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Abstract. A potentially serious problem with current digital signature
schemes is that their underlying hard problems from number theory may
be solved by an innovative technique or a new generation of comput-
ing devices such as quantum computers. Therefore while these signature
schemes represent an efficient solution to the short term integrity (un-
forgeability and non-repudiation) of digital data, they provide no con-
fidence on the long term (say of 20 years) integrity of data signed by
these schemes. In this work, we focus on signature schemes whose se-
curity does not rely on any unproven assumption. More specifically, we
establish a model for unconditionally secure digital signatures in a group,
and demonstrate practical schemes in that model. An added advantage
of the schemes is that they allow unlimited transfer of signatures with-
out compromising the security of the schemes. Our scheme represents
the first unconditionally secure signature that admits provably secure
transfer of signatures.

1 Introduction

Digital signatures are an important technology for ensuring the unforgeability
and non-repudiation of digital data. While some data may only require the as-
surance of integrity for a relatively short period of time (say up to 5 years), some
other important data, such as court records and speeches by a parliamentarian,
require the assurance of integrity for a long period of time (say up to 50 years).

Currently, digital signature schemes based on number theoretic problems
are the prevalent methods used in providing data integrity. These schemes rely
for their security on the assumed computational difficulty of computing certain
number theoretic problems, such as factoring large campsites or solving dis-
crete logarithms in a large finite field. RSA [20], Fiat-Shamir [11], ESIGN [19]
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and many other schemes are based on the difficulty of factoring. On the other
hand, ElGamal [10], Schnorr [24], DSA [9] and others, are based on discrete loga-
rithms. Progress in computers as well as further refinement of various algorithms
has made it possible to solve the number theoretic problems of larger sizes. As
an example, in August 1999, a team of researchers from around the world suc-
ceeded in cracking an 512-bit RSA composite by the use of the Number Field
Sieve [3] over the Internet. One can safely predict that even larger composites
will be factored in the future. In addition, one cannot rule out the possibility
of the emergence of innovative algorithms that solve efficiently these number
theoretic problems in the future. More importantly, in the past few years there
has been significant progress in quantum computers. It has been known that
quantum computers can solve both factoring and discrete logarithm problems
with ease [25,1], hence advances in the design and manufacturing of quantum
computers poses a real threat to the long term security of all the digital signature
schemes based on number theoretic problems.

The above discussions indicate the necessity of digital signature schemes that
provide assurance of long term integrity. In the past decade, several attempts by
various researchers have been made to address the problem. However, schemes
proposed by these researchers are essentially variants of authentication codes,
and none of these schemes has addressed the transferability of signatures among
recipients.

The major contribution of this work is to propose the first digital signature
scheme that admits transferability, and provable unconditional security against
impersonation, substitution, and transfer with a trap. A potentially useful prop-
erty of our proposed scheme is that a public key of a user can be associated with
the user’s unique name, resulting in an identity-based signature scheme.

1.1 Related Work

Chaum and Roijakkers [4] made the first attempt to construct an unconditionally
secure signature scheme using cryptographic protocols. Their basic scheme was
impractical, as it could only sign a single bit message. Furthermore, in their
scheme, the level of security of a signature decreased as the signature moved
from one verifier to another. In practice, it is important for a signature scheme
to have transferability, i.e., its security is not compromised when a signature
is transferred among users. Recently an improved version of Chaum-Roijakkers
scheme has been proposed in [14]. However, the author of this improved scheme
has not addressed the transferability of his signature scheme.

In another development, Chaum, Heijst and Pfitmann proposed a different
version of unconditionally secure signature schemes [5]. However, its uncondi-
tional security was guaranteed only for signers.

There have also been attempts to modify unconditionally secure authenti-
cation codes [12,26] with the aim of enhancing the codes with extra security
properties. It is tempting to transform an unconditionally secure authentication
code into a digital signature. There are, however, two technical hurdles that are
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hard to overcome. First, authentication codes, especially the conventional Carte-
sian authentication codes, do not provide the function of non-repudiation, as a
receiver can easily forge a sender’s message and vice versa. Second, the receiver
is always designated, meaning a signature cannot be verified by another party
who does not have the shared key. These two properties must be removed for an
authentication code to be converted into a digital signature.

An extension of authentication codes is authentication codes with arbitration
or A2-codes [27,28,15,16,18,14]. These codes involve a trusted third party called
an arbiter. The arbiter can help resolve a dispute when a receiver forges a sender’s
message or the sender claims that a message is forged by the receiver. A2-codes
have been further improved to require a less trustworthy arbiter. These codes
are called A3-codes [2,7,13,29,14,30]. A property shared by both codes is that
the receiver of a signature has to be designated.

As yet another extension, multi-receiver authentication codes (MRA) [8,21,14]
have been extensively studied in the literature. With a MRA scheme, a broadcast
message can be verified by any of the receivers. Although earlier MRA schemes
required the sender to be designated, the so-called MRA with dynamic sender
or DMRA have been proposed [22,23] to relax the requirement of a designated
sender. It is important to note that these schemes make sense only in broadcast-
ing. If MRA or DMRA is used for point-to-point authentication, then the sender
can easily generate a fraudulent message that is accepted by the receiver, but
not by other participants. The situation is made complex due to the fact that
the same fraudulent message may have been generated by the receiver himself.
A further problem is that MRA or DMRA does not provide transferability. In
particular, if an authenticated message is transferred from one verifier to an-
other, the second verifier can forge a message that appears to be perfectly valid
to the next verifier. For the above reasons, neither MRA nor DMRA satisfies the
non-repudiation requirement of a digital signature.

In summary, although unconditionally secure authentication codes can be
enhanced to satisfy some of the properties of a digital signature, not all of the
requirements can be fulfilled. Especially, none of the enhanced authentication
schemes had addressed transferability.

1.2 Main Results

In this paper, we present an unconditionally secure identity-based signature
scheme. First, we propose a novel model of a signature system called an Identity-
based Signature Schemes for Unconditional Security in a Group (ISSUSG). As an
example implementation of the model, a concrete (n, ω, ψ, p1, p2)-secure scheme
in ISSUSG is demonstrated, where n indicates the total number of users, ω the
maximum number of “bad” users who may collude, ψ is the maximum num-
ber of signatures a user is allowed to generate, and p1 and p2 indicate the best
probabilities for an attacker to succeed.

Our approach is an information theoretic one, and the security of our scheme
does not rely on any assumption on the computational power of an attacker.
Therefore, when the parameters of our scheme are properly chosen, the security
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of the scheme will not be affected by future advancement in computing or an al-
gorithmic breakthrough in number theory. An important property of our scheme
is that it admits unlimited transfer of signatures from one user to another, with-
out compromising the security of the signature scheme in any way. A further
advantage is that the scheme can be made identity-based by associating the
unique name of a user to the signature generation and verification algorithms.
The scheme is shown to achieve the lower bound on the required memory size
of a signature.

As a by-product, we note that our unconditionally secure digital signature
scheme can be used as an A3-code and also as a DMRA. In fact, one may view
our scheme as one that fulfills the requirements of both an A3-code and a DMRA
scheme.

The organization of the remaining part of this paper is as follows: In Sec-
tion 2, we present our new model of an identity-based signature scheme for
unconditional security, which we call an Identity-based Signature Scheme for
Unconditionally Security in a Group (ISSUSG). In Section 3, a concrete uncon-
ditionally secure identity-based signature scheme in the model is proposed. In
Section 4, some remarks related to our scheme are discussed. Section 5 presents
the system-parameter settings when practical memory devices are used. In Sec-
tion 6, we discuss how to handle long messages in our scheme. Finally, Section
7 concludes the paper with some final remarks.

2 The Model

In the model we consider, signatures are assumed to work in a group. Namely,
only members in the group can generate and/or verify signatures. New users
are allowed to join the group even after the system is set up, as long as the
total number of users does not exceed a pre-defined threshold (this threshold is
denoted by n). When the threshold is sufficiently large, in practice our signature
scheme can be used in many applications when conventional public key signature
schemes are used. Therefore, the group orientation of our scheme should not
present any difficulties in practical applications.

We assume that there is a trusted authority, denoted by TA, and n users
U = {U1, U2, · · · , Un}. For each user Ui ∈ U (1 ≤ i ≤ n), for convenience we
use the same symbol Ui to denote the identity of the user. The TA produces
a pair of signing and verification-keys on behalf of a user. Once being given a
pair of keys, a user can then generate and/or verify signatures by using his own
signing-key and verification-key, respectively. A more formal definition is given
below:

Definition 1 A scheme Π is an Identity-based Signature Scheme for Uncondi-
tional Security in a Group (ISSUSG) if it is constructed as follows:

1. Notation:
Π consists of (TA, U , M,S,V ,A,Sig, Ver), where
– TA is a trusted authority,
– U is a finite set of users (to be precise, users’ unique names),
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– M is a finite set of possible messages,
– S is a finite set of possible signing-keys,
– V is a finite set of possible verification-keys,
– A is a finite set of possible signatures,
– Sig : S ×M −→ A is a signing-algorithm,
– Ver : M×A× V × U −→ {accept, reject} is a verification-algorithm.

2. Key Pair Generation and Distribution by TA:
For each user Ui ∈ U , the TA chooses a signing-key si ∈ S and a verification-
key vi ∈ V, and transmits the pair (si, vi) to Ui via a secure channel. After
delivering these keys, the TA erases the pair (si, vi) from his memory. And
each user keeps secret both his signing-key and verification-key.

3. Signature Generation:
For a message m ∈ M, Ui generates a signature α = Sig(si,m) ∈ A by
using the signing-key in conjunction with the signing-algorithm. The pair
(m,α) is regarded as a signed message of Ui.

4. Signature Verification:
On receiving (m,α) from Ui, a user Uj checks whether α is valid by using
his verification-key vj. More precisely, Uj accepts (m,α) as a valid, signed
message from Ui if and only if Ver(m,α, vj , Ui) = accept.

The main difference between our definition of signature schemes and that of
conventional ones based on public-key cryptography lies in the fact that in our
model each user is required to keep secret both his signing-key and verification-
key.

In order to discuss in a formal way the security of a signature scheme in
our model, we define the probability of success of various types of attacks. We
consider three broad types of attacks: impersonation, substitution and transfer
with a trap. Of these attacks, the first two are usually taken into account in
discussing the security of authentication codes, especially A2-codes, A3-codes,
and MRA codes. The third type of attacks, transfer with a trap, is new, and will
be formally defined later.

Consider the case where there are n users among whom up to ω user may
be dishonest (and hence may collude). Each user is allowed to sign up to ψ
signatures. We now discuss in a more formal way the three types of attacks.

1) Impersonation:
t users, with t ≤ ω, launch an attack against a pair of users Ui and Uj by
generating a signed message with the hope that Uj accepts it as being a valid
signature from Ui. This attack may be executed after the colluders observe
at most ψ(n− 1) signed messages generated by users other than Ui.

2) Substitution:
t users, with t ≤ ω, construct a fraudulent message m′ to replace a message
genuinely signed by Ui, with the hope that Uj will accept it as being an
authentic message from Ui. This attack may be executed after the colluders
observe at most ψn signed messages generated by any users. Among the
observed messages, at least one but up to ψ may be generated by Ui.
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3) Transfer with a trap:
After Uj receives a valid pair (m,α) from Ui, t colluders, where t ≤ ω,
attempt to generate a new pair (m,α′) with α �= α′. Note that both the
singer Ui and the user Uj could be among the colluders. The colluders hope
that another user Uk will accept (m,α′) as being a valid message-signature
pair from Ui, but no other users will. The risk with this attack is that when
Uj transfers such a pair (m,α′) to Uk and Uk then transfers it to another
user Ul, Ul finds that the pair is invalid. When this happens, Uk is in a sense
trapped by the colluders.

To formally define the probabilities of success in the above three attacks,
some notations are introduced first.

Let W := {W ⊂ U| |W | ≤ ω}. Each element of W represents a group of
possibly colluding users. Let sW and vW be the set of signing-keys and that of
verification-keys for a W ∈ W , respectively.

Definition 2 The success probabilities of impersonation, substitution and trans-
fer with a trap attacks, denoted by PI , PS and PT respectively, are formally
defined as follows:

1) Success probability of impersonation: for W ∈ W and Ui, Uj ∈ U with
Ui, Uj �∈ W , we define PI(Ui, Uj,W ) as

PI(Ui, Uj,W ) := max
sW ,vW

max
1≤k≤n,k �=i

max
ck={(mk,l,αk,l)}

max
(m,α)

Pr(Uj accepts (m,α) as valid from Ui|sW , vW , {ck}),

where ck = {(mk,l, αk,l)} is taken over a family of possible sets of valid signed
messages generated by Uk (1 ≤ k ≤ n, k �= i) such that 0 ≤ |ck| ≤ ψ (1 ≤
k ≤ n, k �= i). Note that mk,l are not necessarily distinct. Then, PI is given
as

PI := max
Ui,Uj,W

Pr(Ui, Uj ,W )

where W ∈ W and Ui, Uj ∈ U with Ui, Uj �∈ W .
2) Success probability of substitution: for W ∈ W and Ui, Uj ∈ U with Ui, Uj �∈

W , we define PS(Ui, Uj ,W ) as

PS(Ui, Uj ,W ) := max
sW ,vW

max
1≤k≤n

max
ck={(mk,l,αk,l)}

max
(m,α)

Pr(Uj accepts (m,α) as valid from Ui|sW , vW , {ck})

where ck = {(mk,l, αk,l)} is taken over a family of possible sets of valid
signed messages generated by Uk (1 ≤ k ≤ n) such that 0 < |ci| ≤ ψ and
0 ≤ |ck| ≤ ψ (1 ≤ k ≤ n, k �= i), and (m,α) is taken such that m �= mi,l for
any l. Note that mk,l are not necessarily distinct. Then, PS is given as

PS := max
Ui,Uj,W

Pr(Ui, Uj ,W )

where W ∈ W and Ui, Uj ∈ U with Ui, Uj �∈ W .
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3) Success probability of transfer with a trap: for W ∈ W and Ui, Uj ∈ U with
Uj �∈W we define PT (Ui, Uj ,W ) as

PT (Ui, Uj ,W ) := max
sW ,vW

max
1≤k≤n,k �=i

max
ck={(mk,l,αk,l)}

max
(m,α)

max
(m,α′)

Pr(Uj accepts (m,α′) as valid from Ui|sW , vW , {ck}, (m,α))

where ck = {(mk,l, αk,l)} is taken over a family of possible sets of valid
signed messages generated by Uk (1 ≤ k ≤ n, k �= i) such that 0 ≤ |ck| ≤
ψ (1 ≤ k ≤ n, k �= i), (m,α) is taken over the set of possible signed messages
generated by Ui, and α′ is taken such that α �= α′. Then, PT is given as

PT := max
Ui,Uj ,W

Pr(Ui, Uj ,W )

where W ∈ W and Ui, Uj ∈ U with Uj �∈ W .

Now we are ready to define the concept of an (n, ω, ψ, p1, p2)-secure ISSUSG
signature scheme. Here both p1 and p2 are security parameters whose meanings
will be made precise in the following definition.

Definition 3 Let Π be an ISSUSG with n users. Then, Π is (n, ω, ψ, p1, p2)-
secure if the following conditions are satisfied: as long as there exist at most ω
colluders and each user is allowed to generate at most ψ signatures, the following
inequalities hold:

max{PI , PS} ≤ p1

PT ≤ p2

where PI , PS and PT are the probabilities of success in impersonation, substitu-
tion and transfer with a trap attacks, respectively.

We note that there is an alternative definition of security in which one may
use a single security parameter p instead and define the success probability as

max{PI , PS , PT } ≤ p.

In practice, however, some applications may attach more weight to strength
against impersonation and substitution than against transfer with a trap, while
some other applications may have an emphasis on robustness against transfer
with a trap. By introducing two separate parameters p1 and p2, we have an
opportunity to design a signature scheme with fine-tuned level of security.

3 Implementation

3.1 Protocol

In this section, an implementation of the ISSUSG will be presented. It is con-
structed by the use of a polynomial with ω + 2 variables over a finite field.

As before, let U := {U1, U2, · · · , Un} be the set of n users and TA the trusted
authority.
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1. Key Pair Generation and Distribution by TA:
Let Fq be the finite field with q elements such that q ≥ n. The TA picks
uniformly at random n elements v1, v2, . . . , vn in Fωq for users U1, U2, . . . , Un
respectively, and constructs a polynomial F (x, y1, . . . , yω, z) as follows:

F (x, y1, . . . , yω, z) =
n−1∑

i=0

ψ∑

k=0

ai0kx
izk +

n−1∑

i=0

ω∑

j=1

ψ∑

k=0

aijkx
iyjz

k

where the coefficients aijk are chosen uniformally at random from Fq. More-
over, we assume that a user’s identity Ul and a message m are also from
Fq.
For each user Ul (1 ≤ l ≤ n), the TA computes a signing-key sl :=
F (Ul, y1, . . . , yω, z), and a verification-key ṽl := F (x, vl, z). vl and ṽl together
form a pair of verification-keys for user Ul. The TA then sends both the
signing-key and the pair of verification-keys to Ul over a secure channel.
Once the keys are delivered, there is no need for the TA to keep the user’s
keys.

2. Signature Generation:
For a message m ∈ Fq, Ui generates a signature by

α = F (Ui, y1, . . . , yω, z)|z=m = F (Ui, y1, . . . , yω,m)

using his signing-key.
3. Signature Verification:

On receiving (m,α) from Ui, user Uj checks whether α is valid by the use of
his verification-keys vj and ṽj . More specifically, Uj calculates evaluation val-
ues r1, r2 using his verification-keys ṽj = F (x, vj , z) and vj := (v1,j , . . . , vω,j)
as follows:

r1 := F (x, vj , z)|x=Ui,z=m,

r2 := α|(y1,...,yω)=(v1,j ,...,vω,j).

Uj accepts (m,α) as being a valid message-signature pair from Ui if and only
if r1 = r2.

We can show that the above signature scheme is an (n, ω, ψ, (2
q − 1

q2 ), 1
q )-

secure ISSUSG scheme.

Theorem 1 The above scheme results in an (n, ω, ψ, (2
q− 1

q2 ), 1
q )-secure ISSUSG

scheme.

Due to the lack of space, the proof of Theorem 1 is omitted. It will be provided
in the full version of this paper.

The above scheme can be modified slightly, resulting in yet another
(n, ω, ψ, 1

q ,
1
q−1 )-secure ISSUSG scheme.
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Theorem 2 In the above construction, the following modification produces also
an (n, ω, ψ, 1

q ,
1
q−1 )-secure ISSUSG scheme:

Instead of choosing randomly, the TA may choose n elements v1, . . . , vn ∈ Fωq ,
as verification-keys, such that for any ω + 1 vectors

vi1 = (v1,i1 , . . . , vω,i1), . . . , viω+1 = (v1,iω+1 , . . . , vω,iω+1),

the ω + 1 new vectors (1, v1,i1 , . . . , vω,i1), . . . , (1, v1,iω+1 , . . . , vω,iω+1) are linearly
independent.

Note that our scheme can be used in place of an authentication code, MRA or
DMRA. In fact our scheme is cryptographically stronger than the authentication
codes, with an added benefit of being transferable, although it requires more
memory space than MRA and DMRA.

3.2 Memory Sizes

The following theorem states the required memory size for our construction, and
its proof is obvious.

Theorem 3 The required memory size in the above constructions is given as
follows:

|A| = q(ω+1), (size of signature)
|S| = q(ω+1)(ψ+1), (size of signing-key)
|V| = qω+n(ψ+1), (size of verification-key).

Corollary 1 The construction proposed in Theorem 2 is optimal in terms of
the memory size of a signature.

The proof follows from [23].
It is not yet clear to the authors as to whether the scheme also achieves

optimality in terms of memory size for signing-keys and verification-keys.

4 Some Remarks on Our Scheme

This section shows useful extensions of the scheme presented above, and discusses
some of the properties of the scheme. More detailed discussions will be provided
in the full version of this paper.

4.1 Signature Scheme for t Senders

In some applications, users who might sign are specified first. When there are
only t specified senders in the system, we can easily specialize our scheme to
produce a signature scheme for t senders. Namely, by changing the degree n−1 of
x in F (x, y1, · · · , yω, z) to t−1, a signature scheme for t senders is obtained. Based
on this restriction, the required memory for verification-keys can be reduced from
qω+n(ψ+1) to qω+t(ψ+1). Note that the required memory sizes for signatures and
signing-keys are still the same as in the non-restrictive scheme.
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4.2 Arbiter

We can also introduce an arbiter which can resolve a dispute between a signer
and a recipient. In one such implementation, the arbiter will be given a pair of
verification-keys, whereas no user will. The arbiter can notify users of the result
of verification of a signature. We note that any user can play the role of an
arbiter for other users.

4.3 Reduction of Memory Size for Verification-Key

In the proposed schemes in Section 3, the degree of x in F (x, y1, · · · , yω, z) is
set as n − 1. If the degree of x is ω + d instead (d ≤ n − ω − 2), the system
may be attacked as follows: when the same message is signed by d+ 1 signers, ω
colluders can forge a victim’s signature of the same message by using their own
secrets and the generated signatures. To prevent the scheme from this attack,
the degree of x is set to n− 1, which is the primary contributor to the required
memory size of verification-keys.

If in a practical system it is known that the chance for the same message to be
signed by d+1 signers is extremely small, the degree of x may be set to be smaller
than n− 1. This will reduce the required memory size for verification-keys.

4.4 Active Attacks against Verification-Keys

As already discussed earlier, the proposed scheme is unconditionally secure
against passive attacks. In an active attack, an adversary may manage to obtain
some information on verification-keys. As an example, by selecting a random
element from Fω+1

q as a forged signature and obtaining the verification result
from a targeted victim, the adversary obtains some information on the victim’s
verification-key. We can show that the information obtained does not help suc-
ceed with a non-negligible probability in impersonation, substitution or transfer
with a trap. Thus such an active attack is not an issue in practice. Details will
be presented in the full paper.

5 Practical Systems Based on Memory Devices

In this section, we discuss the values of security parameters in the proposed
schemes. Table 1 shows the value of ψ according to the values of the number of
users and memory devices which may contain users’ signing-keys, assuming the
worst case where ω = n−1. One can see that using commonly available memory
devices, the number of signatures that can be generated by a user is sufficiently
large even for a large organization that has 1,000 to 10,000 users.

Table 2 gives data on a more realistic setting. One can see that compared
with the previous table, the number of signatures that can be signed by a user
increases significantly.

We note that the capacity of memory devices is getting larger and larger,
and their prices are dropping as fast. This helps significantly the usability of the
proposed signature scheme.
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Table 1. The number of signatures a user can generate, assuming that |q| has
160 bits and ω = n− 1.

n = 1, 000 n = 10, 000 n = 100, 000 n = 1, 000, 000

2HD disk(1.44MByte) 71 6 0 0

ZIP(100MByte) 4,999 499 49 4

CD-R(650MByte) 32,499 3,249 324 31

DVD-RAM(5.2GByte) 259,999 25,999 2,599 259

Table 2. The number of signatures a user can generate, assuming that |q| has
160 bits and ω is determined appropriately for each n.

n = 1, 000 n = 10, 000 n = 100, 000 n = 1, 000, 000

ω = 500 ω = 2, 000 ω = 10, 000 ω = 50, 000

2HD disk(1.44MByte) 142 34 6 0

ZIP(100MByte) 9,979 2,497 498 98

CD-R(650MByte) 64,869 16,240 3,248 648

DVD-RAM(5.2GByte) 518,961 129,934 25,996 5,198

6 On Handling Long Messages

In our proposed scheme, the length of messages to be signed is restricted to be
|q| or less. An important question that is yet to be addressed is how to handle
longer messages, without significantly increasing the size of such a message.

In practice, one may use the technique of applying a one-way hashing to
a long message prior to signing it. Some examples of one-way hash algorithms
are SHA-1 [17], HAVAL [31] and RIPEMD-160 [6]. Although this will lose the
unconditional security property of the proposed signature scheme, we note that a
good one-way hash function would remain secure even if one employed quantum
computers in attacking it.

7 Conclusions

We have proposed unconditionally secure identity-based signature schemes. More
specifically, we have established a model for unconditionally secure digital signa-
tures in a group, and demonstrated practical schemes in that model. An added
advantage of the scheme is that it allows unlimited transfer of signatures without
compromising the security of the scheme. Although there is a limit on the num-
ber of signatures a user can generate, this limitation is not an issue in practice
thanks to the development in inexpensive memory devices with a huge capacity.
Specifically, by using a DVD-RAM, 25,999 signatures can be generated by a user
in an organization of 10,000 employees.
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We are currently working on other possible implementations of ISSUSG, as
well as the problem on how to sign long message without losing unconditional
security.
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