Diffie-Hellman, the Gap
Discrete Logarithm and the random oracle assumptions.

2 Overview of the Zheng Signcryption Scheme

We focus our discussions on the SDSS-1 signcryption scheme proposed by Zheng
[9]. Our security proofs apply to other schemes in the same family, including
SDSS-2 and counterparts of SDSS-1 and SDSS-2 in other groups such as groups
of points on an elliptic curve over a finite field [10].

We follow [3] in describing the Zheng scheme. A minor technical difference be-
tween our version and the version in [3] is that we add both sender and receiver’s
public keys as input to the G hash function. This minor tweak is useful during
proof reductions which will become clear later in our description of proofs.

The signcryption scheme with the tweak is described in Tables 1 and 2. We
use k to indicate a security parameter that determines other parameters such as
the size of a key, the output length of a hash function and ultimately, the level
of security of a concrete instantiation of a signcryption scheme in practice.

A Single Key Pair is Adequate for the Zheng Signcryption 373

Table 1. Setup & KeyGen Algorithms

Setup(1k) by Trusted Authority TA:
1. Choose a random prime q of lq bits.
2. Choose a random prime p of lp bits such that q|(p− 1).
3. Choose an element g ∈ Z∗

p such that OrdZ∗
p
(g) = q.

4. Choose a one-way hash function G : {0, 1}∗ → {0, 1}lG .
5. Choose a one-way hash function H : {0, 1}∗ → Zq.
6. Choose a symmetric key encryption scheme SKE = (E, D).
7. Let cp = (k, p, q, g,G, H,SKE) be the common parameter.

KeyGen(cp) by User U :
1. Choose xU ∈ Z∗

q uniformly at random.
2. Compute yU ← gxU mod p.
3. Let the public key pkU be yU and the private key skU be (xU , yU).

In this table, lp : N → N , lq : N → N and lG : N → N are functions of k determining
the lengths in bits of p, q and an output of G respectively. OrdZ∗

p
(g) = q means

that the order of g in the multiplicative group of Z∗
p is q, and SKE = (E, D) is a

one-time symmetric key encryption scheme with message, key and ciphertext spaces
being SPm, {0, 1}lG and SPc respectively.

Table 2. Signcryption & Unsigncryption Algorithms

Signcryption(cp,m, skS, pkR)
by Sender S:
1. Parse skS as (xS, yS), pkR as yR.
2. Choose x ∈ Z∗

q uniformly at random.
3. Compute K ← yR

x mod p.
4. Compute τ ← G(yS , yR, K).
5. Compute c← Eτ (m).
6. Compute r ← H(m,yS, yR, K).
7. If r + xS = 0 mod q, return to Step 2.
8. Compute s← x/(r + xS) mod q.
9. Output σ ← (c, r, s) as the signcryptext.

Unsigncryption(cp, σ, pkS, skR)
by Receiver R:
1. Parse skR as (xR, yR), pkS as yS.
2. Parse σ as (c, r, s).
3. Compute w← (yS · gr)s mod p.
4. Compute K ← wxR mod p.
5. Compute τ ← G(yS, yR, K).
6. Compute m← Dτ (c).
7. If H(m,yS, yR, K) = r, return m;
otherwise return Reject.

We assume m ∈ SPm in the signcryption algorithm, and σ ∈ SPc × Zq × Z∗
q in

the unsigncryption algorithm. In practice appropriate tests are carried out first to
ensure that these conditions are met. With the unsigncryption algorithm, Reject is
interpreted as a special symbol indicating that the signcryptext is invalid.

3 Security Model

We now introduce a stronger security model that is extended from the model
proposed by Baek et al. [3]. Major differences between the two security models
are outlined below.

First, our new model allows the use of a single public/private key pair by a
user. This is achieved by permitting a target user (with a single public/private

374 J. Fan, Y. Zheng, and X. Tang

key pair) in an attack game to be both a sender and a receiver. This modification
makes it possible for an adversary to make signcryption queries with any target
user as a sender and unsigncryption queries with any target user as a receiver.
We note that in the original security model by Baek et al, a target user always
has a fixed role, being either a sender or a receiver.

Second, our model adds a security consideration for the case where one sign-
crypts a message to oneself. In an attack game for confidentiality, an adver-
sary is given two target users, A and B. We allow the adversary to attack on
(S∗, R∗) ∈ {(A, B), (A, A), (B, A), (B, B)}, where S∗ is the sender and R∗ is the
receiver. By contrast, the model by Baek et al. allows only (S∗, R∗) = (A, B).
And in an attack game for unforgeability, an adversary is given one target user
A. We allow the adversary to attack on (S∗, R∗) where S∗ = A and R∗ can be
an arbitrary user including R∗ = A, while the model by Baek et al. does not
allow R∗ = A.

According to the adversary’s capability, An et al. [1] divide the security model
into two classes, called the insider setting and the outsider setting respectively.
In the outsider setting, an adversary has access to neither skS∗ nor skR∗ . In
comparison, the only restriction on an adversary in the insider setting is that it
is not allowed to have access to skR∗ . Since our main goal in this paper is to
prove the Zheng signcryption scheme is secure in the “outsider” setting for confi-
dentiality, we will define unforgeability in the insider setting, and confidentiality
in the outsider setting.

Throughout this paper we will use the term of a negligible function to indicate
any function in an appropriate security parameter k that vanishes faster than
the inverse of any integer-valued polynomial in the same parameter k when k is
sufficiently large.

3.1 Syntax of Signcryption

A generic signcryption system SC consists of four algorithms as follows:

– Setup(1k): It takes as input a security parameter 1k and generates a common
parameter cp for an entire system under consideration. It is run by a trusted
authority.

– KeyGen(cp): It takes as input a system-wide common parameter cp, outputs
a pair of public/private keys (pkU , skU) for a user U . This algorithm is run
by users within the system, independently of one another.

– Signcryption(cp, m, skS, pkR): When a sender S plans to communicate a
message m ∈ SPm to a receiver R, where SPm is the message space, he runs
this algorithm to generate a signcryptext σ from m, a common parameter
cp, his private key skS and the receiver R’s public key pkR.

– Unsigncryption(cp, σ, pkS, skR): When a receiver R receives a signcryptext
σ from a sender S, he runs this algorithm with σ, the public parameter
cp, the sender S’s public key pkS , and his private key skR as input. The
algorithm outputs a message m if σ is valid, or a special symbol Reject
otherwise.

A Single Key Pair is Adequate for the Zheng Signcryption 375

For a signcryption scheme to be useful in practice, we further require that for
any plaintext m, any sender S and any receiver R, we have

m = Unsigncryption(cp, Signcryption(cp, m, skS, pkR), pkS , skR).

3.2 Definition of Confidentiality

We follow an established definition, called indistinguishability under chosen ci-
phertext attack (IND-CCA) to define confidentiality for signcryption as indistin-
guishability under chosen signcryptext and plaintext attack (IND-CSPA). This
is done by defining an attack game, called an IND-CSPA game.

Let k be the security parameter of the scheme, A and B be two target users.
The IND-CSPA game is played between an IND-CSPA adversary and its envi-
ronment Σ which contains an IND-CSPA challenger and two oracles, namely
a signcryption oracle and an unsigncryption oracle. Specifically, the IND-CSPA
game proceeds as follows:

– Stage 1: The challenger computes cp← Setup(1k); (pkA, skA)←KeyGen(cp);
(pkB, skB)← KeyGen(cp). It then equips the signcryption and unsigncryp-
tion oracles with (skA, skB) and gives (cp, pkA, pkB) to the adversary.

– Stage 2: The adversary makes a sequence of adaptive queries. Each query is
one of two types:
1. Signcryption query: the adversary submits (m, pkS , pkR) to the chal-

lenger, where m ∈ SPm, pkS ∈ {pkA, pkB} and pkR can be an arbitrary
public key in the system including pkR ∈ {pkA, pkB}. The challenger for-
wards
(m, pkS , pkR) to the signcryption oracle which then returns to the chal-
lenger with an outcome of Signcryption(cp, m, skS, pkR). Finally, the
challenger passes this answer to the adversary.

2. Unsigncryption query: the adversary submits (σ, pkS , pkR) to the chal-
lenger, where σ is a signcryptext, pkR ∈ {pkA, pkB}, and pkS can be
an arbitrary public key in the system including pkS ∈ {pkA, pkB}. The
challenger forwards (σ, pkS , pkR) to the unsigncryption oracle which then
returns to the challenger with an outcome of Unsigncryption
(cp, σ, pkS , skR). Finally, the challenger passes this answer to the ad-
versary.

– Stage 3: The adversary submits (m0, m1, pkS∗ , pkR∗) to the challenger where
m0, m1 ∈ SPm are of equal length, and pkS∗ , pkR∗ ∈ {pkA, pkB}. The chal-
lenger chooses a random bit β ∈ {0, 1}. Then it forwards (mβ , pkS∗ , pkR∗)
to the signcryption oracle which then returns to the challenger with a sign-
cryptext σ∗ which is an outcome of Signcryption(cp, mβ, skS∗ , pkR∗). The
challenger then passes σ∗ to the adversary as a challenge signcryptext.

– Stage 4: This is identical to Stage 2, except that the adversary can not query
an unsigncryption with (σ∗, pkS∗ , pkR∗).

– Stage 5: The adversary outputs a bit β′ as his guess for β and pass it over
to the challenger. The challenger then checks whether β = β′. If it is, the
adversary wins the challenge.

376 J. Fan, Y. Zheng, and X. Tang

For an IND-CSPA adversary A running in time t, making at most js sign-
cryption queries and ju unsigncryption queries, we define the advantage of A
in winning the challenge as Advind−cspa

SC,A (t, js, ju) = |Pr[β = β′] − 1/2|. And
we define εind−cspa

t,js,ju
to be the maximum value of Advind−cspa

SC,A (t, js, ju) over all
IND-CSPA adversaries with the same resources parameter (t, js, ju).

Definition 1. We say that a signcryption scheme SC is IND-CSPA secure if
for any IND-CSPA adversary that runs in time t, makes at most js signcryp-
tion queries and ju unsigncryption queries, the maximum advantage εind−cspa

t,js,ju
is

negligible in k, where t, js and ju are all polynomials in k.

3.3 Definition of Unforgeability

Unforgeability is defined as existential unforgeability against chosen signcryptext
and plaintext attack (EUF-CSPA), which follows the established definition of
existential unforgeability against chosen message attack (EUF-CMA). This is
done by defining an attack game, called an EUF-CSPA game.

Let k be the security parameter of the scheme, A be a target user. The EUF-
CSPA game is played between an EUF-CSPA adversary and its environment
Σ which contains an EUF-CSPA challenger and two oracles, one being a sign-
cryption oracle and the other an unsigncryption oracle. The EUF-CSPA game
proceeds as follows:

– Stage 1: The challenger computes cp←Setup(1k); (pkA, skA)←KeyGen(cp).
It then equips the signcryption and unsigncryption oracles with skA and
gives (cp, pkA) to the adversary.

– Stage 2: It is mostly the same as Stage 2 in the IND-CSPA game described
above, except that in this case there is no pkB .

– Stage 3: The adversary passes (σ∗, pkS∗ , pkR∗ , skR∗) to the challenger, where
σ∗ is a signcryptext, pkS∗ = yA, pkR∗ can be an arbitrary public key in the
system including pkR∗ = pkA, and skR∗ is the corresponding private key of
pkR∗ . The challenger then checks whether the outcome of Unsigncryption(cp,
σ∗, pkS∗ , skR∗) is a special symbol Reject or a message m∗ ∈ SPm. If the
outcome is m∗ and the adversary has never made a signcryption query on
(m∗, pkS∗ , pkR∗), then the adversary wins the challenge.

For an adversary A running in time t, making at most js signcryption queries
and ju unsigncryption queries, we define the advantage of A in winning the
challenge as Adveuf−cspa

SC,A (t, js, ju) = Pr[A wins], where “A wins” denotes an
event that adversary A wins the challenge in the above attack game. And we
define εeuf−cspa

t,js,ju
to be the maximum of Adveuf−cspa

SC,A (t, js, ju) over all EUF-CSPA
adversaries with the same resource parameter (t, js, ju).

Definition 2. We say that a signcryption scheme SC is EUF-CSPA secure if for
any EUF-CSPA adversary running in time t, and making at most js signcryption
queries and at most ju unsigncryption queries, the maximum advantage εeuf−cspa

t,js,ju

is negligible in k, where t, js and ju are all polynomials in k.

A Single Key Pair is Adequate for the Zheng Signcryption 377

4 Assumptions and Primitives

4.1 Problems and Assumptions

Let G be a finite multiplicative group with g being a generator of the group. The
Discrete Logarithm (DL) problem is one where an attacker is given (g, y) ∈ G2,
asked to find an x such that y = gx in G. The well-known Diffie-Hellman (DH)
problem has two different flavors: a computational one and a decisional one.
With the Computational Diffie-Hellman (CDH) problem, an attacker is given
three elements (g, ga, gb) ∈ G3 for unknown a and b, and asked to compute gab.
In contrast, with the Decisional Diffie-Hellman (DDH) problem an attacker is
given four elements (g, ga, gb, z) ∈ G4, for unknown a and b, and asked to tell
whether z = gab.

The CDH problem has a gap based version in which an attacker is granted
access to a powerful oracle, named DDH oracle, that solves the DDH problem [7].
This new problem is called the Gap Diffie-Hellman (GDH) problem. A gap based
version of the DL problem can be obtained in a similar way. In this paper, we
follow [3] to define the Gap Discrete Logarithm (GDL) problem as one in which
an attacker has access to a restricted oracle for the DDH problem. Similar to the
DDH oracle, a restricted DDH oracle also answers whether a given quadruple is
a DH quadruple or not. However, the restricted DDH oracle only accepts queries
on (g, y, ., .) ∈ G4 where (g, y) is the input of the adversary.

The CDH problem has a number of interesting variants. In one variant, an
attacker is given (g, ga) ∈ G2 with an unknown a and asked to compute y = ga2

.
It turns out that this variant is equivalent to the CDH problem [4].

In our proofs we will employ a new variant of the CDH problem in which
an attacker is given (g, ga, gb) ∈ G3 for unknown a and b, and attempts to
output one of (ga2

, gb2 , gab). The attacker is considered successful as long as its
output is one of the three possible values. We call this new problem the extended
Computational Diffie-Hellman problem or the eCDH problem for short. Clearly
the eCDH problem is computationally equivalent to the CDH problem. A gap
based version of the eCDH problem is defined by allowing an attacker to have
access to a DDH oracle. Let us call it the extended GDH problem or the eGDH
problem for short. Naturally, the equivalence of the CDH and eCDH problems
is carried over to their gap based versions. That is, the following lemma is true.

Lemma 1. The GDH problem and the eGDH problem are equivalent.

Assumptions related to the above mentioned problems are defined by stating
that no attacker that runs in polynomial time in the size of the group can suc-
cessfully solve the respective problem with a non-negligibly success probability.
In particular, according to Lemma 1, we claim that the eGDH assumption are
equivalent to the GDH assumption.

4.2 One-Time Symmetric Key Encryption

A one-time symmetric key encryption system SKE [6] consists of two bijective
and deterministic algorithms E and D.

378 J. Fan, Y. Zheng, and X. Tang

– Eτ (m): On input a key τ , a plaintext m, it outputs a ciphertext c← Eτ (m).
– Dτ (c): On input a key τ , a ciphertext c, it outputs a plaintext m← Dτ (c).

In the above, τ ∈ SPτ , m ∈ SPm and c ∈ SPc, where the sizes of spaces SPτ ,
SPm and SPc are all determined by a security parameter k. And it is required
that for all m ∈ SPm and τ ∈ SPτ , m = Dτ (Eτ (m)).

We will use a one-time symmetric key encryption with the security of passive
indistinguishability of SKE (PI-SKE). In a PI-SKE attack game, a passive at-
tacker is given (k,SKE), and then submits two equal length messages (m0, m1)
to get a ciphertext c where c ← Eτ (mβ), β is a random bit. PI-SKE security
states that, any passive attacker running in polynomial time cannot determine
which of the two messages was chosen.

4.3 One-Way Hash Functions

Our proofs rely on the random oracle methodology [5]. In other words we assume
that each one-way hash function used in the Zheng signcryption scheme behaves
like a random oracle, a mathematical function mapping every possible query to
a random response from its output domain.

5 Security Proofs

Our proofs for confidentiality and unforgeability apply the game based technique.
For each proof, we describe a sequence of n+1 games, from Game 0 to Game n (n
is a constant). Game 0 is the normal attack game in the security definition. We
use a sequence of simulators (from Game 1 to Game n) to replace the challenger.
Game i + 1 and Game i (0 ≤ i ≤ n − 1) are mostly the same, except that the
simulator’s behavior in Game i + 1 is a little bit different from the simulator’s
(or the challenger’s when i = 0) behavior in Game i.

Define Si to be an event that the adversary wins the challenge in Game i. To
analyze the relation between Pr[Si] and Pr[Si+1], we make use of two techniques
introduced by Shoup [8], namely bridging step and transition based on a failure
event.

1. Bridging Step: The change from Game i to Game i + 1 is a bridging step
means that the change is only conceptual. From the adversary’s point of
view, these two games proceed identically. Therefore, in this case we have
Pr[Si] = Pr[Si+1].

2. Transition Based on a Failure Event: The change from Game i to Game i+1
is a transition based on a failure event means that from the adversary’s point
of view, these two games proceed identically unless a certain “failure event”
occurs. We can then apply a so-called Difference Lemma [8]:

Lemma 2. (Difference Lemma): Let S1, S2 and F be events defined on
some probability spaces. Suppose that the event S1 ∧ ¬F occurs if and only
if S2 ∧ ¬F occurs. Then | Pr[S1]− Pr[S2] |≤ Pr[F].

A Single Key Pair is Adequate for the Zheng Signcryption 379

We have in this case |Pr[Si+1]− Pr[Si]| ≤ Pr[Failure Event Occurs].

In each proof, we make sure that for all i (0 ≤ i ≤ n − 1), the change from
Game i to Game i + 1 is either a bridging step or a transition based on a failure
event which occurs with at most a negligible probability in k. In Game n, we
show that the adversary’s advantage in winning the challenge is negligible in k.
Finally, from the results in all the games, we can arrive at our desired conclusion
that the adversary’s advantage in winning Game 0 (the normal attack game) is
also negligible in k.

We define 〈g〉 be a group generated by g. The security proofs of unforgeability
and confidentiality for the Zheng signcryption are as follows.

5.1 Proof of Unforgeability

Theorem 1. Let H and G be two hash functions modeled as random oracles.
Then under the GDL assumption in 〈g〉, the Zheng signcryption scheme is EUF-
CSPA secure. Specifically, let k be a security parameter of signcryption, A be an
EUF-CSPA adversary that runs in time t, and makes at most js signcryption
queries, ju unsigncryption queries, jg hash queries to G and jh hash queries
to H, where t, js, ju, jg and jh are all polynomials in k. Then the maximum
advantage εeuf−cspa

t,js,ju
of the adversary satisfies the following condition:

εeuf−cspa
t,js,ju

≤ js(jg + jh + 3ju + 2js) + 2jh + ju + 1
q

+ 2 ·
√

jh · εgdl
tgdl,jgdl

where εgdl
tgdl,jgdl

is negligible in k for all sufficiently large k.

Before diving into details of the proof of Theorem 1, we review in Table 3 an
assumption introduced in [3], which is renamed as the Random Beacon GDL
assumption (or rbGDL assumption for short). The following Lemma 3 is also
from [3] which shows an equivalence relationship between the rbGDL assumption
and the GDL assumption.

Lemma 3. Any algorithm Arbgdl attacking the rbGDL assumption with run-
time trbgdl, jrbgdl restricted DDH queries, jr Random Beacon queries, and suc-
cess probability Advrbgdl

RBGDL,Arbgdl
(trbgdl, jrbgdl, jr) ≥ 2jr/q can be converted into

an algorithm Agdl attacking the GDL assumption with run-time tgdl = 2trbgdl +
O(q2), jgdl = 2jrbgdl restricted DDH queries, and success probability

Advgdl
GDL,Agdl

(tgdl, jgdl) ≥ 1
jr

(
Advrbgdl

RBGDL,Arbgdl
(trbgdl, jrbgdl, jr)

2
− jr

q
)2.

Proof of Theorem 1. We describe our proof in a sequence of seven games,
from Game 0 to Game 6 as follows. We define Si (1 ≤ i ≤ 6) to be the simulator
in Game i.

380 J. Fan, Y. Zheng, and X. Tang

Table 3. The rbGDL Assumption

Random Beacon Gap Discrete Logarithm (rbGDL) Assumption [3]
Given a pair of elements (g, ga) in G, g is a generator of G, OrdG(g) = q,
a ∈ {0, ..., q − 1}. With the help of a Restricted DDH Oracle and a Random
Beacon,

A Random Beacon takes as input a pair of elements (y[i], K[i]) ∈ G2

(y[i] �= 1), outputs uniformly a random independent number r[i] ∈ {0, ..., q−1}.
i ∈ {1, ..., jr} where jr is total number of Random Beacon queries been made.

it is computationally intractable to compute the value of (r[i∗], s∗, i∗),
satisfying K[i∗] = y[i∗]s

∗(r[i∗]+a).

The difference between a random beacon and a random oracle is that a random beacon
returns a random and independent response even for the same input.

Game 0 (EUF-CSPA Game in the Random Oracle Model): This game
is the EUF-CSPA game defined in Section 3.3 in the random oracle model.
Therefore, we have

Adveuf−cspa
SC,A (t, js, ju) = Pr[S0]. (1)

Game 1 (Apply Gsim to Simulate the G Random Oracle): In this game,
S1 behaves mostly the same as C, except that S1 additionally runs an algorithm
Gsim to simulate the G random oracle. In order to simulate the G random oracle,
S1 holds two lists, called Glist1 and Glist2 respectively, which are both initially
empty. Records on Glist1 are generated by Gsim, while records on Glist2 are
generated by Signcryptionsim and Unsigncryptionsim which will be applied in
later games. The ν-th record on Glist1 is in form of (ySν , yRν , Kν , τν), and the
μ-th record on Glist2 is in form of (rμ, sμ, ySμ , yRμ , τμ). lGlist1 and lGlist2 denote
the total number of records on Glist1 and Glist2 respectively.

– When the i-th hash query is made on (yS , yR, K) to the G random oracle,
Gsim runs the following steps:
1. If Glist1 is not empty, then from ν = 1 to ν = lGlist1 do

(a) take the value of (ySν , yRν , Kν , τν) which is the ν-th record on Glist1;
(b) if (ySν , yRν , Kν) = (yS , yR, K), return τν ;
(c) ν = ν + 1.

2. If Glist2 is not empty, then from μ = 1 to μ = lGlist2do
(a) take the value of (rμ, sμ, ySμ , yRμ , τμ) which is the μ-th record on

Glist2;
(b) if yS = yA and (yS , yR) = (ySμ , yRμ), check whether a quadruple

(g, yS , yR
sμ , K

yR
sμ·rμ) is a DH quadruple in 〈g〉; if it is, return τμ;

(c) if yR = yA and (yS , yR) = (ySμ , yRμ), check whether a quadruple
(g, yR, (ySgrμ)sμ , K) is a DH quadruple in 〈g〉; if it is, return τμ;

(d) μ = μ + 1.
3. Choose τ ∈ {0, 1}lG uniformly at random, add (yS , yR, K, τ) to the end

of Glist1 and return τ .

A Single Key Pair is Adequate for the Zheng Signcryption 381

It is easy to check that the change from Game 0 to Game 1 is a bridging step,
therefore,

Pr[S1] = Pr[S0]. (2)

Game 2 (Apply Hsim to Simulate the H Random Oracle): In this game,
S2 behaves mostly the same as S1, except that S2 additionally runs an algorithm
Hsim to simulate the H random oracle. In order to simulate the H random oracle,
S2 holds another two lists, called Hlist1 and Hlist2 respectively, which are both
initially empty. Records on Hlist1 are generated by Hsim, while records on
Hlist2 are generated by Signcryptionsim which will be applied in later games.
lHlist1 and lHlist2 denote the total number of records on Hlist1 and Hlist2
respectively. The ν-th record on Hlist1 is in form of (mν , ySν , yRν , Kν , rν), and
the μ-th record on Glist2 is in form of (rμ, sμ, mμ, ySμ , yRμ , r′μ).

– When the i-th hash query is made on (m, yS , yR, K) to the H random oracle,
Hsim runs the following steps:
1. If Hlist1 is not empty, then from ν = 1 to ν = lHlist1 do

(a) take the value of (mν , ySν , yRν , Kν , rν) which is the ν-th record on
Hlist1;

(b) if (mν , ySν , yRν , Kν) = (m, yS , yR, K), then return rν ;
(c) ν = ν + 1.

2. If Hlist2 is not empty, then from μ = 1 to μ = lHlist2do
(a) take the value of (rμ, sμ, mμ, ySμ , yRμ , r′μ) which is the μ-th record

on Hlist2 ;
(b) if yS = yA and (m, yS, yR) = (mμ, ySμ , yRμ), check whether a quadru-

ple (g, yS, yR
sμ , K

yR
sμ·rμ) is a DH quadruple in 〈g〉; if it is, return r′μ;

(c) if yR = yA and (m, yS , yR) = (mμ, ySμ , yRμ), check whether a quadru-
ple (g, yR, (ySgrμ)sμ , K) is a DH quadruple in 〈g〉; if it is, return r′μ;

(d) μ = μ + 1.
3. If yS = yA, it computes r ← R′(yR, K), otherwise it chooses r ∈ Zq

uniformly at random; add (m, yS , yR, K, r) to the end of Hlist1 and
return r.
Here, R′ is an algorithm that has the same output distribution as a
random beacon R. For any input (even with the same input as before),
R′ chooses r ∈ Zq uniformly at random, and outputs r.

It is also easy to check that the change from Game 1 to Game 2 is a bridging
step, therefore,

Pr[S2] = Pr[S1]. (3)

Game 3 (Apply Signcryptionsim to Simulate the Signcryption Oracle):
In this game S3 behaves mostly the same as S2, except that S3 additionally runs
an algorithm Signcryptionsim to simulate the signcryption oracle.

382 J. Fan, Y. Zheng, and X. Tang

– When the i-th signcryption query is made on (m, pkS , pkR) to the signcryp-
tion oracle, Signcryptionsim runs as follows:
1. Parse pkS as yS , pkR as yR.
2. Choose r ∈ Zq, s ∈ Z∗

q , τ ∈ {0, 1}lG uniformly at random.
3. If gryS = 1 mod p, jump to Step 2.
4. If Glist2 is not empty, then from μ = 1 to μ = lGlist2 do

(a) take the value of (rμ, sμ, ySμ , yRμ , τμ) which is the μ-th record on
Glist2;

(b) if (ySμ , yRμ) = (yS , yR), (ySgr)s = (ySgrμ)sμ and τμ 	= τ , then return
Reject;

(c) μ← μ + 1.
5. If Hlist2 is not empty, then from μ = 1 to μ = lHlist2 do

(a) take the value of (rμ, sμ, mμ, ySμ , yRμ , r′μ) which is the μ-th record
on Hlist2 ;

(b) if (mμ, ySμ , yRμ) = (m, yS , yR), (ySgr)s = (ySgrμ)sμ and r′μ 	= r,
then return Reject;

(c) μ = μ + 1.
6. Add (r, s, yS , yR, τ) to the end of Glist2, (r, s, m, yS, yR, r) to the end of

Hlist2;
7. Compute c← Eτ (m);
8. Return σ = (c, r, s).

If the following four conditions are all satisfied, then it is easy to check that
Signcryptionsim has the same output distribution as the signcryption oracle:

– Signcryptionsim does not change the output distribution of Gsim and Hsim.
– Signcryptionsim does not return Reject.
– τ = Gsim(yS , yR, K) with K = g(xS+r)·s·xR when Signcryptionsim does not

return Reject.
– r = Hsim(m, yS , yR, K) with K = g(xS+r)·s·xR when Signcryptionsim does

not return Reject.

In the following, we analyze all the above conditions one by one.

1. Adding (r, s, yS , yR, τ) to Glist2, (r, s, m, yS , yR, r) to Hlist2 does not change
the output distribution of Gsim and Hsim, since τ ∈ {0, 1}lG which may be
used as an output for Gsim and r ∈ Zq which may be used as an output for
Hsim are all chosen uniformly at random. Therefore, Signcryptionsim does
not change the output distribution of Gsim and Hsim.

2. For the i-th signcryption query, the probability that it returns Reject at
Step 4 is at most js+ju

q , since (ySgr)s is uniformly and randomly distributed
in 〈g〉 and lGlist2 ≤ js + ju. Similarly, we have for the i-th signcryption
query, the probability that it returns Reject at Step 5 is also at most js

q
since lHlist2 ≤ js. Therefore, for the i-th signcryption query, the probability
Signcryptionsim does not return Reject is at most 2js+ju

q . Then, the prob-
ability that the second condition is not satisfied during some signcryption
query is at most js(2js+ju)

q .

A Single Key Pair is Adequate for the Zheng Signcryption 383

3. For the i-th signcryption query in which Signcryptionsim does not return
Reject, τ 	= Gsim(yS , yR, K) if and only if Gsim has been run on (yS , yR, K)
before the i-th signcryption query and the corresponding output does not
equal to τ . The probability that Gsim has been run on (yS , yR, K) before the
i-th signcryption query is at most ju+jg

q , since K is randomly and uniformly
distributed in 〈g〉 and Gsim must have been run for at most ju + jg times
(ju times called by the unsigncryption oracle, jg times called directly by
the challenger) before the i-th signcryption query. Therefore, the probability
that the third condition is not satisfied during some signcryption query is at
most js(ju+jg)

q .
4. Following a very similar analysis as for the third condition, we have the

probability that the fourth condition is not satisfied during some signcryption
query is at most js(ju+jh)

q .

We define a certain event F1 to be that at least one of the above conditions
is not satisfied. From the above analysis, we have

Pr[F1] ≤ js(jg + jh + 3ju + 2js)
q

. (4)

Now it is clear that the signcryption oracle and Signcryptionsim has the
same output distribution unless F1 occurs. Moreover, Signcryptionsim does not
change the output distribution of Gsim and Hsim. Thus, the change from Game
2 and Game 3 is a transition based on a failure event F1. We have

|Pr[S3]− Pr[S2]| ≤ Pr[F1], (5)

Game 4 (Apply Unsigncryptionsim to Simulate the Unsigncryption Ora-
cle): In this game S4 behaves mostly the same as S3, except that S4 additionally
runs an algorithm Unsigncryptionsim to simulate the unsigncryption oracle as
follows:

– When the i-th unsigncryption query is made on (σ, pkS , pkR) to the unsign-
cryption oracle, Unsigncryptionsim runs as follows:
1. Parse pkS as yS , pkR as yR.
2. Parse σ as (c, r, s).
3. Compute w ← (ySgr)s mod p.
4. If Glist1 is not empty, then from ν = 1 to ν = lGlist1 do

(a) take the value of (ySν , yRν , Kν , τν) which is the ν-th record on Glist1;
(b) if (ySν , yRν) = (yS , yR) and (g, yR, w, Kν) is a DH tuple in 〈g〉, com-

pute τ̂ ← τν and jump to Step 7;
(c) ν ← ν + 1.

5. If Glist2 is not empty, then from μ = 1 to μ = lGlist2 do
(a) take the value of (rμ, sμ, ySμ , yRμ , τμ) which is the μ-th record on

Glist2;
(b) if (ySμ , yRμ) = (yS , yR) and (ySgrμ)sμ = (ySgr)s, then compute τ̂ ←

τμ and jump to Step 7;

384 J. Fan, Y. Zheng, and X. Tang

(c) μ← μ + 1.
6. Choose τ ∈ {0, 1}lG uniformly at random, add (r, s, yS , yR, τ) to the end

of Glist2, and compute τ̂ ← τ .
7. Compute m← Dτ̂ (c).
8. If Hlist1 is not empty, then from ν = 1 to ν = lHlist1 do

(a) take the value of (mν , ySν , yRν , Kν , rν) which is the ν-th record on
Hlist1;

(b) if (mν , ySν , yRν) = (m, yS , yR) and (g, yR, w, Kν) is a DH tuple in
〈g〉, then compute r̂ ← rν and jump to Step 11;

(c) ν ← ν + 1.
9. If Hlist2 is not empty, then from μ = 1 to μ = lHlist2 do

(a) take the value of (rμ, sμ, mμ, ySμ , yRμ , r′μ) which is the μ-th record
on Hlist2;

(b) if (mμ, ySμ , yRμ) = (m, yS , yR) and (ySgrμ)sμ = (ySgr)s, then com-
pute r̂ ← r′μ and jump to Step 11;

(c) μ← μ + 1;
10. Return Reject;
11. Check whether r = r̂; if it is, return m, otherwise return Reject.

We define a certain event F2 to be that for some unsigncryption query,
Unigncryptionsim(σ, pkS , pkR) = Reject and Hsim(m, yS , yR, K) = r where
σ = (c, r, s), m = Dτ (c), τ = Gsim(yS , yR, K), and K = wxR .

It is easy verify that the unsigncryption oracle and Unsigncryptionsim has
the output distribution unless F2 occurs. Therefore, the change from Game 3 to
Game 4 is a transition based on a failure event F2. We have

|Pr[S4]− Pr[S3]| ≤ Pr[F2]. (6)

In this proof, F2 occurs if and only if Unsigncryptionsim returns Reject
at Step 10, while Hsim(m, yS , yR, K) = r. According to the description of
Unsigncryptionsim, in this case Hsim has never been run on (m, yS , yR, K)
before this unsigncryption query and there is no record on Hlist2 satisfies the
output condition. According to the Hsim algorithm, Hsim will generate and
return a random value at Step 3. For each unsigncryption query, the probabil-
ity that r equals to that random value is 1

q . Considering all ju unsigncryption
queries, the probability that Unsigncryptionsim returns Reject at Step 10, while
Hsim(m, yS , yR, K) = r in that case is ju

q . Therefore, we have

Pr[F2] =
ju

q
. (7)

Game 5 (Replace Hsim with H ′ at Stage 3): In this game S5 behaves mostly
the same as S4, except that S5 replaces Hsim with another algorithm H ′ at Stage
3. On input (m∗, yS∗ , yR∗ , K∗), H ′ chooses r̄∗ ∈ Zq uniformly at random and
outputs r̄∗.

Since r̄∗ is chosen uniformly at random from Zq, the probability that r∗ = r̄∗

is 1
q . Therefore, we have

Pr[S5] =
1
q
. (8)

A Single Key Pair is Adequate for the Zheng Signcryption 385

We define a certain event F3 to be that at Stage 2, Hsim is run on input
(m∗, yS∗ , yR∗ , K∗) where K∗ = yR∗s∗(r∗+xS∗).

If F3 does not occur, then from A’s point of view, Game 5 and Game 4
proceeds identically. Therefore, the change from Game 4 to Game 5 is a transition
based on a failure event F3. Then, we have

|Pr[S5]− Pr[S4]| ≤ Pr[F3] (9)

Game 6 (Change the Way to Generate an Input to A): In this game
S6 behaves mostly the same as S5, except that S6 runs in a different way at
Stage 1, and at Stage 2 it calls for a restricted DDH oracle to check whether a
quadruple is a DH quadruple and makes use of a random beacon R to replace
the R′ algorithm, where both the restricted DDH oracle and the random beacon
R are provided by the rbGDL problem. In this game S6 (which can also be
regarded as an adversary Arbgdl) prepares to take up the challenge of attacking
the rbGDL problem in a group 〈g〉 with an input (g, ga). Particularly, at Stage
1, S6 runs as follows:

1. Set (p, q, g) as the same as in the rbGDL problem.
2. Set G, H,SKE according to the Setup algorithm.
3. Set yA ← ga.
4. Give (cp, pkA) to A, where cp = (p, q, g, G, H,SKE), pkA = yA.

It is obvious that the changes are only conceptual. In other words, from A’s
point of view, Game 6 and Game 5 proceeds identically. Therefore, F3 in Game
6 and Game 5 occurs with the same probability.

Now we analyze the probability that F3 occurs. In this proof, records on
Hlist2 are only be generated by Signcryptionsim and according to the rule of
the game, A is not allowed to make a signcryption query on (m∗, pkS∗ , pkR∗)
which implies there will be no such a record (mμ, rμ, sμ, ySμ , yRμ , r′μ) on Hlist2
satisfying (mμ, ySμ , yRμ) = (m∗, yS∗ , yR∗). Therefore, when Hsim is queried on
(m∗, yS∗ , yR∗ , K∗), the output value will never be returned at Step 2. That is,
the output value of Hsim(m∗, yS∗ , yR∗ , K∗) is generated at Step 3 when it is
first queried. In this case, according to the Hsim algorithm, r∗ = R(yR∗ , K∗).
Therefore, S6 can solve the rbGDL problem by outputting (r∗, s∗, i∗) where i∗

denotes R runs on input (yR∗ , K∗) at the i-th time. From the above analysis, we
have

Pr[F3] ≤ Advrbgdl
Arbgdl

(trbgdl, jrbgdl, jr) (10)

where Advegdh
EGDH,Aegdh

(tegdh, jegdh) is the advantage of Arbgdl running in time
trbgdl and making at most jrbgdl restricted DDH queries, and at most jr random
beacon queries. According to the execution of S6 in Game 6, we can compute
that trbgdl = t + t′c where t′c = O((js + ju)2 + jh

2 + jg
2) is the simulation time

of S6, jrbgdl = O((jg + jh)(js + ju)) and jr ≤ jh. Therefore, trbgdl, jrbgdl, and jr

are all polynomials in k.

386 J. Fan, Y. Zheng, and X. Tang

By Lemma 3, we can construct an algorithm Agdl to attack the GDL assump-
tion that runs in time tgdl = 2trbgdl + O(q2) and makes jgdl = 2jrbgdl restricted
DDH queries, with a success probability

Advgdl
GDL,Agdl

(tgdl, jgdl) ≥ 1
jr

(
Advrbgdl

RBGDL,Arbgdl
(trbgdl, jrbgdl, jr)

2
− jr

q
)2. (11)

Here tgdl and jgdl are also polynomials in k, since trbgdl and jrbgdl are polynomials
in k. Recall that in Lemma 3, we have

Advrbgdl
RBGDL,Arbgdl

(trbgdl, jrbgdl, jr) ≥ 2jr

q
,

as a result, (11) can be expressed as

Advrbgdl
RBGDL,Arbgdl

(trbgdl, jrbgdl, jr) ≤ 2(
√

jr · Advgdl
GDL,Agdl

(tgdl, jgdl) +
jr

q
).(12)

Combining (10) and (11), with jr ≤ jh, the probability for F3 to occur is

Pr[F3] ≤ 2jh

q
+ 2 ·

√
jh ·Advgdl

GDL,Agdl
(tgdl, jgdl). (13)

Arrive at our conclusion: Combining the formulas from (1) to (9), and for-
mula (13), we have

Adveuf−cspa
SC,A (t, js, ju) (14)

≤ js(jg + jh + 3ju + 2js) + 2jh + ju + 1
q

+2
√

jh · Advgdl
GDL,Agdl

(tgdl, jgdl). (15)

Let εgdl
tgdl,jgdl

be the maximum of Advgdl
GDL,Agdl

(tgdl, jgdl) over all algorithms
attacking the GDL problem that runs in time tgdl and makes at most jgdl re-
stricted DDH queries to a DDH oracle. From the analysis of Game 6, we get
that tgdl and jgdl are polynomials in k. Therefore, under the GDL assumption,
εgdl
tgdl,jgdl

must be negligible in k.
Taking a maximum over all EUF-CSPA adversaries with appropriate resource

parameters, we get our conclusion that

εeuf−cspa
t,js,ju

≤ js(jg + jh + 3ju + 2js) + 2jh + ju + 1
q

+ 2 ·
√

jh · εgdl
tgdl,jgdl

. (16)

Finally, we remark that the minor tweak we made is useful in Step 4(b) of
Signcryptionsim, and Step 5(b) of Unsigncryptionsim. This tweak takes yS and
yR as part of the input to the G hash function. Therefore, in these two cases we
are sure that (ySμ , yRμ) = (yS , yR).

A Single Key Pair is Adequate for the Zheng Signcryption 387

5.2 Proof of Confidentiality

Theorem 2. Let H and G be two hash functions modeled as random oracles.
Then under the GDH assumption in 〈g〉 which is a subgroup of Z∗

p generated by
g, and the assumption that the SKE is PI-SKE secure, the Zheng signcryption
scheme is IND-CSPA secure.

Specifically, let k be a security parameter of the Zheng signcryption, A be an
IND-CSPA adversary that runs in time t, and makes at most js signcryption
queries, ju unsigncryption queries, jg hash queries to G and jh hash queries to
H, where t, js, ju, jg, jh are all polynomials in k. Then the maximum advantage
εind−cspa
t,js,ju

of the adversary satisfies the following condition:

εind−cspa
t,js,ju

≤ εegdh
tegdh,jegdh

+ εpi−ske
tske

+
js(jg + jh + 6ju + 3js + 2)

q

where εegdh
tegdh,jegdh

, εpi−ske
tske

are negligible in k for all sufficiently large k.

The proof for this theorem follows a similar path to that for Theorem 1. We
leave details of the proof to a full version of this paper.

6 Relationships with Proofs by Baek, Steinfeld and
Zheng

The proof of confidentiality by Baek, Steinfeld and Zheng can be naturally ex-
tended to the single key pair setting, with the exception that in the new model,
more cases need to be considered. As a result, all the games in the proof should
be properly described and probabilities for all the events need to be carefully
analyzed by taking into account all the added cases throughout the whole proof.

The proof of unforgeability in the new model can not be naturally derived
from the proof by Baek, Steinfeld and Zheng. For example, in Game 3 of the
proof by Baek, Steinfeld and Zheng, when (m∗, yS

∗, yR
∗, K∗) is presented to

HSim, it is the same as that R (the random beacon) has been run on (yR
∗, K∗)

which implies the rbGDL problem has been resolved. When it is extended to the
single key pair setting, there should be unsigncryption queries which (accord-
ing to their proof for confidentiality) may add records to Hlist2. In this case
(m∗, yS

∗, yR
∗, K∗) is presented to HSim which can be different from R being

run on (yR
∗, K∗), since the result of HSim(m∗, yS

∗, yR
∗, K∗) may come from

Hlist2. To ensure that unforgeability can be reduced to the GDL assumption
under the new model, we had to resolve a number of technical issues, includ-
ing the use of a random beacon, the way to add records to Hlist2, and the
way to simulate the unsigncryption oracle among many other minor technical
issues.

Acknowledgment. We thank Joonsang Baek and Ron Steinfeld for thoroughly
reading the early version of this paper and providing helpful comments. We also
thank the anonymous reviewers of ACISP 2011 for their valuable comments.

388 J. Fan, Y. Zheng, and X. Tang

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002)

3. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
J. Cryptology 20(2), 203–235 (2007)

4. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the First ACM Conference on Computer and
Communications Security, New York, pp. 62–73. The Association for Computing
Machinery (November 1993)

6. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33, 167–226 (2003)

7. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

8. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs
(2004), http://eprint.iacr.org/2004/332

9. Zheng, Y.: Digital signcryption or how to achieve cost (Signature & encryption)
<< cost(Signature) + cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

10. Zheng, Y., Imai, H.: Efficient signcryption schemes on elliptic curves. In: IFIP/SEC
1998: Proceedings of the IFIP 14th International Information Security Conference,
New York, pp. 75–84. Chapman and Hall, Boca Raton (1998)

http://eprint.iacr.org/2004/332

	A Single Key Pair is Adequate for the Zheng Signcryption
	Introduction
	Overview of the Zheng Signcryption Scheme
	Security Model
	Syntax of Signcryption
	Definition of Confidentiality
	Definition of Unforgeability

	Assumptions and Primitives
	Problems and Assumptions
	One-Time Symmetric Key Encryption
	One-Way Hash Functions

	Security Proofs
	Proof of Unforgeability
	Proof of Confidentiality

	Relationships with Proofs by Baek, Steinfeld and Zheng
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

