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Abstract

This paper reveals a duality between constructions of two basic cryptographic

primitives� pseudo�random string generators and one�way hash functions� Applying

the duality� we present a construction for universal one�way hash functions assuming

the existence of one�way permutations� Under a stronger assumption� the existence

of distinction�intractable permutations� we prove that the construction constitutes a

collision�intractable hash function� Using ideas behind the construction� we propose

practical one�way hash functions� the fastest of which compress nearly �n�bit long

input into n�bit long output strings by applying only twice a one�way function�

� Introduction

Pseudo�random string generators and one�way hash functions are two basic cryptographic
primitives� Informally� a pseudo�random string generator is a function that on input a
random string called a seed outputs a longer string which can not be e�ciently distin�
guished from a truly random one� In contrast� a one�way hash function outputs a short
string on input a long one� with the property that it is computationally di�cult to �nd a
pair of strings that are compressed into the same one� In a sense� pseudo�random string
generators and one�way hash functions behave in a dual fashion�

It has been proved that pseudo�random string generators can be constructed under
the assumption of the existence of one�way functions �ILL���� However� at the time
when this paper was written� the best known result on the construction of 	universal

one�way hash functions was based on the assumption of the existence of one�way quasi�
injections �ZMI��a�� 	See also �ZMI��b��
 The aim of this research is to explore the
intuition that there is a duality between pseudo�random string generators and one�way
hash functions� and to apply techniques developed for the former to the construction of
the latter under weaker assumptions� Though our aim has not been achieved yet� we



obtain a new construction for 	universal
 one�way hash functions assuming the existence
of one�way permutations� Using the construction� we design hash functions that are very
e�cient and seem to be also one�way�

The paper is organized as follows� In Section �� we introduce notions and notation�
In Section � we discuss a duality between the construction of pseudo�random string
generators and that of one�way hash functions� Applying the duality� we present in Section
� a construction for universal one�way hash functions assuming the existence of one�
way permutations� Under a stronger assumption� the existence of distinction�intractable
permutations� we prove in section � that the construction constitutes a collision�intractable
hash function� In Section �� we use ideas behind the construction to design practical
	supposed
 one�way hash functions� The fastest of these functions compress nearly �n�bit
long input into n�bit long output strings by applying only twice a one�way function�

� Terminology and Preliminaries

The set of all positive integers is denoted by N� Let � � f�� �g be the alphabet we
consider� For n � N� denote by �n the set of all strings over � with length n� by �� that
of all �nite length strings including the empty string� denoted by �� over �� and by ��

the set �� � f�g� The concatenation of two strings x� y is denoted by x � y� or simply
by xy if no confusion arises� When x� y � �n� the bit�wise mod� addition� also called the
exclusive�or 	XOR
� of x and y is denoted by x � y� The length of a string x is denoted
by jxj� and the number of elements in a set S is denoted by �S�

Let � be a monotone increasing function from N to N� and f a 	total
 function from
D to R� where D �

S
nDn� Dn � �n� and R �

S
nRn� Rn � ���n�� D is called the

domain� and R the range of f � In this paper it is assumed� unless otherwise speci�ed�
that Dn � �n and Rn � ���n�� Denote by fn the restriction of f on �n� We are concerned
only with the case when the range of fn is �

��n�� i�e�� fn is a function from �n to ���n�� f
is an injection if each fn is a one�to�one function� and is a permutation if each fn is a one�
to�one and onto function� f is 	deterministic�probabilistic
 polynomial time computable
if there is a 	deterministic�probabilistic
 polynomial time algorithm 	Turing machine

computing f	x
 for all x � D� The composition of two functions f and g is de�ned as
f � g	x
 � f	g	x

� In particular� the i�fold composition of f is denoted by f �i��

A 	probability
 ensemble E with length �	n
 is a family of probability distributions
fEnjEn � �

��n� � ��� ��� n � Ng� The uniform ensemble U with length �	n
 is the family
of uniform probability distributions Un� where each Un is de�ned as Un	x
 � �����n� for
all x � ���n�� By x �E ���n� we mean that x is randomly chosen from ���n� according
to En� and in particular� by x�RS we mean that x is chosen from the set S uniformly
at random� E is samplable if there is a 	probabilistic
 algorithm M that on input n
outputs an x �E ���n�� and polynomially samplable if furthermore� the running time of M
is polynomially bounded�



��� Pseudo�random String Generators and One�Way Functions

Let � be a polynomial� A statistical test is a probabilistic polynomial time algorithm T
that� on input a string x� outputs a bit ���� Let E� and E� be ensembles both with
length �	n
� E� and E� are called indistinguishable from each other if for each statistical
test T � for each polynomial Q� for all su�ciently large n� jPrfT 	x�
 � �g � PrfT 	x�
 �
�gj � ��Q	n
� where x� �E� ���n�� x� �E� ���n�� A polynomially samplable ensemble E
is pseudo�random if it is indistinguishable from the uniform ensemble U with the same
length�

Now we further assume that � is a polynomial with �	n
 � n� A string generator
extending n�bit input into �	n
�bit output strings is a deterministic polynomial time
computable function g � D � R where D �

S
n�

n and R �
S
n �

��n�� g will be denoted
also by g � fgn j n � Ng� Let gn	U
 be the probability distribution de�ned by the
random variable gn	x
 where x�R�

n� and let g	U
 � fgn	U
 j n � Ng� Clearly� g	U

is polynomially samplable� The following de�nition can be found in �Yao��� 	see also
�BM���� �GGM��� and �ILL���
�

De�nition � g � fgn j n � Ng is a 	cryptographically secure
 pseudo�random string
generator 	PSG
 if g	U
 is pseudo�random�

One�way function is the basis of most of modern cryptographic functions and protocols
�IL���� The following de�nition is from �ILL����

De�nition � Let f � D � R� where D �
S
n�

n and R �
S
n �

��n�� be a polynomial
time computable function� and let E be an ensemble with length n� We say that ��� f is
one�way with respect to E if for each probabilistic polynomial time algorithm M � for each
polynomial Q and for all su�ciently large n� Prffn	x
 � fn	M	fn	x


g � ��Q	n
� when
x �E Dn� ��� f is one�way if it is one�way with respect to the uniform ensemble U with
length n�

We note that a function f is one�way 	with respect to the uniform ensemble U with
length n
 i� f is one�way with respect to all pseudo�random ensembles with the same
length� This fact will be used in the proof for Theorem �� Next we introduce the concept
of 	simultaneously
 hard bits�

De�nition � Assume that f � D � R is a one�way function� where D �
S
n�

n and R �
S
n �

��n�� Also assume that i�� i�� � � � � it are functions from N to N� with � � ij	n
 � n for
each � � j � t� Denote by E�

n and E�
n the probability distributions de�ned by the random

variables xit�n� � � �xi��n�xi��n��f	x
 and rt � � � r�r��f	x
 respectively� where x�R�
n� xij�n� is

the ij	n
�th bit of x and rj�R�� Let E
� � fE�

n j n � Ng and E� � fE�
n j n � Ng� We say

that ��� i�	n
 is a hard bit of f if for each probabilistic polynomial time algorithm M � for
each polynomial Q and for all su�ciently large n� PrfM	fn	x

 � x�i��n�g � ������Q	n
�
where x�R�

n and x�i��n� is the i�	n
�th bit of an x� � �n satisfying f	x
 � f	x�
� ���

i�	n
� i�	n
� � � � � it	n
 are simultaneously hard bits of f if E� and E� are indistinguishable
from each other�



��� One�Way Hash Functions

There are basically two kinds of one�way hash functions� universal one�way hash func�
tions and collision�intractable hash functions 	or shortly UOHs and CIHs� respectively
�
In �Mer��� the former is called weakly and the latter strongly � one�way hash functions re�
spectively� Naor and Yung gave a formal de�nition for UOH �NY���� and Damg�ard gave
for CIH �Dam���� The de�nition for UOH to be given below is from �ZMI��a� �ZMI��b�
in which many other results� such as a construction for UOHs assuming the existence of
one�way quasi�injections� are presented�

Let � and m be polynomials with �	n
 � m	n
� H be a family of functions de�ned by
H �

S
nHn where Hn is a 	possibly multi�
set of functions from ���n� to �m�n�� Call H

a hash function compressing �	n
�bit input into m	n
�bit output strings� For two strings
x� y � ���n� with x 	� y� we say that x and y collide under h � Hn� or 	x� y
 is a collision
pair for h� if h	x
 � h	y
�

H is polynomial time computable if there is a polynomial 	in n
 time algorithm com�
puting all h � H� and accessible if there is a probabilistic polynomial time algorithm that
on input n � N outputs uniformly at random a description of h � Hn� All hash functions
considered in this paper are both polynomial time computable and accessible�

Let H be a hash function compressing �	n
�bit input into n�bit output strings� and E
an ensemble with length �	n
� The de�nition for UOH is best described as a three�party
game� The three parties are S 	an initial�string supplier
� G 	a hash function instance
generator
 and F 	a collision�string �nder
� S is an oracle whose power is un�limited� and
both G and F are probabilistic polynomial time algorithms� The �rst move is taken by
S� who outputs an initial�string x �E ���n� and sends it to both G and F � The second
move is taken by G� who chooses� independently of x� an h�RHn and sends it to F � The
third and also �nal 	null
 move is taken by F � who on input x � ���n� and h � Hn outputs
either ��� 	I don�t know
 or a string y � ���n� such that x 	� y and h	x
 � h	y
� F wins
a game i� his�her output is not equal to ���� Informally� H is a universal one�way hash
function with respect to E if for any collision�string �nder F � the probability that F wins
a game is negligible� More precisely�

De�nition � Let H be a hash function compressing �	n
�bit input into n�bit output
strings� P a collection of ensembles with length �	n
� and F a collision�string �nder�
H is a universal one�way hash function with respect to P � denoted by UOH	P � if for each
E � P � for each F � for each polynomial Q� and for all su�ciently large n� PrfF 	x� h
 	�
�g � ��Q	n
� where x and h are independently chosen from ���n� and Hn according to En

and to the uniform distribution over Hn respectively� and the probability PrfF 	x� h
 	��g
is computed over ���n�� Hn and the sample space of all �nite strings of coin 
ips that F
could have tossed�

If E is an ensemble with length �	n
� UOH�E is synonymous with UOH�fEg� In this
paper we only consider one version of UOH that is denoted by UOH�EN ���� where EN ��� is
the collection of all ensembles with length �	n
� Other versions such as UOH�PSE��� and
UOH�U are also of interest� where PSE��� is the collection of all polynomially samplable
ensembles and U is the uniform ensemble� all with length �	n
� Relationships among
various versions of one�way hash functions including UOH�EN ���� UOH�PSE���� UOH�U



and CIH are discussed in �ZMI��a� �ZMI��b�� Of the results obtained in the two papers
the most important is that one�way hash functions in the sense of UOH	EN ��� exist i�
those in the sense of UOH	U exist�

We end this section with a de�nition for CIH that corresponds to collision free function
family given in �Dam���� Let A� a collision�pair �nder � be a probabilistic polynomial time
algorithm that on input h � Hn outputs either ��� or a pair of strings x� y � ���n� with
x 	� y and h	x
 � h	y
�

De�nition � H is called a collision�intractable hash function 	CIH
 if for each A� for
each polynomial Q� and for all su�ciently large n� PrfA	h
 	��g � ��Q	n
� where h�RHn�
and the probability PrfA	h
 	��g is computed over Hn and the sample space of all �nite
strings of coin 
ips that A could have tossed�

� Extending and Compressing Methods

In this section we discuss a duality between the construction of pseudo�random string
generators and that of one�way hash functions� Throughout this section� t and s are
integers� ��� ��� � � � � �s are polynomials in n with ��	n
 � n and �i	n
 � �i��	n
� and k is a
polynomial in n such that t � k	n
 � n� Denote by � the polynomial t � k�

��� Serial Versions

Two extending and two compressing methods which are serial in nature are introduced
below� Lemma � 	serial�extending �
 is the dual of Lemma  	serial�compressing �
� and
Lemma � 	serial�extending �
 is that of Lemma � 	serial�compressing �
�

����� Serial Extending Lemmas

For each � � i � s � �� let gi � fgin j n � Ng be a PSG extending �i	n
�bit input into
�i��	n
�bit output strings� The following lemma is a direct consequence of the de�nition
for PSG�

Lemma � �serial�extending �	 Let g � fgn � gs��
n � gs��

n � � � � � g�n j n � Ng� Then g
is a PSG extending n�bit input into �s	n
�bit output strings�

A PSG extending n�bit input into 	n� t
�bit output strings is called a t�extender� Let
y be a �nite length string� Denote by headi	y
 the �rst i bits and by taili	y
 the last i
bits of y� The following lemma is due to Boppana and Hirschfeld �BH����

Lemma � �serial�extending �	 Let e � fen j n � Ng be a t�extender� For an n�bit
string x� let bi	x
 � headt � en � 	tailn � en


�i���	x
� where � � i � k	n
� Let gn be the
function de�ned by gn	x
 � bk�n�	x
 � � � � � b�	x
 � b�	x
� Then g � fgn j n � Ng is a PSG
extending n�bit input into �	n
�bit output strings�



����� Serial Compressing Lemmas

For each � � i � s� letH i �
S
nH

i
n be a UOH�EN ��i� 	or CIH
 compressing �i	n
�bit input

into �i��	n
�bit output strings� Naor and Yung proved the following serial compressing
lemma �NY����

Lemma � �serial�compressing �	 Let H �
S
nHn� where Hn � fh � h� �h� � � � ��hs j

hi � H i
n� � � i � sg� Then H is a UOH	EN ��s� �or CIH� compressing �s	n
�bit input

into n�bit output strings�

Let ��	n
 � n� t� and let C �
S
nCn be a UOH�EN ���� 	or CIH
 compressing ��	n
�bit

input into n�bit output strings� Such a UOH�EN ���� 	or CIH
 is called a t�compressor�
Then we have the following lemma that is a restricted version of Theorem �� of �Dam����
The main idea behind the lemma also appeared in �Mer���� where it was called the �meta�
method��

Lemma � �serial�compressing �	 Let C �
S
nCn be a t�compressor� For each c � Cn

and each � � �n� let hc�� be the function de�ned by hc��	x
 � c	� � � 	c	� � bk�n�	x

 �
bk�n���	x

 � � ��b�	x

� where x � x��n� � � �x�x� is an �	n
�bit string and bi	x
 � xt�i����t � � �
xt�i�����xt�i������ Let Hn � fhc��jc � Cn� � � �ng� and H �

S
nHn� Then H is a

UOH	EN ��� �or CIH� compressing �	n
�bit input into n�bit output strings�

��� Parallel Versions

In their nice paper �GGM���� Goldreich et al� presented a method for constructing pseudo�
random functions from pseudo�random string generators� Their construction provides us
a con�guration for generating pseudo�random strings in parallel� when given polynomially
many processors� This observation is the very basis of Micali and Schnorr�s parallel PSGs
�MSc���� On the other hand� a parallel hashing method was considered in several papers
such as �WC���� �NY��� and �Dam���� Duality between these two methods is clear� Details
are omitted here�

� PSGs and UOHs from One�Way Permutations

Throughout this section� it is assumed that f is a one�way permutation on D �
S
n�

n�
and that i	n
 has been proved to be a hard bit of f �

��� PSGs from One�Way Permutations

Denote by extracti	x
 a function extracting the i�th bit of x � �n� The following theorem
is due to Blum and Micali �BM����

Theorem � Let � be a polynomial with �	n
 � n� and let gn be the function de�ned by
gn	x
 � b��n�	x
 � � � b�	x
b�	x
 where x � �n and bj	x
 � extracti�n�	f

�j�
n 	x

� Then under

the assumption that f is a one�way permutation� g � fgnjn � Ng is a PSG extending
n�bit input into �	n
�bit output strings�



The e�ciency of g can be improved by changing extracti�n�	
 to a function that extracts
all known simultaneously hard bits of f �

��� UOHs from One�Way Permutations

For b � �� x � �n�� and y � �n� de�ne insi	x� b
 � xn��xi�� � � �xibxi�� � � �x�x�� and
denote by dropi	y
 a function dropping the i�th bit of y� As the dual of Theorem �� we
have the following result�

Theorem � Let � be a polynomial with �	n
 � n� � � �n�� and x � x��n� � � �x�x� where
xi � � for each � � i � �	n
� Let h� be the function from ���n� to �n de�ned by� y� �
�� y� � dropi�n�	fn	insi�n�	y�� x��n�


� � � � � yj � dropi�n�	fn	insi�n�	yj��� x��n��j��


� � � � �
h�	x
 � fn	insi�n�	y��n���� x�

� Let Hn � fh� j � � �n��g and H �

S
nHn� Then under

the assumption that f is a one�way permutation� H is a UOH	EN ��� compressing �	n
�bit
input into n�bit output strings�

Proof � Assume that E is an initial�string ensemble and F a collision�string �nder�
Let x �E ���n�� We show that if F �nds with probability p	n
 a string x� such that
h	x
 � h	x�
 where h�RHn� then there is a probabilistic polynomial time algorithm M
that �nds� with probability greater than p	n
�	�	n
 � �
� the inverse f��

n 	w
 of an n�bit
string w �T �n� where T is a pseudo�random ensemble�

The proving procedure consists of three parts� In the �rst part� we show that every
execution of fn in h de�nes two pseudo�random ensembles Sj and Rj� if ��R�

n��� From
each Sj we construct another pseudo�random ensemble T j� In the second part� we con�
struct a probabilistic polynomial time algorithm M � M �rst obtains w �T �n� where T
is an ensemble chosen uniformly at random from all ensembles T j� Then it computes the
inverse f��

n 	w
 by the use of the collision�string �nder F � In the third part we estimate
the probability that M outputs f��

n 	w
 correctly�
Let S�

n be the probability distribution de�ned by fn	insi�n�	�� x��n�

� where ��R�
n��

and x��n� is the last bit of x �E ���n�� Let S� � fS�
n j n � Ng� Clearly S� is polynomially

samplable 	when x �E ���n� is given
� Now we show that S� is indistinguishable from the
uniform ensemble�

Let A be a probabilistic polynomial time algorithm� For v � �� denote by Prv the
probability that A outputs � on input fn	insi�n�	�� v

� Since ��R�

n�� and i	n
 is a
hard bit of f 	by assumption
� we can think of z � fn	insi�n�	�� x��n�

 as a probabilistic
encryption of x��n� �GM���� Thus for any probabilistic polynomial time algorithm A� for
any polynomial Q� for all su�ciently large n� we have jPr��Pr� j � ��Q	n
� Now let
v�R�� Then Prv � Pr� � Prfv � �g � Pr� � Prfv � �g � 	Pr� � Pr�
��� and hence
jPrv � Pr�j � jPrv � Pr�j � jPr� � Pr�j�� � ���Q	n
� This implies that jPrv � Prx��n�j �
���Q	n
� no matter how x��n� is chosen from �� Note that when ��R�

n�� and v�R�� we
have fn	insi�n�	�� v

�R�

n� since f is a permutation� From these discussions� we see that
S� is indeed pseudo�random�

Let R� � fR�
n j n � Ng� where R�

n is de�ned by dropi�n�	fn	insi�n�	�� x��n�


� Then R
�

is also pseudo�random�



Let S� � fS�
n j n � Ng� where S�

n is de�ned by fn	insi�n�		� x��n���

� 	 �R� �n�� and
x��n��� is the second last bit of x �E ���n�� Then S� is also pseudo�random� for otherwise
there would be a statistical test distinguishing R� from the uniform ensemble with length
n� �� Similarly� for each � � j � �	n
� we can de�ne Sj� Rj and prove that they are both
pseudo�random�

For each Sj� � � j � �	n
 � �� de�ne T j as follows� w �T j �n is produced by
�rst generating a string w� �Sj �n� then reversing the i	n
�th bit of w�� i�e�� w � w� �
�n�i�n���i�n��� � fn	insi�n�	yj��� x��n��j��

 � �n�i�n���i�n���� where �i denotes the all��
string of length i and � the bit�wise exclusive�or operation on two strings� Obviously� T j

is also pseudo�random�
We are ready to describe the algorithm M � Let O be an oracle that on input n � N

outputs a string x �E ���n��

Algorithm M �

�� Choose ��R�
n���

�� Query the oracle O with n� Let the answer by O be x� Note that x �E ���n��

� Choose at random a � � k � �	n
� �� and let T � T k�

�� Let w � fn	insi�n�	yk��� x��n��k��

� �n�i�n���i�n���� i�e�� choose a w �T �n�

�� Query the collision�string �nder F with n� h and x� If F �nds a string x� such
that h	x
 � h	x�
� then output insi�n�	y

�
k��� x

�
��n��k��
� where y

�
k�� and x���n��k�� are

de�ned similarly to yk�� and x��n��k�� respectively� Otherwise� output a z�R�
n�

The running time of M is clearly bounded by a polynomial in n� Now we esti�
mate the probability that the algorithm M outputs f��

n 	w
 correctly� Note that when
F �nds an x� such that h	x
 � h	x�
� then there is an � � m � �	n
 � � such that
insi�n�	ym��� x��n��m��
 	� insi�n�	y

�
m��� x

�
��n��m��
 and insi�n�	yj��� x��n��j��
 � insi�n�	y

�
j���

x���n��j��
 for each m � j � �	n
� Since k is chosen independently of F � the prob�

ability that k � m is ��	�	n
 � �
� So the probability that M outputs f��
n 	w
 cor�

rectly is PrfM outputs f��
n 	w
g � PrfM outputs f��

n 	w
 j F �nds x�g �PrfF �nds x�g �
p	n
�	�	n
� �
�

When p	n
 
 ��Q	n
 for some polynomial Q� i�e�� H is not a one�way hash function
in the sense of UOH�EN ���� we have PrfM outputs f��

n 	w
g � ��Q� where Q� is the
polynomial de�ned by Q�	n
 � Q	n
	�	n
 � �
� In other words� f is not one�way with
respect to the pseudo�random ensemble T � hence not one�way with respect to the uniform
ensemble U 	see the note following De�nition �
� This is a contradiction and the proof is
completed� �

Now let I	n
 � fi�� i�� � � � � it�n�g be known simultaneously hard bits of f with t	n
 �
O	logn
� Let b � bt�n� � � � b�b� � �t�n�� x � �n�t�n� and y � �n� De�ne insI�n�	x� b
 �
xn�t�n� � � �xit�n�bt�n�xit�n��� � � �xi�b�xi��� � � �x�x�� and denote by dropI�n�	y
 a function drop�
ping the i��th� i��th� � � �� it�n��th bits of y� Then by changing dropi�n�	
 to dropI�n�	
� and
xi to xt�n��i����t�n� � � �xt�n��i�����xt�n��i������ the above constructed H is improved to a hash
function that compresses t	n
�	n
�bit input into n�bit output strings�



� CIHs from Distinction�Intractable Permutations

We were not able to prove that the hash function H constructed in Section ��� is also a
CIH� Under a stronger assumption to be stated below� H can be proved to be indeed a
CIH�

Assume that f � D � R is a polynomial time computable function� f is distinction�
intractable at the i	n
�th bit if it is computationally di�cult to �nd a pair of strings
x� y � Dn such that fn	x
 and fn	y
 di�er only at the i	n
�th bit� More precisely� f is
distinction�intractable at the i	n
�th bit if for each probabilistic polynomial time algorithm
M � for each polynomial Q� for all su�ciently large n� Prffn	x
 	�i�n� fn	y
g � ��Q	n
�
where 	x� y
 � M	f
 and x� 	�i�n� x� means that x� and x� di�er only at the i	n
�th bit�
It is not hard to verify that distinction�intractableness implies one�wayness�

Theorem � Assume that f is a permutation that is distinction�intractable at the i	n
�th
bit� Then the hash function H constructed in Section �� is a CIH�

Proof � Assume for contradiction that H is not a CIH� Then there are a polynomial Q�
an in�nite subset N� � N and a probabilistic polynomial time algorithmM such that M
on input h�RHn �nds with probability ��Q	n
 a collision�pair 	x� x�
� for all n � N��

Since h	x
 � h	x�
� there is an � � m � �	n
� � such that insi�n�	ym��� x��n��m��
 	�
insi�n�	y

�
m��� x

�
��n��m��
 and insi�n�	yj��� x��n��j��
 � insi�n�	y

�
j��� x

�
��n��j��
 for each m �

j � �	n
� Here xi� x
�
i� yi and y

�
i are de�ned in the same way as in the proof for Theorem ��

It is not hard to see that fn	insi�n�	ym��� x��n��m��

 and fn	insi�n�	y
�
m��� x

�
��n��m��

 di�er

only at the i	n
�th bit� i�e�� fn	insi�n�	ym��� x��n��m��

 	�i�n� fn	insi�n�	y
�
m��� x

�
��n��m��

�

Thus for each n � N�� M can be used to �nd� with the same probability ��Q	n
� a
pair of strings w	� insi�n�	ym��� x��n��m��

 and w�	� insi�n�	y

�
m��� x

�
��n��m��

 such that

fn	w
 	�i�n� fn	w
�
� This contradicts the assumption that f is distinction�intractable at

the i	n
�th bit� and the theorem follows� �

In �Dam��� a CIH is constructed under the assumption of the existence of claw�free
pairs of permutations� Let f � and f � be permutations over

S
n�

n� Intuitively� 	f �� f �
 is a
claw�free pair of permutations if for all su�ciently large n� it is computationally infeasible
to �nd a pair of strings 	x� y
 such that x� y � �n� x 	� y and f �

n	x
 � f �
n	y
� From a

claw�free pair of permutations 	f �� f �
� one constructs a function h �
S
n�

n�� �
S
n �

n as
follows� For each n� let hn	x

� � x�
 � fx�n 	x�
� where x� � �n and x� � �� Let hn be an
instance of Hn� and let H �

S
nHn� In �Dam��� H was proved to be a CIH�

Now we show a relationship between distinction�intractable permutations and claw�
free pairs of permutations�

Theorem � Assume that f is a permutation that is distinction�intractable at the i	n
�th
bit� Let f � be the permutation de�ned by f �

n	x
 � fn	x
 � �n�i�n���i�n���� where x � �n�
Then 	f� f �
 is a claw�free pair of permutations�

Proof � Assume that we can �nd two strings x� y � �n such that x 	� y and f	x
 � f �	y
�
Then f	x
 � f	y
� �n�i�n���i�n���� i�e� f	x
 	�i�n� f	y
� This is a contradiction� �



It is not clear whether or not the inverse of the above theorem is also true� i�e��
whether or not we can construct a distinction�intractable permutation from a claw�free
pair of permutations�

� Practical One�Way Hash Functions Are Easy to

Find

In this section we show that ideas underlying Theorems � and  can be used to design
practical one�way hash functions� The fastest of these hash functions compress nearly �n�
bit long input into n�bit long output strings by applying only twice a one�way function�

Let f � D � R be a one�way function where D �
S
n�

n� R �
S
n�

m�n� and m
is a polynomial� Let k be a real with k � �� s an integer with s 
 � and �	n
 �
s	n � bn�kc
� Typically� we choose � � k � �� and � � s � �� For each � � �bn�kc�
associate with it a function h� de�ned by� y� � �� y� � tailbn�kc	fn	y� � x

s

� � � � yj �
tailbn�kc	fn	yj�� � x

s�j��

� � � � h�	x
 � fn	ys�� � x
�
� where x � xs � � �x�x� � ���n� and

x�� x�� � � � � xs � �n�bn�kc� Let Hn � fh�j� � �bn�kcg and H �
S
nHn�

In practice� we �rst choose� uniformly at random� a string � from �bn�kc� and �x
it� Then by using the function h� as is de�ned above� we can compress �	n
�bit input
into n�bit output strings� This procedure is called the Hashing Method � and can be used
as a basic step of the serial compressing method de�ned in Lemma � and the parallel
compressing method mentioned in Section ���

We were not able to prove that the hash function H is a CIH or a UOH�EN ����
even under the assumption that � up to n � bn�kc are all simultaneously hard bits of
f � A su�cient condition for H to be a CIH is that it is computationally di�cult to �nd
two distinct strings x� y � �n such that tailbn�kc	fn	x

 � tailbn�kc	fn	y

� A 	secure

public�key encryption function can be viewed as a function satisfying the condition� For
a common�key block cipher� the function from its key space to ciphertext space induced
by a randomly chosen plaintext can also be viewed as a function satisfying the condition�

It seems that� when f is carefully chosen� H is strong enough and also e�cient enough
for practical applications� In the remaining portion of this section� we present two concrete
examples� One is based on the Rabin encryption function� and the other on a common�key
block cipher called xDES� There is another good example based on the RSA encryption
function with low exponents� Discussions for it are analogous to the �rst example� and
hence omitted here�

��� Compressing via the Rabin Encryption Function

Let Mn � pq where p and q are n���bit long randomly generated primes� Denote by
ZMn the residue classes of integers modulo Mn� The Rabin encryption function rabin is
de�ned by rabinn	x
 � x� modMn where x � ZMn� For Blum integersMn� i�e�� p � q � 
	mod �
� it was proved that � up to O	logn
 are simultaneously hard bits of rabin� Now
let k � ��� When n is large 	say 
 ���
� as the authors know� no currently existing
algorithms can e�ciently �nd two distinct elements x� y � ZMn such that the last n���
bits of x� modMn coincide with that of y� modMn�



By the use of the Rabin encryption function and the Hashing Method� we can compress
����bit input to ����bit output strings by performing only twice the multiplication of two
����bit integers modulo an integer of the same length� This procedure can be implemented
very e�ciently� even by software�

��� Compressing via xDES

Let m be a polynomial� Informally� a common�key block cipher with length m	n
 is a pair
of polynomial time computable functions 	encrypt� decrypt
� where encrypt and decrypt
are functions from

S
n�

n � �m�n� to �m�n� that have the following properties�

�� ptxt � decryptn	key� encryptn	key� ptxt

 for all key � �n and all ptxt � �m�n��

�� It is computationally di�cult to �nd ptxt from encryptn	key� ptxt
 for any ptxt �
�m�n�� without knowing key�

Let f be the function from
S
n�

n to
S
n�

m�n� that is de�ned by fn	x
 � encryptn	x� �
�
where ��R�

m�n�� Then each fn can be used to compress strings by the Hashing Method�
To prevent the compressing method from meet�in�the�middle attacks� n should be chosen
in such a way that m	n
 is su�ciently large� say � ���� A rigorous treatment of this
subject can be found in �NS����

Consider the perhaps most widely used modern encryption algorithm DES� According
to our de�nition� DES is the restriction of some common�key block cipher on ��� � ����
DES should not be directly used to compress strings by the Hashing Method� for its key
length is too short� Now we use DES as bricks to build a common�key block cipher called
xDES� Our building method is based on a theory on the construction of secure block
ciphers developed in �ZMI����

Let r be a polynomial with r	i
 
 �i� �� xDES is de�ned by xDES�� xDES�� xDES��
xDES	� � � �� where xDES� is the same as DES and� for each i 
 �� xDESi is a function
from ���r�i�i ����
i to ���
i consisting of r	i
 rounds of Type�� transformations �ZMI����
More details follow�

�� The de�nition for xDES�� Same as DES�

�� The de�nition for xDESi where i 
 �� Let key � keyr�i��i�� � ��keyr�i����keyr�i����� � ��
key��i�� � ��key����key����key��i�� � ��key����key��� and ptxt � ptxt�i�� � ��ptxt��ptxt��
where keyi��i� � ��� and ptxti� � ��� for all � � i� � r	i
� � � i� � i and � � i	 � �i�
Then ctxt � xDESi	key� ptxt
 is computed as follows�

Step �� Let c��� � ptxt�� c��� � ptxt�� � � � � c���i�� � ptxt�i��� c���i � ptxt�i�

Step j� for each � � j � r	i
� Let cj�� � cj����i� cj�� � cj�����DES	keyj��� cj����
� � � � �
cj��i�� � cj����i��� cj��i � cj����i�� �DES	keyj�i� cj����i
�

Step r	i
 � �� Let ctxt � cr�i���i � � � � � cr�i��� � cr�i����

Let r	i
 � �i � � and k � � Using the Hashing Method� we can compress ����bit
input into ����bit output strings by performing only twice xDES�� i�e�� � times DES�

Finally� we note that xDES can also be used in normal encryption�decryption op�
erations� and DES can be replaced by any other secure common�key block encryption
algorithm�
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