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Abstract. We establish, for the first time, an explicit and simple lower
bound on the nonlinearity Nf of a Boolean function f of n variables
satisfying the avalanche criterion of degree p, namely, Nf ≥ 2n−1 −
2n−1− 1

2 p. We also show that the lower bound is tight, and identify all
the functions whose nonlinearity attains the lower bound. As a further
contribution of this paper, we prove that except for very few cases, the
sum of the degree of avalanche and the order of correlation immunity of a
Boolean function of n variables is at most n−2. These new results further
highlight the significance of the fact that while avalanche property is in
harmony with nonlinearity, it goes against correlation immunity.
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1 Introduction

Confusion and diffusion, introduced by Shannon [16], are two important princi-
ples used in the design of secret key cryptographic systems. These principles can
be enforced by using some of the nonlinear properties of Boolean functions in-
volved in a cryptographic transformation. More specifically, a high nonlinearity
generally has a positive impact on confusion, whereas a high degree of avalanche
enhances the effect of diffusion. Nevertheless, it is also important to note that
some nonlinear properties contradict others. These motivate researchers to in-
vestigate into relationships among various nonlinear properties of Boolean func-
tions.

One can consider three different relationships among nonlinearity, avalanche
and correlation immunity, namely, nonlinearity and avalanche, nonlinearity and
correlation immunity, and avalanche and correlation immunity. Zhang and Zheng
[20] studied how avalanche property influences nonlinearity by establishing a
number of upper and lower bounds on nonlinearity. Carlet [3] showed that one



may determine a number of different nonlinear properties of a Boolean func-
tion, if the function satisfies the avalanche criterion of a high degree. Zheng and
Zhang [26] proved that Boolean functions satisfying the avalanche criterion in
a hyper-space coincide with certain bent functions. They also established close
relationships among plateaued functions with a maximum order, bent functions
and the first order correlation immune functions [24]. Seberry, Zhang and Zheng
were the first to research into relationships between nonlinearity and correlation
immunity [14]. Very recently Zheng and Zhang have succeeded in deriving a new
tight upper bound on the nonlinearity of high order correlation immune func-
tions [25]. In the same paper they have also shown that correlation immune func-
tions whose nonlinearity meets the tight upper bound coincide with plateaued
functions introduced in [24, 23]. All these results help further understand how
nonlinearity and correlation immunity are at odds with each other.

The aim of this work is to widen our understanding of other connections
among nonlinearity properties of Boolean functions, with a specific focus on
relationships between nonlinearity and avalanche, and between avalanche and
correlation immunity. We prove that if a function f of n variables satisfies the
avalanche criterion of degree p, then its nonlinearity Nf must satisfy the condi-
tion of Nf ≥ 2n−1−2n−1− 1

2 p. We also identify the cases when the equality holds,
and characterize those functions that have the minimum nonlinearity. This result
tells us that a high degree of avalanche guarantees a high nonlinearity.

In the second part of this paper, we look into the question of how avalanche
and correlation immunity hold back each other. We prove that with very few
exceptions, the sum of the degree of avalanche property and the order of corre-
lation immunity of a Boolean function with n variables is less than or equal to
n − 2. This result clearly tells us that we cannot expect a function to achieve
both a high degree of avalanche and a high order of correlation immunity.

2 Boolean Functions

We consider functions from Vn to GF (2) (or simply functions on Vn), where Vn

is the vector space of n tuples of elements from GF (2). The truth table of a
function f on Vn is a (0, 1)-sequence defined by (f(α0), f(α1), . . . , f(α2n−1)),
and the sequence of f is a (1,−1)-sequence defined by ((−1)f(α0), (−1)f(α1),
. . ., (−1)f(α2n−1)), where α0 = (0, . . . , 0, 0), α1 = (0, . . . , 0, 1), . . ., α2n−1 =
(1, . . . , 1, 1). A function is said to be balanced if its truth table contains 2n−1

zeros and an equal number of ones. Otherwise it called unbalanced.
The matrix of f is a (1,−1)-matrix of order 2n defined by M = ((−1)f(αi⊕αj))

where ⊕ denotes the addition in Vn.
Given two sequences ã = (a1, · · · , am) and b̃ = (b1, · · · , bm), their component-

wise product is defined by ã ∗ b̃ = (a1b1, · · · , ambm). In particular, if m = 2n and
ã, b̃ are the sequences of functions f and g on Vn respectively, then ã ∗ b̃ is the
sequence of f ⊕ g where ⊕ denotes the addition in GF (2).

Let ã = (a1, · · · , am) and b̃ = (b1, · · · , bm) be two sequences or vectors,
the scalar product of ã and b̃, denoted by 〈ã, b̃〉, is defined as the sum of the



component-wise multiplications. In particular, when ã and b̃ are from Vm, 〈ã, b̃〉 =
a1b1 ⊕ · · · ⊕ ambm, where the addition and multiplication are over GF (2), and
when ã and b̃ are (1,−1)-sequences, 〈ã, b̃〉 =

∑m
i=1 aibi, where the addition and

multiplication are over the reals.
An affine function f on Vn is a function that takes the form of f(x1, . . . , xn) =

a1x1 ⊕ · · · ⊕ anxn ⊕ c, where aj , c ∈ GF (2), j = 1, 2, . . . , n. Furthermore f is
called a linear function if c = 0.

A (1,−1)-matrix N of order n is called a Hadamard matrix if NNT = nIn,
where NT is the transpose of N and In is the identity matrix of order n. A
Sylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by the
following recursive relation

H0 = 1, Hn =
[

Hn−1 Hn−1

Hn−1 −Hn−1

]
, n = 1, 2, . . . .

Let `i, 0 ≤ i ≤ 2n− 1, be the i row of Hn. It is known that `i is the sequence
of a linear function ϕi(x) on Vn, defined by the scalar product ϕi(x) = 〈αi, x〉,
where αi is the binary representation of an integer i.

The Hamming weight of a (0, 1)-sequence ξ, denoted by HW (ξ), is the num-
ber of ones in the sequence. Given two functions f and g on Vn, the Hamming
distance d(f, g) between them is defined as the Hamming weight of the truth
table of f(x)⊕ g(x), where x = (x1, . . . , xn).

3 Cryptographic Criteria of Boolean Functions

The following criteria for cryptographic Boolean functions are often considered:
(1) balance, (2) nonlinearity, (3) avalanche, (4) correlation immunity, (5)
algebraic degree, (6) absence of non-zero linear structures. In this paper we
focus on avalanche, nonlinearity and correlation immunity.

Parseval’s equation (Page 416 [8]) is a useful tool in this research: Let f be a
function on Vn and ξ denote the sequence of f . Then

∑2n−1
i=0 〈ξ, `i〉2 = 22n where

`i is the ith row of Hn, i = 0, 1, . . . , 2n − 1.
The nonlinearity of a function f on Vn, denoted by Nf , is the minimal Ham-

ming distance between f and all affine functions on Vn, i.e.,

Nf = min
i=1,2,...,2n+1

d(f, ψi)

where ψ1, ψ2, . . ., ψ2n+1 are all the affine functions on Vn. High nonlinearity can
be used to resist a linear attack [9]. The following characterization of nonlinearity
will be useful (for a proof see for instance [10]).

Lemma 1. The nonlinearity of f on Vn can be expressed by

Nf = 2n−1 − 1
2

max{|〈ξ, `i〉|, 0 ≤ i ≤ 2n − 1}

where ξ is the sequence of f and `0, . . ., `2n−1 are the rows of Hn, namely, the
sequences of linear functions on Vn.



From Lemma 1 and Parseval’s equation, it is easy to verify that Nf ≤ 2n−1−
2

1
2 n−1 for any function f on Vn. A function f on Vn is called a bent function if
〈ξ, `i〉2 = 2n for every i, 0 ≤ i ≤ 2n − 1 [13]. Hence f is a bent function on Vn

if and only Nf = 2n−1 − 2
1
2 n−1. It is known that a bent function on Vn exists

only when n is even.
Let f be a function on Vn. We say that f satisfies the avalanche criterion

with respect to α if f(x)⊕f(x⊕α) is a balanced function, where x = (x1, . . . , xn)
and α is a vector in Vn. Furthermore f is said to satisfy the avalanche criterion
of degree k if it satisfies the avalanche criterion with respect to every non-zero
vector α whose Hamming weight is not larger than k. 1 From [13], a function
f on Vn is bent if and only if f satisfies the avalanche criterion of degree n.
Note that the strict avalanche criterion (SAC) [18] is the same as the avalanche
criterion of degree one.

Let f be a function on Vn. For a vector α ∈ Vn, denote by ξ(α) the sequence
of f(x⊕ α). Thus ξ(0) is the sequence of f itself and ξ(0) ∗ ξ(α) is the sequence
of f(x)⊕f(x⊕α). Set ∆f (α) = 〈ξ(0), ξ(α)〉, the scalar product of ξ(0) and ξ(α).
∆(α) is called the auto-correlation of f with a shift α. We omit the subscript of
∆f (α) if no confusion occurs. Obviously, ∆(α) = 0 if and only if f(x)⊕f(x⊕α)
is balanced, i.e., f satisfies the avalanche criterion with respect to α. In the case
that f does not satisfy the avalanche criterion with respect to a vector α, it
is desirable that f(x) ⊕ f(x ⊕ α) is almost balanced. Namely we require that
|∆f (α)| take a small value.

Let f be a function on Vn. α ∈ Vn is called a linear structure of f if |∆(α)| =
2n (i.e., f(x)⊕ f(x⊕α) is a constant). For any function f , we have ∆(α0) = 2n,
where α0 is the zero vector on Vn. It is easy to verify that the set of all linear
structures of a function f form a linear subspace of Vn, whose dimension is called
the linearity of f . A non-zero linear structure is cryptographically undesirable.
It is also well-known that if f has non-zero linear structures, then there exists a
nonsingular n× n matrix B over GF (2) such that f(xB) = g(y)⊕ ψ(z), where
x = (y, z), y ∈ Vp, z ∈ Vq, g is a function on Vp that has no non-zero linear
structures, and ψ is a linear function on Vq.

The following lemma is the re-statement of a relation proved in Section 2
of [4].

Lemma 2. For every function f on Vn, we have

(∆(α0),∆(α1), . . . ,∆(α2n−1))Hn = (〈ξ, `0〉2, 〈ξ, `1〉2, . . . , 〈ξ, `2n−1〉2).
where ξ denotes the sequence of f , `i is the ith row of Hn, and αi is the vector
in Vn that corresponds to the binary representation of i, i = 0, 1, . . . , 2n − 1.
1 The avalanche criterion was called the propagation criterion in [12], as well as in all

our earlier papers dealing with the subject. Historically, Feistel was apparently the
first person who coined the term of “avalanche” and realized its importance in the
design of a block cipher [6]. According to Coppersmith [5], a member of the team
who designed DES, avalanche properties were employed in selecting the S-boxes used
in the cipher, which contributed to the strength of the cipher against various attacks
including differential [1] and linear [9] attacks.



The concept of correlation immune functions was introduced by Siegenthaler
[17]. Xiao and Massey gave an equivalent definition [2, 7]: A function f on Vn is
called a kth-order correlation immune function if

∑
x∈Vn

f(x)(−1)〈β,x〉 = 0 for
all β ∈ Vn with 1 ≤ HW (β) ≤ k, where in the the sum, f(x) and 〈β, x〉 are
regarded as real-valued functions. From Section 4.2 of [2], a correlation immune
function can also be equivalently restated as follows: Let f be a function on
Vn and let ξ be its sequence. Then f is called a kth-order correlation immune
function if 〈ξ, `〉 = 0 for every `, where ` is the sequence of a linear function
ϕ(x) = 〈α, x〉 on Vn constrained by 1 ≤ HW (α) ≤ k. It should be noted that
〈ξ, `〉 = 0, if and only if f(x)⊕ϕ(x) is balanced. Hence f is a kth-order correlation
immune function if and only if f(x)⊕ ϕ(x) is balanced for each linear function
ϕ(x) = 〈α, x〉 on Vn where 1 ≤ HW (α) ≤ k. Correlation immune functions
are used in the design of running-key generators in stream ciphers to resist a
correlation attack. Relevant discussions on correlation immune functions, and
more generally on resilient functions, can be found in [22].

4 A Tight Lower Bound on Nonlinearity of Boolean
Functions Satisfying Avalanche Criterion of Degree p

Let (a0, a1, . . . , a2n−1) and (b0, b1, . . . , b2n−1) be two real-valued sequences of
length 2n, satisfying

(a0, a1, . . . , a2n−1)Hn = (b0, b1, . . . , b2n−1) (1)

Let p be an integer with 1 ≤ p ≤ n− 1. Rewrite (1) as

(a0, a1, . . . , a2n−1)(Hn−p ×Hp) = (b0, b1, . . . , b2n−1) (2)

where × denotes the Kronecker product [19]. Let ej denote the ith row of Hp,
j = 0, 1, . . . , 2p − 1. For any fixed j with 0 ≤ j ≤ 2p − 1, comparing the jth,
(j + 2p)th, . . ., (j + (2n−p − 1)2p)th terms in both sides of (2), we have

(a0, a1, . . . , a2n−1)(Hn−p × eT
j ) = (bj , bj+2p , bj+2·2p , . . . , bj+(2n−p−1)2p)

Write (a0, a1, . . . , a2n−1) = (χ0, χ1, . . . , χ2n−p−1) where each χi is of length
2p. Then we have
(〈χ0, ej〉, 〈χ1, ej〉, . . . , 〈χ2n−p−1, ej〉)Hn−p = (bj , bj+2p , bj+2·2p , . . . , bj+(2n−p−1)2p)
or equivalently,

2n−p(〈χ0, ej〉, 〈χ1, ej〉, . . . , 〈χ2n−p−1, ej〉)
= (bj , bj+2p , bj+2·2p , . . . , bj+(2n−p−1)2p)Hn−p (3)

Let `i denote the i row of Hn−p, where j = 0, 1, . . . , 2n−p − 1. In addi-
tion, write (bj , bj+2p , bj+2·2p , . . . , bj+(2n−p−1)2p) = λj , where j = 0, 1, . . . , 2p − 1.
Comparing the ith terms in both sides of (3), we have 2n−p〈χi, ej〉 = 〈λj , `i〉
where χi = (ai·2p , a1+i·2p , . . . , a2p−1+i·2p). These discussions lead to the follow-
ing lemma.



Lemma 3. Let (a0, a1, . . . , a2n−1) and (b0, b1, . . . , b2n−1) be two real-valued se-
quences of length 2n, satisfying

(a0, a1, . . . , a2n−1)Hn = (b0, b1, . . . , b2n−1)

Let p be an integer with 1 ≤ p ≤ n − 1. For any fixed i with 0 ≤ i ≤ 2n−p − 1
and any fixed j with 0 ≤ j ≤ 2p− 1, let χi = (ai·2p , a1+i·2p , . . . , a2p−1+i·2p) and
λj = (bj , bj+2p , bj+2·2p , . . ., bj+(2n−p−1)2p). Then we have

2n−p〈χi, ej〉 = 〈λj , `i〉, i = 0, 1, . . . , 2n−p − 1, j = 0, 1, . . . , 2p − 1 (4)

where `i denotes the ith row of Hn−p and ej denotes the jth row of Hp.

Lemma 3 can be viewed as a refined version of the Hadamard transformation
(1), and it will be a useful mathematical tool in proving the following two lemmas.
These two lemmas will then play a significant role in proving the main results
of this paper.

Lemma 4. Let f be a non-bent function on Vn, satisfying the avalanche crite-
rion of degree p. Denote the sequence of f by ξ. If there exists a row L∗ of Hn

such that |〈ξ, L∗〉| = 2n− 1
2 p, then α2t+p+2p−1 is a non-zero linear structure of f ,

where α2t+p+2p−1 is the vector in Vn corresponding to the integer 2t+p + 2p − 1,
t = 0, 1, . . . , n− p− 1.

Proof. First we note that p > 0. Since f is not bent, p ≤ n − 1. Let us first
rewrite the equality in Lemma 2 as follows

(∆(α0), ∆(α1), · · · ,∆(α2n−1))Hn = (〈ξ, L0〉2, 〈ξ, L1〉2, . . . , 〈ξ, L2n−1〉2) (5)

where αi is the vector in Vn corresponding to the integer i, and Li is the ith
row of Hn, i = 0, 1, . . . , 2n − 1. Set i = 0 in (4). Then we have 2n−p〈χ0, ej〉 =
〈λj , `0〉. Since f satisfies the avalanche criterion of degree p and HW (αj) ≤ p,
j = 1, . . . 2p − 1, we have

∆(α0) = 2n, ∆(α1) = · · · = ∆(α2p−1) = 0 (6)

Applying 2n−p〈χ0, ej〉 = 〈λj , `0〉 to (5), we obtain

2n−p∆(α0) =
2n−p−1∑

u=0

〈ξ, Lj+u·2p〉2

or equivalently

2n−p−1∑
u=0

〈ξ, Lj+u·2p〉2 = 22n−p (7)

Since L∗ is a row of Hn, it can be expressed as L∗ = Lj0+u0·2p , where 0 ≤ j0 ≤
2p−1 and 0 ≤ u0 ≤ 2n−p−1. Set j = j0 in (7), we have

∑2n−p−1
u=0 〈ξ, Lj0+u·2p〉2 =

22n−p. From

〈ξ, Lj0+u0·2p〉2 = 〈ξ, L∗〉2 = 22n−p (8)



we have

〈ξ, Lj0+u·2p〉 = 0, for all u, 0 ≤ u ≤ 2n−p − 1, u 6= u0 (9)

Set i = 2t and j = j0 in Lemma 3, where 0 ≤ t ≤ n− p− 1, we have

2n−p〈χ2t , ej0〉 = 〈λj0 , `2t〉 (10)

where `2t is the 2tth row of Hn−p and ej0 is the j0th row of Hp, j = 0, 1, . . . , 2p−1.
As f satisfies the avalanche criterion of degree p and HW (αj) ≤ p, j = 2t+p, 1+
2t+p, . . . , 2p − 2 + 2t+p, we have

∆(α2t+p) = ∆(α1+2t+p) = · · · = ∆(α2p−2+2t+p) = 0 (11)

Applying (10) to (5), and considering (8), (9) and (11), we have

2n−p∆(α2p−1+2p+t) = ±22n−p

and thus
∆(α2p−1+2p+t) = ±2n

This proves that α2p−1+2p+t is indeed a non-zero linear structure of f , where
t = 0, 1, . . . , n− p− 1. ut
Lemma 5. Let f be a non-bent function on Vn, satisfying the avalanche crite-
rion of degree p. Denote the sequence of f by ξ. If there exists a row L∗ of Hn,
such that |〈ξ, L∗〉| = 2n− 1

2 p, then p = n− 1 and n is odd.

Proof. Since |〈ξ, L∗〉| = 2n− 1
2 p, p must be even. Due to p > 0, we must have

p ≥ 2. We now prove the lemma by contradiction. Assume that p 6= n− 1. Since
p < n, we have p ≤ n − 2. As |〈ξ, L∗〉| = 2n− 1

2 p, from Lemma 4, α2t+p+2p−1

is a non-zero linear structure of f , where t = 0, 1, . . . , n − p − 1. Notice that
n − p − 1 ≥ 1. Set t = 0, 1. Thus both α2p+2p−1 and α2p+1+2p−1 are non-zero
linear structures of f . Since all the linear structures of a function form a linear
subspace, α2p+2p−1 ⊕ α2p+1+2p−1 is also a linear structure of f . Hence

∆(α2p+2p−1 ⊕ α2p+1+2p−1) = ±2n (12)

On the other hand, since f satisfies the avalanche criterion of degree p and
HW (α2p+2p−1 ⊕ α2p+1+2p−1) = 2 ≤ p, we conclude that
∆(α2p+2p−1 ⊕ α2p+1+2p−1) = 0. This contradicts (12). Thus we have p > n− 2.
The only possible value for p is p = n− 1. Since p is even, n must be odd. ut
Theorem 1. Let f be a function on Vn, satisfying the avalanche criterion of
degree p. Then

(i) the nonlinearity Nf of f satisfies Nf ≥ 2n−1 − 2n−1− 1
2 p,

(ii) the equality in (i) holds if and only if one of the following two conditions
holds:



(a) p = n−1, n is odd and f(x) = g(x1⊕xn, . . . , xn−1⊕xn)⊕h(x1, . . . , xn),
where x = (x1, . . . , xn), g is a bent function on Vn−1, and h is an affine
function on Vn.

(b) p = n, f is bent and n is even.

Proof. Due to (7), i.e.,
∑2n−p−1

u=0 〈ξ, Lj+u·2p〉2 = 22n−p, we have 〈ξ, Lj+u·2p〉2 ≤
22n−p. Since u and j are arbitrary, by using Lemma 1, we have Nf ≥ 2n−1 −
2n−1− 1

2 p. Now assume that

Nf = 2n−1 − 2n−1− 1
2 p (13)

From Lemma 1, there exists a row L∗ of Hn such that |〈ξ, L∗〉| = 2n− 1
2 p. Two

cases need to be considered: f is non-bent and f is bent. When f is non-bent,
thanks to Lemma 5, we have p = n− 1 and n is odd. Considering Proposition 1
of [3], we conclude that f must takes the form mentioned in (a). On the other
hand, if f is bent, then p = n and n is even. Hence (b) holds.

Conversely, assume that f takes the form in (a). Applying a nonsingular
linear transformation on the variables, and considering Proposition 3 of [11], we
have Nf = 2Ng. Since g is bent, we have Nf = 2n−1−2

1
2 (n−1). Hence (13) holds,

where p = n− 1. On the other hand, it is obvious that (13) holds whenever (b)
does. ut

5 Relationships between Avalanche and Correlation
Immunity

To prove the main theorems, we introduce two more results. The following lemma
is part of Lemma 12 in [15].

Lemma 6. Let f1 be a function on Vs and f2 be a function on Vt. Then
f1(x1, . . . , xs) ⊕ f2(y1, . . . , yt) is a balanced function on Vs+t if f1 or f2 is bal-
anced.

Next we look at the structure of a function on Vn that satisfies the avalanche
criterion of degree n− 1.

Lemma 7. Let f be a function on Vn. Then

(i) f is non-bent and satisfies the avalanche criterion of degree n − 1, if and
only if n is odd and f(x) = g(x1⊕xn, . . . , xn−1⊕xn)⊕c1x1⊕· · ·⊕cnxn⊕c,
where x = (x1, . . . , xn), g is a bent function on Vn−1, and c1, . . . , cn and c
are all constants in GF (2),

(ii) f is balanced and satisfies the avalanche criterion of degree n−1, if and only
if n is odd and f(x) = g(x1 ⊕ xn, . . . , xn−1 ⊕ xn) ⊕ c1x1 ⊕ · · · ⊕ cnxn ⊕ c,
where g is a bent function on Vn−1, and c1, . . . , cn and c are all constant in
GF (2), satisfying

⊕n
j=1 cj = 1.



Proof. (i) holds due to Proposition 1 of [3].
Assume that f is balanced and satisfies the avalanche criterion of degree

n− 1. Since f is balanced, it is non-bent. From (i) of the lemma, f(x) = g(x1 ⊕
xn, . . . , xn−1 ⊕ xn)⊕ c1x1 ⊕ · · · ⊕ cnxn ⊕ c, where x = (x1, . . . , xn), g is a bent
function on Vn−1, and c1, . . . , cn and c are all constant in GF (2). Set uj = xj⊕xn,
j = 1, . . . , n − 1. We have f(u1, . . . , un−1, xn) = g(u1, . . . , un−1) ⊕ c1u1 ⊕ · · · ⊕
cn−1un−1⊕(c1⊕· · ·⊕cn)xn⊕c. Since g(u1, . . . , un−1)⊕c1x1⊕· · ·⊕cn−1un−1 is a
bent function on Vn−1, it is unbalanced. On the other hand, since f is balanced,
we conclude that

⊕n
j=1 cj 6= 0, namely,

⊕n
j=1 cj = 1. This proves the necessity

for (ii). Using the same reasoning as in the proof of (i), and taking into account
Lemma 6, we can prove the sufficiency for (ii). ut

5.1 The Case of Balanced Functions

Theorem 2. Let f be a balanced qth-order correlation immune function on Vn,
satisfying the avalanche criterion of degree p. Then we have p + q ≤ n− 2.

Proof. First we note that q > 0 and p > 0. Since f is balanced, it cannot be
bent. We prove the theorem in two steps. The first step deals with p+ q ≤ n−2,
and the second step with p + q ≤ n− 1.

We start with proving that p + q ≤ n − 1 by contradiction. Assume that
p + q ≥ n. Set i = 0 and j = 0 in (4), we have 2n−p〈χ0, e0〉 = 〈λ0, `0〉. Since f
satisfies the avalanche criterion of degree p and HW (αj) ≤ p, j = 1, . . . 2p−1, we
know that (6) holds. Note that HW (αu·2p) ≤ n−p ≤ q for all u, 0 ≤ u ≤ 2n−p−1.
Since f is a balanced qth-order correlation immune function, we have

〈ξ, L0〉 = 〈ξ, L2p〉 = 〈ξ, L2·2p〉 = · · · = 〈ξ, L(2n−p−1)·2p〉 = 0 (14)

Applying 2n−p〈χ0, e0〉 = 〈λ0, `0〉 to (5), and noticing (6) and (14), we would have
2n−p∆(α0) = 0, i.e., 22n−p = 0. This cannot be true. Hence we have proved that
p + q ≤ n− 1.

Next we complete the proof by showing that p + q ≤ n − 2. Assume for
contradiction that the theorem is not true, i.e., p + q ≥ n − 1. Since we have
already proved that p + q ≤ n− 1, by assumption we should have p + q = n− 1.
Note that HW (αu·2p) ≤ n− p− 1 = q for all u with 0 ≤ u ≤ 2n−p − 2, and f is
a balanced qth-order correlation immune function, where q = n − p − 1. Hence
(14) still holds, with the exception that the actual value of 〈ξ, L(2n−p−1)·2p〉 is not
clear yet. Applying 2n−p〈χ0, e0〉 = 〈λ0, `0〉 to (5), and noticing (6) and (14), we
have 2n−p∆(α0) = 〈ξ, L(2n−p−1)·2p〉2. Thus we have 〈ξ, L(2n−p−1)·2p〉2 = 22n−p.
Due to Lemma 5, we have p = n − 1. Since q ≥ 1, we obtain p + q ≥ n. This
contradicts the inequality p + q ≤ n − 1, that we have already proved. Hence
p + q ≤ n− 2 holds. ut

5.2 The Case of Unbalanced Functions

We turn our attention to unbalanced functions. A direct proof of the following
Lemma can be found in [21].



Lemma 8. Let k ≥ 2 be a positive integer and 2k = a2 + b2, where both a and
b are integers with a ≥ b ≥ 0. Then a = 2

1
2 k and b = 0 when k is even, and

a = b = 2
1
2 (k−1) otherwise.

Theorem 3. Let f be an unbalanced qth-order correlation immune function on
Vn, satisfying the avalanche criterion of degree p. Then

(i) p + q ≤ n,
(ii) the equality in (i) holds if and only if n is odd, p = n− 1, q = 1 and f(x) =

g(x1 ⊕ xn, . . . , xn−1 ⊕ xn) ⊕ c1x1 ⊕ · · · ⊕ cnxn ⊕ c, where x = (x1, . . . , xn),
g is a bent function on Vn−1, c1, . . . , cn and c are all constants in GF (2),
satisfying

⊕n
j=1 cj = 0.

Proof. Since f is correlation immune, it cannot be bent. Once again we now
prove (i) by contradiction. Assume that p + q > n. Hence n − p < q. We keep
all the notations in Section 5.1. Note that HW (αu·2p) ≤ n − p < q for all u
with 1 ≤ u ≤ 2n−p − 1. Since f is an unbalanced qth-order correlation immune
function, we have (14) again, with the understanding that 〈ξ, L0〉 6= 0. Applying
2n−p〈χ0, e0〉 = 〈λ0, `0〉 to (5), and noticing (6) and (14) with 〈ξ, L0〉 6= 0, we
have 2n−p∆(α0) = 〈ξ, L0〉2. Hence 〈ξ, L0〉2 = 22n−p and p must be even. Since
f is not bent, noticing Lemma 5, we can conclude that p = n− 1 and n is odd.
Using (ii) of Lemma 7, we have

f(x) = g(x1 ⊕ xn, . . . , xn−1 ⊕ xn)⊕ c1x1 ⊕ · · · ⊕ cnxn ⊕ c

where x = (x1, . . . , xn), g is a bent function on Vn−1, and c1, . . . , cn and c are all
constants in GF (2), satisfying

⊕n
j=1 cj = 0. One can verify that while xj ⊕ f(x)

is balanced, j = 1, . . . , n, xj ⊕ xi⊕ f(x) is not if j 6= i. Hence f is 1st-order, but
not 2nd-order, correlation immune. Since q > 0, we have q = 1 and p + q = n.
This contradicts the assumption that p + q > n. Hence we have proved that
p + q ≤ n.

We now prove (ii). Assume that p + q = n. Since n − p = q, we can apply
2n−p〈χ0, e0〉 = 〈λ0, `0〉 to (5), and have (6) and (14) with 〈ξ, L0〉 6= 0. By using
the same reasoning as in the proof of (i), we can arrive at the conclusion that
(ii) holds. ut
Theorem 4. Let f be an unbalanced qth-order correlation immune function on
Vn, satisfying the avalanche criterion of degree p. If p + q = n − 1, then f also
satisfies the avalanche criterion of degree p + 1, n is odd and f must take the
form mentioned in (ii) of Theorem 3.

Proof. Let p + q = n − 1. Note that HW (αu·2p) ≤ n − p − 1 = q for all u,
0 ≤ u ≤ 2n−p − 2. Since f is unbalanced and qth-order correlation immune, we
have (14), although once again 〈ξ, L0〉 6= 0 and the value of 〈ξ, L(2n−p−1)·2p〉 is
not clear yet. Applying 2n−p〈χ0, e0〉 = 〈λ0, `0〉 to (5), noticing (6) and (14), with
the understanding that 〈ξ, L0〉 6= 0 and 〈ξ, L(2n−p−1)·2p〉 is not decided yet, we
have 2n−p∆(α0) = 〈ξ, L0〉2 + 〈ξ, L(2n−p−1)·2p〉2. That is

〈ξ, L0〉2 + 〈ξ, L(2n−p−1)·2p〉2 = 22n−p (15)



There exist two cases to be considered: p is even and p is odd.
Case 1: p is even and thus p ≥ 2. Since 〈ξ, L0〉 6= 0, applying Lemma 8 to (15),

we have 〈ξ, L0〉2 = 22n−p and 〈ξ, L(2n−p−1)·2p〉 = 0. Due to Lemma 5, p = n− 1.
Since q > 0, we have p + q ≥ n. This contradicts the assumption p + q = n− 1.
Hence p cannot be even.

Case 2: p is odd. Applying Lemma 8 to (15), we obtain

〈ξ, L0〉2 = 〈ξ, L(2n−p−1)·2p〉2 = 22n−p−1 (16)

Set i = 2t, t = 0, 1, . . . , n− p− 1, where n− p− 1 = q > 0, and j = 0 in (4),
we have

2n−p〈χ2t , e0〉 = 〈λ0, `2t〉 (17)

where `2t is the 2tth row of Hn−t and e0 is the all-one sequence of length 2p.
Since f satisfies the avalanche criterion of degree p and HW (αj) ≤ p, j =

2t+p, 1 + 2t+p, . . . , 2p − 2 + 2t+p, (11) holds.
Applying (17) to (5), noticing (11) and (14) with 〈ξ, L0〉2 = 〈ξ, L(2n−p−1)·2p〉2

= 22n−p+1, we have 2n−p∆(α2t+p+2p−1) = 22n−p or 0. In other words,
∆(α2t+p+2p−1) = 2n or 0.

Note that `2t is the sequence of a linear function ψ on Vn−p where ψ(y) =
〈β2t , y〉, y ∈ Vn−p, β2t ∈ Vn−p corresponds to the binary representation of 2t.
Due to (17), it is easy to verify that ∆(α2t+p+2p−1) = 2n (or 0) if and only
if 〈β2n−p−1, β2t〉 = 0 (or 1) where β2n−p−1 ∈ Vn−p corresponds to the binary
representation of 2n−p − 1. Note that β2n−p−1 = (0, . . . , 0, 1, . . . , 1) where the
number of ones is equal to n− p. On the other hand β2t can be written as β2t =
(0, . . . , 0, 1, 0, . . . , 0). Since t ≤ n − p − 1, we conclude that 〈β2n−p−1, β2t〉 = 1,
for all t with 0 ≤ t ≤ n− p− 1. Hence ∆(α2t+p+2p−1) = 0 for all such t.

Note that HW (α2t+p+2p−1) = p + 1. Permuting the variables, we can prove
in a similar way that ∆(α) = 0 holds for each α with HW (α) = p + 1. Hence f
satisfies the avalanche criterion of degree p + 1. Due to p + q = n − 1, we have
(p + 1) + q = n. Using Theorem 3, we conclude that n is odd and f takes the
form mentioned in (ii) of Theorem 3. ut

From Theorems 3 and 4, we conclude

Corollary 1. Let f be an unbalanced qth-order correlation immune function on
Vn, satisfying the avalanche criterion of degree p. Then

(i) p + q ≤ n, and the equality holds if and only if n is odd, p = n − 1, q = 1
and f(x) = g(x1 ⊕ xn, . . . , xn−1 ⊕ xn) ⊕ c1x1 ⊕ · · · ⊕ cnxn ⊕ c, where x =
(x1, . . . , xn), g is a bent function on Vn−1, c1, . . . , cn and c are all constants
in GF (2), satisfying

⊕n
j=1 cj = 0,

(ii) p + q ≤ n− 2 if q 6= 1.



6 Conclusions

We have established a lower bound on nonlinearity over all Boolean functions
satisfying the avalanche criterion of degree p. We have shown that the lower
bound is tight. We have also characterized the functions that have the minimum
nonlinearity. Furthermore, we have found a mutually exclusive relationship be-
tween the degree of avalanche and the order of correlation immunity.

There are still many interesting questions yet to be answered in this line of
research. As an example, we believe that the upper bounds in Theorems 2 and
3 can be further improved, especially when p and q are neither too small, say
close to 1, nor too large, say close to n− 1.
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