
On the Necessity of Strong Assumptions for the
Security of a Class of Asymmetric Encryption

Schemes

Ron Steinfeld1, Joonsang Baek1, and Yuliang Zheng2

1 School of Network Computing, Monash University, McMahons Road, Frankston,
VIC 3199, Australia

{joonsang.baek,ron.steinfeld}@infotech.monash.edu.au
2 Dept. Software and Info. Systems, UNC Charlotte, NC 28223, USA

yzheng@uncc.edu

Abstract. Recently various public key encryption schemes such as DHIES
by Abdalla, Bellare and Rogaway and REACT by Okamoto and
Pointcheval, whose security against adaptive chosen ciphertext attack
(CCA) is based on the Gap problems, have been proposed. Although
the Gap problems were proved to be a sufficient assumption for those
schemes to be secure against adaptive chosen-cipertext attack, a neces-
sary condition for CCA security of those schemes has not been explicitly
discussed.
In this paper we clarify the necessary condition for CCA security of those
schemes. Namely we prove (in the random oracle model) that the Gap
Diffie-Hellman is not only sufficient, but also a necessary assumption for
the CCA security of DHIES and Diffie-Hellman version of REACT. We
also show that our result applies to a wider class of public key encryption
schemes. Furthermore we show that our result implies the equivalence,
in the random oracle model, between ‘Strong Diffie-Hellman’ and ‘Oracle
Diffie-Hellman’ assumptions proposed by Abdalla, Bellare and Rogaway.
Our results may be used as criteria for distinguishing public key encryp-
tion schemes whose CCA security is based on strong assumptions (such
as Gap Diffie-Hellman) from those schemes based on weaker ones (such
as Computational Diffie-Hellman).

1 Introduction

The design of practical public-key encryption schemes which are secure against
powerful attacks, namely adaptive chosen ciphertext attacks, has been a very
active research topic since the early work of Zheng and Seberry [6]. Recently,
a simple and efficient public key encryption scheme called ‘Diffie-Hellman In-
tegrated Encryption Scheme (DHIES)’, was proposed and analysed by Abdalla
Bellare and Rogaway [4]. In [4], the authors state that due to technical prob-
lems, it seems hard to prove that the scheme DHIES is secure against adaptive
Chosen Ciphertext Attack (CCA) assuming only the standard ‘Computational
Diffie-Hellman’ (CDH) assumption holds in the underlying group, and the ran-
dom oracle model [2] for the hash function used in the scheme. Instead, the

authors proved that the DHIES scheme is secure against adaptive chosen cipher-
text attack in the random oracle model with respect to a strong computational
assumption on the underlying group called ‘Strong Diffie-Hellman’ (SDH) and
even secure in the standard model (i.e., not assuming the underlying hash func-
tion behaves as a random oracle) if another strong assumption called ‘Oracle
Diffie-Hellman (ODH)’ is considered.

In this paper we clarify the technical problems in proving that DHIES is
secure against adaptive chosen-ciphertext attack in the random oracle model
assuming the CDH assumption. We present a simple chosen ciphertext attack
which efficiently breaks DHIES if the SDH assumption does not hold. That is,
we show that SDH is not only sufficient, but also a necessary assumption for
the CCA security of DHIES. Our attack shows that the technical difficulties
in proving DHIES is as secure as the CDH assumption cannot be overcome by
a more careful analysis of the scheme DHIES. Rather, the problem is purely
a computational one in the underlying group, namely to prove that SDH is
equivalent to CDH. As an application of our work we also clarify the relationship
between the two new assumptions introduced by the authors of [4], ‘Oracle Diffie-
Hellman’ (ODH) and ‘Strong Diffie-Hellman’ (SDH). We show that these two
assumptions are in fact equivalent in the random oracle model.

As an extension of our work we consider Okamoto and Pointcheval’ re-
cent scheme called ‘Rapid Enhanced-Security Asymmetric Cryptosystem Trans-
form’ (REACT) [5]. This transformation converts any ‘weakly secure’ encryp-
tion scheme (namely a ‘One-Way Plaintext Checking Attacker’, or OW-PCA)
scheme) into an encryption scheme secure against adaptive chosen-cipertext at-
tack in the random oracle model. We show that a variation of our attack breaks
REACT in the CCA sense if the OW-PCA assumption does not hold, i.e. OW-
PCA is necessary as well as sufficient for the CCA security of REACT.

To emphasize the generality of our attack we present it in the following way.
We consider a primitive called a ‘Key Encapsulation Mechanism (KEM)’ [7] in-
spired by the Diffie-Hellman function, and propose a corresponding ‘OW-PCA’
notion for it. This primitive can be simpler than a ‘weakly secure encryption
scheme’, since it only needs to generate a uniformly distributed key and a cipher-
text for it, rather than encrypting specified input messages. Then we describe
two variants ‘CCAKEM1’ and ‘CCAKEM2’ of a conversion from any KEM to an
encryption scheme secure against adaptive chosen-ciphertext attack in the ran-
dom oracle model. The first variant CCAKEM1 uses one random oracle and one
Message Authentication Code (MAC) and includes DHIES as a special instance
in which the KEM is the Diffie-Hellman one. The second variant CCAKEM2
uses two random oracles and includes REACT as a subclass in which the KEM
is implemented using an encryption scheme. We present variations of our at-
tack for both CCAKEM1 and CCAKEM2 if the ’OW-PCA’ assumption on the
KEM does not hold. This implies as special cases the above-mentioned attacks
on DHIES and REACT.

2 Preliminaries

In this section we review the KEM, and define a security notion for it called
‘One-Wayness under Plaintext Checking Attacks’ (OW-PCA). This notion is
analogous to the OW-PCA notion defined for encryption schemes by Okamoto
and Pointcheval in [5]. Note that definitions of asymmetric encryption schemes,
symmetric encryption schemes, and MAC and the standard security notions for
them are given in the Appendix.

2.1 Notation

We use the notation A(., .) to denote an algorithm, with input arguments sepa-
rated by commas (our underlying computational model is a probabilistic Turing
Machine). If algorithm A makes calls to oracles, we list the oracles separated from
the algorithm inputs by the symbol ‘|’. Given a set SPsk we denote by sk

R← SPsk

the assignment of a uniformly and independently distributed random element
from the set SPsk to the variable sk. Given an element h ∈ {0, 1}k, we denote
by h[i, ..., j] the substring of h consisting of the bits at positions i to j (where
bit 1 is by convention the rightmost bit). We use the notation Pr[Event]exp to
denote the probability of event Event in experiment exp.

2.2 Key Encapsulation Mechanism (KEM)

The KEM is defined as follows.

Definition 1. A Key Encapsulation Mechanism (KEM) consists of 3 algorithms:

1 Key-Pair Generation Algorithm GK(k) — Takes a security parameter k ∈ IN
and generates a secret and public key pair (sk, pk).

2 Random Key Encryption Algorithm EKEM
pk (r) — Takes a recipient’s public

key pk and a random string r ∈ SPR, and outputs a pair (K, c), where
K ∈ SPK is a key and c is a ciphertext for K.

3 Random Key Decryption Algorithm DKEM
sk (c) — Takes a recipient’s secret

key sk and a ciphertext c and outputs a decrypted key K.

We require that for every key pair (sk, pk) output by GK(k) and each r ∈ SPR,
it is the case that if (K, c) = EKEM

pk (r) then DKEM
sk (c) = K.

Example. The Diffie-Hellman KEM (DHKEM) in a multiplicatively-written group
G is described as follows.

1 Algorithm GK(k) outputs common parameters (dG, g, q) consisting of de-
scription dG of a finite cyclic group G, a generator g ∈ G and the order q

of G and chooses x
R← ZZq and computes y ← gx in G. It outputs (sk, pk),

where sk = x and pk = (dG, g, q, y).
2 Algorithm EDHKEM

pk (r) accepts r
R← ZZq, computes key K ← yr and ciphertext

c← gr and outputs (K, c).

3 Algorithm DDHKEM
sk (c) computes K ← cx and outputs K.

Notice that the DHKEM is simpler than the Diffie-Hellman-based El-Gamal
encryption scheme because in KEM there is no need to encrypt a specified input
message, only to encrypt a key derived from the input random string. Of course,
any public-key encryption scheme can also function as an KEM by setting K = r,
where r is a random message, and c is the encryption of r.

Analogously to [5], we define the ‘OW-PCA security notion for an KEM as
follows. First a plaintext checking oracle is defined.

Definition 2. (Plaintext Checking Oracle) Given a Key Encapsulation Mech-
anism KEM = (GK,EKEM,DKEM) and a key pair (sk, pk) output by GK, we de-
fine an associated Plaintext Checking Oracle (PCO) algorithm PCOKEM,sk(., .),
where given a key K ∈ SPK and a ciphertext c, PCOKEM,sk(K, c) returns 1 if
DKEM

sk (c) = K and else returns 0.

Then the OW-PCA notion is defined in a quantitative way.

Definition 3. (OW-PCA) Let KEM = (GK,EKEM,DKEM) be a KEM. Let A be
an attack algorithm. Define the experiment

Experiment OWPCAExp(k,KEM,A)
(sk, pk)← GK(k)
r

R← SPR; (K, c)← EKEM
pk (r)

K ′ ← A(pk, c|PCOKEM,sk(., .))
If K ′ = K then Return 1 else Return 0

We quantify A’s success in breaking the OW-PCA notion of KEM by the
probability SuccOW−PCA

A,KEM (k) def= Pr[OWPCAExp(k,KEM,A) = 1]. We define
A’s resource parameters as RP = (t, qPC) if A has running time/program size
at most t and makes at most qPC queries to the PCO oracle.

Note that the attacker A is allowed to query the part of challenge ciphertext c.

3 The Transforms ‘CCAKEM1’ and ‘CCAKEM2’

In this section we define the two transformations schemes ‘CCAKEM1’ and
‘CCAKEM2’ which convert any OW-CPA key encapsulation mechanism into an
asymmetric encryption scheme secure against adaptive chosen ciphertext attack
in the random oracle model, and explain how REACT and DHIES are related
to them.

3.1 Transform CCAKEM1

The transform ‘CCAKEM1’ takes (1) A key encapsulation mechanism KEM =
(GKKEM,EKEM,DKEM), (2) A MAC MAC = (MACG,MACV) with key space
{0, 1}lm , (3) An IND-CPA symmetric encryption scheme SYM = (ESYM,DSYM)
with key space {0, 1}le , and (4) A hash function H : {0, 1}∗ → {0, 1}le+lm , mod-
elled as a random oracle [2], and constructs an asymmetric encryption scheme
CCAKEM1 = (GKCCAKEM1,ECCAKEM1,DCCAKEM1) as follows.

Transform CCAKEM1

GKCCAKEM1(k)

(sk, pk)← GKKEM(k)
Return (sk, pk)

ECCAKEM1
pk (m)

r
R← SPR

(K, c)← EKEM
pk (r)

h← H(K, c)
km← h[1, ..., lm]
ke← h[lm + 1, ..
.., lm + le]

cs ← ESYM
ke (m)

σs ← MACGkm(cs)
Return (c, cs, σs)

DCCAKEM1
sk ((c, cs, σs))

K ← DKEM
sk (c)

h← H(K, c)
km← h[1, ..., lm]
ke← h[lm + 1, ..., lm + le]

m← DSYM
ke (cs)

d← MACVkm(cs, σs)
If d = Acc Return m
Else Return Rej

Observe that this scheme is a very natural one for performing ‘hybrid en-
cryption’. To encrypt a message m, one first uses the KEM to encapsulate a
‘session key’ K into a KEM ciphertext c. Then the session key (and ciphertext
c) is hashed using H(.) to derive two symmetric keys: one key ke is used encrypt
m into a ciphertext cs using the symmetric encryption scheme and another key
km is used to generate a MAC tag σs on the symmetric ciphertext cs using the
MAC scheme. The decryption algorithm recovers the session key K and then
the symmetric keys, checking the MAC tag for validity before decrypting cs to
recover m.

We remark that by setting the scheme KEM to be the Diffie-Hellman KEM
described in the previous section, this transformation yields the DHIES scheme,
and the OW-PCA assumption on the KEM becomes the ‘Strong Diffie-Hellman’
Assumption (SDH): given (ga, gb), compute gab given a fixed-input Decision
Diffie-Hellman (DDH) oracle, which given a pair of group elements (y, z) decides
whether z = ya or not.

3.2 Transform CCAKEM2

The transform ‘CCAKEM2’ takes (1) A key encapsulation mechanism KEM =
(GKARK,EKEM,DKEM), (2) An IND-CPA-secure Symmetric encryption scheme
SYM = (ESYM,DSYM) with key space {0, 1}le , and (3) Two hash functions
H1 : {0, 1}∗ → {0, 1}le and H2 : {0, 1}∗ → {0, 1}lσ , both modeled as ran-
dom oracles, and constructs an asymmetric encryption scheme CCAKEM2 =
(GKCCAKEM2,ECCAKEM2,DCCAKEM2) as follows.

Transform CCAKEM2

GKCCAKEM2(k)

(sk, pk)← GKKEM(k)
Return (sk, pk)

ECCAKEM2
pk (m)

r
R← SPR; (K, c)← EKEM

pk (r)
ke← H1(K, c)

cs ← ESYM
ke (m)

σs ← H2(K, m, c, cs)
Return (c, cs, σs)

DCCAKEM2
sk ((c, cs, σs))

K ← DKEM
sk (c)

ke← H1(K, c)

m← DSYM
ke (cs)

d← H2(K, m, c, cs)
If d = σs Return m
Else Return Rej

This scheme uses a similar natural approach as the previous one but using a
second hash function for tagging the ciphertext. To encrypt a message m, one
first uses the KEM to encapsulate a ‘session key’ K into a KEM ciphertext c.
Then the session key is hashed using H1(.) to derive a symmetric encryption
key ke used encrypt m into a ciphertext cs using the symmetric encryption
scheme. Then a tag σs is also generated using hash function H2(.) by hashing
all of K, m, c, cs. The decryption algorithm recovers the session key K and then
the symmetric key ke and the decrypted message m, checking hash tag σs for
validity before returning m.

We observe that by implementing the scheme KEM using a public key encryp-
tion scheme, namely by choosing a random message element as the key K and
encrypting it, we obtain the REACT transformation. The OW-PCA assumption
on the KEM becomes the OW-PCA assumption on the encryption scheme. As
observed in [5], the OW-PCA assumption is equivalent to just the one-wayness
assumption in the case of a deterministic encryption scheme with a one-to-one
decryption algorithm (such as RSA), since the PC oracle can be implemented
by re-encryption.

4 The Attacks

Now we present our attacks on the above conversions, assuming that the under-
lying KEM is not OW-PCA.

4.1 Attack on CCAKEM1 if the underlying KEM is not OW-PCA

Theorem 1. Let APC be an attack algorithm with resource parameters (tPC , qPC)
for breaking OW-PCA of the key encapsulation mechanism KEM. Then we can
construct an attack algorithm ACC = (ACC

find,A
CC
guess) with resource parameters

(tCC , qD, qH) such that

SuccCCA
ACC,CCAKEM1(k) ≥ SuccOW−PCA

A,KEM (k)−2(qPC +2)InSecMAC−UF
MAC (tCC , 0, qPC)

and tCC = tPC + (qPC + 1)(O(1) + tMAC), qD = qPC , qH = 2qPC + 1 (here
tMAC denotes the time to evaluate MACG or MACV).

Proof. We construct CCA attacker ACC. The idea of the construction is simple
— ACC essentially runs APC on the OW-PCA instance of KEM corresponding to
the challenge ciphertext given to ACC, and simulates the PCOKEM,sk(., .) oracle
to which APC makes queries, using the decryption oracle DCCAKEM1

sk (.). Although
the PC oracle simulation is not perfect, we will bound its error probability using
the assumed bound on the insecurity of the MAC scheme.

We first give a detailed definition of the two sub-attacker algorithms ACC
find

and ACC
guess making up A, as well as the PCO simulator algorithm PCOSim(., .)

which is used to answer the PCO queries of APC when the latter is run by ACC
guess.

Then we analyse the attack to prove the claims of the theorem.

CCA Attacker ACC Against Scheme CCAKEM1

ACC
find(pk|DCCAKEM1

sk (.)) (Find Stage)
Let m0 and m1 denote distinct messages in SP SY M

M .
s← (m0, m1)
Return (m0, m1, s)

ACC
guess(pk, m0, m1, s, (c, cs, σs)|DCCAKEM1

sk (.)) (Guess Stage)

K′ ← APC(pk, c|PCOSim(., .))
h′ ← H(K′, c)
km′ ← h′[1, ..., lm]; ke′ ← h′[lm + 1, ..., lm + le]

If d′
def
= MACVkm′(cs, σs) =‘Rej’ then b′

R← {0, 1}
Else

m′ ← DSYM
ke′ (cs)

If m′ = mj for j ∈ {0, 1} then b′ ← j Else b′
R← {0, 1}

Return b′

PCOSim(K[i], c[i]|H(.), DCCAKEM1
sk (.)) (PCO Simulator)

h[i]← H(K[i], c[i])
km[i]← h[i][1, ..., lm]; ke[i]← h[lm + 1, ..., lm + le]

Find j ∈ {0, 1} such that cs[i]
def
= ESYM

ke[i](mj) 6= cs

σs[i]← MACGkm[i](cs[i])

d[i]← DCCAKEM1
sk (c[i], cs[i], σs[i])

(note: we define km′[i] = h′[i]← H(DKEM
sk (c[i]), c[i]))

If d[i] 6= Rej then Return 1
Else Return 0

We have not shown above the actions of the ‘CCAExp’ experiment while
running ACC, which are described in definition 4 . Namely, before running ACC,
a KEM key pair (sk, pk) is generated and ACC

find is given the public key pk,
and access to the decryption oracle DCCAKEM1

sk (.), which makes use of the se-
cret key sk, and the random oracle H(.). When ACC

find outputs the pair of mes-
sages m0 and m1, an independent and uniform bit b is chosen and the chal-
lenge ciphertext ECCAKEM1

pk (mb) = (c, cs, σs) is generated. We denote by K
def=

DKEM
sk (c) the encapsulated key used to generate the challenge ciphertext, and

hence the portion (cs, σs) of the challenge ciphertext satisfies mb = DSYM
ke (cs),

and MACVkm(cs, σs) = Acc, where km = h[1, . . . , lm] and ke = h[lm+1, . . . , lm+
le] and h = H(K, c). The challenge (c, cs, σs) is given to ACC

guess and when ACC
guess

outputs the guess bit b′, it is compared with b and ‘CCAExp’ returns 1 if and
only if b′ = b.

Now we show that ACC satisfies the claims of the theorem. In the following, we
use the notation Pr[Event]exp to denote the probability of event Event in experi-
ment exp (if no subscript is given it refers to experiment sim defined below). We
first define two experiments: (1) Experiment real denotes the ‘OWPCAExp’ ex-
periment in definition 3 running with attacker APC whose queries are answered by
the real PC Oracle. (2) Experiment sim denotes the above ‘CCAExp’ experiment
running with attacker ACC which runs APC and answers its queries with the sim-
ulator PCOSim. We define in this experiment the event SuccSim that the ‘CCA-
Exp’ experiment returns 1. Hence SuccCCA

ACC,CCAKEM1(k) def= 2(Pr[SuccSim]sim− 1
2).

Also we let (K[j], c[j]) denote the j’th query of APC to its PCO oracle, and we
define (K[0], c[0]) def= (K, c) to be the challenge key-ciphertext pair.

Define the following events:

1 SuccA: APC(pk, c|PCOsk(., .)) = DKEM
sk (c). Note that this event is defined over

the inputs to APC in both experiments real and sim.
2 Lie: PCOSim(K[j], c[j]) 6= PCOsk(K[j], c[j]) for some j ∈ {1, ..., qPC}. This

event is defined in experiment sim only.
3 Bad: K ′ def= APC(pk, c|PCOSimsk(., .)) 6= DKEM

sk (c) and d′ = Acc. This event is
defined in experiment sim only.

We also define the event Err
def= Lie ∨ Bad. The three disjoint events Err,

SuccA∧¬Err and ¬SuccA∧¬Err partition the outcome space of the sim experi-
ment. Splitting event SuccSim we have Pr[SuccSim] = Pr[SuccSim|Err] Pr[Err] +
Pr[SuccSim|SuccA∧¬Err] Pr[SuccA∧¬Err]+Pr[SuccSim|¬SuccA∧¬Err] Pr[¬SuccA∧
¬Err]. We lower bound this probability using the last two terms. If event SuccA∧
¬Err occurs then APC succeeds to decrypt c, so K ′ = DKEM

sk (c) = K so b′ = b
and SuccSim occurs. Hence Pr[SuccSim|SuccA∧¬Err] = 1. Also, since the inputs
to APC are distributed in sim as in real, we have Pr[SuccA] = Pr[SuccA]real =
SuccOW−PCA

AP C ,KEM (k) so Pr[SuccA ∧ ¬Err] = SuccOW−PCA
AP C ,KEM (k) − Pr[SuccA ∧ Err]. If

event ¬SuccA∧¬Err occurs then K ′ 6= K but d′ = Rej so b′ is chosen uniformly
in {0, 1} and hence Pr[SuccSim|¬SuccA ∧ ¬Err] = 1

2 . Also Pr[¬SuccA ∧ ¬Err] =
Pr[¬SuccA] − Pr[¬SuccA ∧ Err] = 1 − SuccOW−PCA

AP C ,KEM (k) − Pr[¬SuccA ∧ Err]. By
substituting the above results in the last two terms of the splitting expression
for Pr[SuccSim] we get the lower bound Pr[SuccSim] ≥ 1

2 + 1
2SuccOW−PCA

AP C ,KEM (k)−
Pr[Err], and hence:

SuccCCA
ACC,CCAKEM1(k) ≥ SuccOW−PCA

AP C ,KEM (k)− 2 Pr[Err]. (1)

The running time and query counts of the attacker ACC can be readily verified.
Therefore to establish the theorem it remains to show that Pr[Err] ≤ (qPC +
2)InSecMAC−UF

MAC (tCC , 0, qPC). Since Pr[Err] = Pr[Bad∧¬Lie] +Pr[Lie] it suffices
to show that

Pr[Bad ∧ ¬Lie] ≤ InSecMAC−UF
MAC (tCC , 0, qPC) (2)

and
Pr[Lie] ≤ (qPC + 1) · InSecMAC−UF

MAC (tCC , 0, qPC). (3)

To get (2), note that Bad means that MACVkm′(cs, σs) = Acc, where km′ =
H(K ′, c) and K ′ 6= DKEM

sk (c). Hence (K ′, c) 6= (K, c) and the pair (K ′, c) has not
been previously queried to H(.) by DCCAKEM1

sk (since all such queries have the
form (DKEM

sk (c̄), c̄)). Furthermore, Bad¬Lie means that also (K ′, c) 6= (K[j], c[j])
for all j ∈ {1, . . . , qPC} since we can assume without loss of generality that APC

never outputs a queried key K[j] for which the query (K[j], c) was answered ’0’
by the PCO oracle (this key is never correct). Hence when Bad∧¬Lie occurs the
pair (K ′, c) has not been queried to H(.) before km′ = H(K ′, c) is computed,
so Pr[Bad∧¬Lie] is at most the probability that MACVk(σs, cs) = Acc when the

key k is chosen uniformly in the MAC key space {0, 1}lm . This probability is at
most InSecMAC−UF

MAC (tCC , 0, 0) for any choice of (cs, σs). Hence Pr[Bad∧¬Lie] ≤
InSecMAC−UF

MAC (tCC , 0, 0) ≤ InSecMAC−UF
MAC (tCC , 0, qPC), which gives (2).

To get the second bound (3) we construct a MAC forging algorithm F as
follows.

MAC Forging Attacker F Against MAC Scheme MAC

F(.|MACGkm∗(.), MACVkm∗(.))

i∗
R← {0, ..., qPC + 1}

i← 0
(sk, pk)← GK(k, cp)

(m0, m1, s)← Afind(pk|DCCAKEM1
sk (.))

b
R← {0, 1} ; r

R← SPR; (K, c)← EKEM
pk (r)

h[lm + 1, . . . , lm + le]← H(K, c)[lm + 1, . . . , lm + le]
ke← h[lm + 1, . . . , lm + le]
(note: if i∗ = 0 define km = km∗, else km = H(K, c)[1, . . . , lm]).

cs ← ESYM
ke (m)

K′ ← APC(pk, c|PCOSim(., .))
km← H(K, c)[1, . . . , lm]; σs ← MACGkm(cs)
(note: define km′ = km∗)
Return forgery (cs, σs)

PCOSim(K[i], c[i]|H(.), DCCAKEM1
sk (.)) (PCO Simulator for forger F)

i← i + 1
h[i]← H(K[i], c[i])
km[i]← h[i][1, ..., lm]; ke[i]← h[lm + 1, ..., lm + le]

Find j ∈ {0, 1} such that cs[i]
def
= ESYM

ke[i] (mj) 6= cs

σs[i]← MACGkm[i](cs[i])
If i ≥ i∗ and c[i] = c[i∗] then

K′[i]← DKEM
sk (c[i])

ke′[i]← H(K′[i], c[i])[lm + 1, . . . , lm + le]
(Note: we define km′[i] = km∗)
d[i]← MACVkm∗(cs[i], σs[i])
If d[i] = Acc then Terminate and Return forgery (cs[i], σs[i])

Else

d[i]← DCCAKEM1
sk (c[i], cs[i], σs[i])

If d[i] 6= Rej then Return 1
Else Return 0

We denote by fsim the experiment of running the forger F in the ‘MACUF-
Exp’ MAC forging experiment defined in the Appendix and we let SuccF denote
the event that the experiment returns 1, that is F succeeds in its MAC forgery
realtive to the MAC key km∗ . First observe that in sim the PCO simulator
PCOSim never lies on queries (K[j], c[j]) for which PCOsk(K[j], c[j]) = 1. This
is because PCOsk(K[j], c[j]) = 1 means K[j] = DKEM

sk (c[j]) and hence the ci-
phertext (c[j], cs[j], σs[j]) computed by PCOSim is valid and not rejected by
DCCAKEM1

sk so PCOSim(K[j], c[j]) = 1. Hence Lie means PCOsk(K[j], c[j]) = 0
but PCOSim(K[j], c[j]) = 1 for some j, or equivalently K[j] 6= DKEM

sk (c[j]) and

MACVkm′[j](cs[j], σs[j]) = Acc, where km′[j] = H(DKEM
sk (c[j]), c[j])[1, . . . , lm] is

the MAC key used by DCCAKEM1
sk to check the ciphertext (c[j], cs[j], σs[j]).

We now split Lie into a union of disjoint events Liej,`, where Liej,` is then
event that a lie first occurred at PC query j and ` ≤ j is the smallest index such
that c[`] = c[j]. Note that Liej,` means that (L.1) (K[k], c[k]) 6= (DKEM

sk (c[j]), c[j])
for all k ≤ j (otherwise APC already knows the decryption of c[j] before query
j) and hence (DKEM

sk (c[j]), c[j]) = (DKEM
sk (c[`]), c[`]) was first queried to H(.)

by DCCAKEM1
sk when decrypting (c[`], cs[`], σs[`]) and (L.2) km′[j] = km′[`] and

MACVkm′[j](cs[j], σs[j]) = Acc. Therefore if we set i∗ = ` in experiment fsim,
then due to (L.1), for all outcomes in Liej,` fsim will run with random MAC key
km′[j] = km′[`] = km∗ in the same way as sim runs with km′[j] = km′[`] =
H(DKEM

sk (c[`]), c[`])[1, . . . , lm]. This means, for all `, j that

Pr[Liej,`|i∗ = `]fsim = Pr[Liej,`]sim, (4)

and from (L.2) the event Liej,` ∧ i∗ = ` means that km′[j] = km′[`] = km′[i∗] =
km∗ so MACVkm∗(cs[j], σs[j]) = Acc and SuccF occurs with no MAC generation
queries and up to qPC verify queries. So the following also holds (over all j ∈
{1, . . . , qPC} and ` ∈ {0, . . . , j}):

Pr[SuccF]fsim ≥
∑
j,`

Pr[Liej,` ∧ i∗ = `]fsim. (5)

Now, Pr[Liej,`∧i∗ = `]fsim = Pr[Liej,`|i∗ = `]fsim Pr[i∗ = `]fsim so Pr[Liej,`∧
i∗ = `]fsim = 1

qP C+1 Pr[Liej,`]sim for each j, ` using (4) and that i∗ is uni-
formly chosen in {0, . . . , qPC}. Plugging this in (5) we get Pr[SuccF]fsim ≥

1
qP C+1 Pr[Lie]sim using Pr[Lie]fsim =

∑
j,` Pr[Liej,`]fsim. But on the other hand

Pr[SuccF]fsim ≤ InSecMAC−UF
MAC (tCC , 0, qPC). Combining these upper and lower

bounds on Pr[SuccF]fsim we immediately obtain the desired result (3), which
completes the proof. ut

As a special case of this result, when KEM is the Diffie-Hellman one in a
group (see previous section), we conclude that the ‘Strong Diffie-Hellman’ (SDH)
assumption is necessary (and sufficient, as shown in [4]) for the CCA security of
the DHIES scheme.

4.2 Attack on CCAKEM2 if the underlying KEM is not OW-PCA

Using a chosen-ciphertext attack analogous to the one used to prove Theorem 1,
we obtain the following result, whose proof is omitted due to lack of space.

Theorem 2. Let APC be an attack algorithm with resource parameters (tPC , qPC)
for breaking OW-PCA of KEM. Then we can construct an attack algorithm
ACC = (ACC

find,A
CC
guess) with resource parameters (tCC , qD, qH1 , qH2) such that

SuccCCA
ACC,CCAKEM2(k) ≥ SuccOW−PCA

A,KEM (k)− 2(qPC + 1)
2lσ

and tCC = tPC + (qPC + 1)O(1), qD = qPC , qH1 = 2qPC + 1, qH2 = 2qPC + 1.

As a special case, when the KEM is the Diffie-Hellman one, the SDH assump-
tion is necessary for the CCA security of REACT. As pointed out earlier, when
the KEM is built from a deterministic encryption scheme, the OW-PCA assump-
tion on the KEM is equivalent to the one-wayness assumption on the KEM so this
result does not imply the necessity of stronger assumptions than one-wayness in
this case (e.g. in the case of RSA).

5 Relations Between ODH and SDH Assumptions

In this section, we clarify the relation between Strong Diffie-Hellman (SDH)
and Oracle Diffie-Hellman (ODH) assumptions under the random oracle model.
Formal definitions for SDH and ODH are given in the appendix (definitions 6
and 7). Note that the reduction from SDH to ODH, namely, breaking SDH using
ODH attacker was already shown in [4].

However, the attack on CCAKEM1 presented in the previous section implies
that there exists an opposite way of reduction, i.e., a reduction from ODH to
SDH: Since OW-PCA for the Diffie-Hellman KEM is exactly the same as the
SDH assumption, the theorem 2 implies that there exists a reduction from CCA
security for CCAKEM1 to SDH. But, in [4], the reduction from ODH to CCA
security was shown in the standard model (and hence in the random oracle
model) and therefore there exists a reduction from ODH to SDH. Consequently,
ODH and SDH are equivalent in the random oracle model.

Apart from the trivial deduction described above we provide an explicit and
tight reduction from ODH to SDH in the random oracle model.

Theorem 3. Let ASDH be an attack algorithm with resource parameters
(tSDH , qOx

) for breaking SDH. Then we can construct an attack algorithm AODH

for ODH with resource parameter (tODH , qHx
) such that

SuccODH
AODH (k) ≥ SuccSDH

ASDH (k)− qOx
+ 1

2lh

and tODH = tSDH + (qOx + 1)O(1) and qHx = qOx . Here, lh denotes the length
of the outputs of a random oracle H.

Proof. Let H : {0, 1}∗ → {0, 1}lh be a random oracle. Let G be a multiplicatively-
written group as defined in the definitions 6 and 7. We construct an attack al-
gorithm AODH for breaking ODH using an attack algorithm ASDH for SDH. Note
that ASDH can simulate the restricted DDH oracle Ox (., .) using its oracles H(.)
and Hx (.). A complete specification for AODH is as follows.

Attacker AODH Against ODH Assumption

AODH(gr, gx, γ|H(.),Hx(.))

Run ASDH(gr, gx|Ox-Sim(., .))

K ← ASDH(gr, gx|Ox-Sim(., .))
If γ = H(K) Return 1 Else Return 0

Ox-Sim(c[i], w[i]|H(.),Hx(.))
If c[i] 6= gr and H(w[i]) = Hx(c[i])

Return 1 Else Return 0
If c[i] = gr and H(gxw[i]) = Hx(gc[i])

Return 1 Else Return 0

Now we show that AODH satisfies the claim of the theorem. We use the notation
Pr[Event]exp to denote the probability of event Event in experiment exp. Let real
denote the ‘SDHExp’ experiment in definition 6 running with attacker ASDH

whose queries are answered by the real oracle Ox(., .). We define in this experi-
ment the event SuccReal that the experiment returns 1. Hence Pr[SuccReal]real

def=
SuccSDH

ASDH (k). Let sim denote the ‘ODHRealExp’ and ‘ODHRandExp’ experi-
ments in definition 7 running with attacker AODH which runs ASDH and answers
its queries with the simulatorOx-Sim. Then by definition we have SuccODH

AODH (k) =
Pr[ODHExpReal(k,AODH) = 1]sim − Pr[ODHExpRrand(k,AODH) = 1]sim.

First, we lower bound Pr[ODHExpReal(k,AODH) = 1]sim. Now we define
the following events.

– Lie: Ox-Sim(c[j], w[j]) 6= Ox(c[j], w[j]) for some j ∈ [1, ..., qOx
].

Note that if Lie does not happen in experiment sim ASDH cannot distinguish
its environment in real from sim. Hence we get Pr[ODHExpReal(k,AODH) =
1]sim ≥ Pr[SuccReal|¬Lie]sim = Pr[SuccReal|¬Lie]real ≥ Pr[SuccReal∧¬Lie]real =
Pr[SuccReal]real − Pr[Lie]real = Pr[SuccReal]real − Pr[Lie].

Now we upper bound Pr[Lie]. Assume that Lie is true: We have the following
two cases (events).

– Case (1): Ox-Sim(c[j], w[j]) = 1 and Ox(c[j], w[j]) = 0
– Case (2): Ox-Sim(c[j], w[j]) = 0 and Ox(c[j], w[j]) = 1

From case (1), we have H(w[j]) = Hx(c[j])(= H(c[j]x)) but w[j] 6= c[j]x

when c[j] 6= gr by the definition of Ox-Sim(., .). When c[j] = gr, we have
H(gxw[j]) = Hx(gc[j])(= H(gxc[j]x)). In both cases (whether c[j] = gr or
not), we have Pr[Case (1)] = 1

2lh
since H(.) is assumed to be a random oracle.

However Pr[Case (2)] = 0 as long as H is a well-defined function. Therefore
we get Pr[Lie] = qOx

2lh
. Then we obtain Pr[ODHExpReal(k,AODH) = 1]sim ≥

Pr[SuccReal]real − Pr[Lie] = SuccSDH
ASDH (k)− qOx

2lh
.

Now we upper bound Pr[ODHExpRand(k,AODH) = 1] where γ is given to
AODH as a random string of the length lh. Since γ is uniform and independent
of gr and gx, we have Pr[ODHExpRand(k,AODH) = 1] ≤ 1

2lh
.

Then subtracting the bounds on Pr[ODHExpReal(k,AODH) = 1]sim and
Pr[ODHExpRand(k,AODH) = 1], we obtain SuccODH

AODH (k) ≥ SuccSDH
ASDH (k) −

qOx

2lh
− 1

2lh
.

As a result we obtain the following:

SuccODH
AODH (k) ≥ SuccSDH

ASDH (k)− qOx
+ 1

2lh
. (6)

The running time and query counts can be readily checked. ut

We remark that the reduction from ODH to SDH still holds even if the random
oracle H is replaced by a collision-resistant hash function, i.e., in the standard
model. However, we were not able to find a reduction from SDH to ODH in the
standard model, which implies that ODH (in the standard model) on which the
CCA security of DHIES is based is a very strong assumption.

6 Conclusion

In this paper we clarified the necessary assumptions for the security of recently
proposed schemes DHIES and REACT, and indeed for a wider class of natural
asymmetric encryption schemes which include the latter two as special cases. We
also clarified the relationship between ODH and SDH, two new Diffie-Hellman
related assumptions. The results in this paper can be served as criteria for dis-
tinguishing the asymmetric encryption schemes whose CCA security is based on
stronger assumptions such as GDH from the schemes based on weaker ones such
as Computational Diffie-Hellman and Decisional Diffie-Hellman.

A Appendix

In this appendix we review the definitions of standard primitives and their security
notions. These definitions are referred to in the body of the paper.

A.1 Asymmetric Encryption Schemes

Here we review the standard indistnguishability-based notion ‘CCA’ for the chosen
ciphertext attack security for asymmetric encryption schemes, sometimes known as
IND-CCA2 (see, eg. [1]).

An asymmetric encryption scheme consists of 3 algorithms: (1) A key-pair genera-
tion algorithm GK(k) which generates a secret/public key pair (sk, pk); (2) A proba-
bilistic encryption algorithm EASYM

pk (m), which takes a public key pk and a message m

and returns a ciphertext c; (3) A decryption algorithm DASYM
sk (c), which takes a secret

key and a ciphertext c and returns a message m.

The CCA security notion is then quantitatively defined as follows.

Definition 4. (CCA) Let ASYM = (GK, EASYM, DASYM) be an asymmetric encryp-
tion scheme. Let A = (A1, A2) be an attack algorithm, consisting of two ‘sub-attack’
algorithms Afind and Aguess. Define the experiment

Experiment CCAExp(k, ASYM, A)
(sk, pk)← GK(k)

(m0, m1, s)← Afind(pk|DASYM
sk (.))

b
R← {0, 1}; c← EASYM

pk (mb)

b′ ← Aguess(pk, s, c|DASYM
sk (.))

If b′ = b and Aguess did not query c to DASYM
sk (.) then

Return 1 else Return 0

We quantify A’s success in breaking the CCA security notion of scheme ASYM by

the advantage SuccCCA
A,ASYM(k)

def
= 2(Pr[CCAExp(k, ASYM, A) = 1]− 1

2
). We define A’s

resource parameters as RP = (t, qD, qRO1 , ..., qROn) if A has running time/program size
at most t and makes at most qD queries to the decryption oracle, and, if the scheme
makes use of n random oracles, at most qROi queries to the i’th random oracle ROi,
for i ∈ {1, ..., n}.

A.2 Message Authentication Code (MAC) Schemes

We review the definition of a MAC and its unforgeability security notion ‘MAC−UF’.
A MAC scheme consists of 2 algorithms: (1) A MAC generation algorithm

MACGsk(m), which takes a secret key sk ∈ SPK and a message m and returns a
MAC tag σ; (2) A MAC verification algorithm MACVsk(m, σ), which takes a secret
key sk ∈ SPK , a message m, and a MAC tag σ and returns a verification decision
d ∈ {Acc, Rej}.

The MAC−UF unforgeability security notion for a MAC scheme is then quanti-
tatively defined as follows.

Definition 5. (MAC-UF) Let MAC = (MACG, MACV) be a MAC scheme with key
space SPK . Let A be an attack algorithm. Define the experiment

Experiment MACUFExp(MAC, A)

sk
R← SPK

(m∗, σ∗)← A(|MACGsk(.), MACVsk(.))
If MACVsk(m

∗, σ∗) = Acc and A did not query
m∗ to MACGsk(.) then Return 1 Else Return 0

We quantify A’s success in breaking the MAC−UF security notion of scheme MAC

by the probability SuccMAC−UF
A,MAC

def
= Pr[MACUFExp(MAC, A) = 1]. We quantify the

insecurity of scheme MAC in the sense of MAC−UF against arbitrary attackers with
resource parameters RP = (t, qMG, qMV) by the probability

InSecMAC−UF
MAC (t, qMG, qMV)

def
= maxA∈ASRP SuccMAC−UF

A,MAC . The attacker set ASRP con-
tains all attackers with resource parameters RP , meaning running time+program size
at most t, and at most qMG queries to the MAC generation oracle and qMV queries to
the MAC verification oracle.

A.3 Symmetric Encryption Schemes

An symmetric encryption scheme consists of 2 algorithms: (1) A probabilistic encryp-
tion algorithm ESYM

sk (m), which takes a secret key sk ∈ SPK and a message m and
returns a ciphertext c; (2) A decryption algorithm DSYM

sk (c), which takes a secret key
sk ∈ SPK and a ciphertext c and returns a message m.

A.4 Oracle Diffie-Hellman and Strong Diffie-Hellman Assumptions

We review the definition of the SDH (Strong Diffie-Hellman) and ODH (Oracle Diffie-
Hellman), which are computational and decisional assumptions, respectively, defined
in [4].

Definition 6. (Strong Diffie-Hellman: SDH) Let G be a multiplicatively-written
group. Let GenGParm(k) be an algorithm that outputs common parameters cp = (dG, g, q)
consisting of description dG of a finite cyclic group G, a generator g ∈ G and the order
q of G. Let ASDH be an attack algorithm. Define the experiment

Experiment SDHExp(k, ASDH)
cp← GenGParm(k)

r, x
R← {1, . . . , q}; K ← grx

K′ ← ASDH(gr, gx|Ox(., .))
If K′ = K then Return 1 Else Return 0

Here, Ox (., .) is a restricted DDH oracle. On input (c, w) it outputs 1 if w = cx,
otherwise, outputs 0. We quantify ASDH’s success in computing the Diffie-Hellman key

grx by the probability SuccSDH
ASDH (k)

def
= Pr[SDHExp(k, ASDH) = 1]. We define A’s re-

source parameters as RP = (t, qOx) if A has running time/program size at most t and
makes at most qOx queries to the restricted DDH oracle.

Definition 7. (Oracle Diffie-Hellman: ODH) Let G be a multiplicatively-written
group. Let GenGParm(k) be an algorithm that outputs common parameters cp = (dG, g, q)
consisting of description dG of a finite cyclic group G, a generator g ∈ G and the order
q of G. A hash function H : {0, 1}∗ → {0, 1}lh , modelled as a random oracle. Let AODH

be an attack algorithm and b′ ∈ {0, 1}. Define two experiments

Experiment ODHExpReal(k, AODH)
cp← GenGParm(k)

r, x
R← {1, . . . , q}

b′ ← AODH(gr, gx, H(grx)|H(.),Hx(.))
Return b′

Experiment ODHExpRand(k, AODH)
cp← GenGParm(k)

r, x
R← {1, . . . , q}; h← {0, 1}lh

b′ ← AODH(gr, gx, h|H(.),Hx(.))
Return b′

Here, Hx (c)
def
=H(cx) and ASDH is not allowed to query gr to Hx (.). We quantify

AODH’s success in distinguishing the hash of Diffie-Hellman key grx, i.e, H(grx) from

the random string h by the probability SuccODH
AODH (k)

def
= Pr[ODHExpReal(k, AODH) =

1] − Pr[ODHExpRand(k, AODH) = 1]. We define A’s resource parameters as RP =
(t, qH , qHx) if A has running time/program size at most t and makes at most qH and
qHx queries to the oracles H(.) and Hx (.), respectively.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P.Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. In Advances in Cryptology - Proceed-
ings of CRYPTO ’98, volume 1462 of LNCS, pages 26–45, Berlin, 1998. Springer-
Verlag.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In Proceedings of First ACM Conference on Computer and
Communications Security, pages 62–73. ACM, 1993.

3. M. Bellare and P. Rogaway. Minimizing the use of random oracles in authenticated
encryption schemes. In Information and Communications Security, volume 1334 of
LNCS, pages 1–16, Berlin, 1997. Springer-Verlag.

4. M. Bellare M. Abdalla and P. Rogaway. The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In Topics in Cryptology - CT-RSA 2001, volume 2020
of LNCS, pages 143–158, Berlin, 2001. Springer-Verlag. See full paper available at
www-cse.ucsd.edu/users/mihir.

5. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In Topics in Cryptology - CT-RSA 2001, volume 2020 of
LNCS, pages 159–174, Berlin, 2001. Springer-Verlag.

6. Y. Zheng and J. Seberry. Immunizing public key cryptosystems against chosen
ciphertext attacks. In the Special Issue on Secure Communications, IEEE Journal
on Selected Areas in Communications, Vol. 11, No. 5, 1993, pages 715-724.

7. V. Shoup. A Proposal for an ISO Standard for Public Key Encryption (Cersion
1.1). ISO/IEC JTC 1/SC 27, 2001.

