Duality between Two
Cryptographic Primitives

Yuliang Zheng
Tsutomu Matsumoto
Hideki Imai

Division of Electrical and Computer Engineering
Yokohama National University
156 Tokiwadai, Hodogaya, Yokohama, 240 JAPAN

Abstract

This paper reveals a duality between constructions of two basic cryptographic
primitives, pseudo-random string generators and one-way hash functions. Applying
the duality, we present a construction for universal one-way hash functions assuming
the existence of one-way permutations. Under a stronger assumption, the existence
of distinction-intractable permutations, we prove that the construction constitutes a
collision-intractable hash function. Using ideas behind the construction, we propose
practical one-way hash functions, the fastest of which compress nearly 2n-bit long
input into n-bit long output strings by applying only twice a one-way function.

1 Introduction

Pseudo-random string generators and one-way hash functions are two basic cryptographic
primitives. Informally, a pseudo-random string generator is a function that on input a
random string called a seed outputs a longer string which can not be efficiently distin-
guished from a truly random one. In contrast, a one-way hash function outputs a short
string on input a long one, with the property that it is computationally difficult to find a
pair of strings that are compressed into the same one. In a sense, pseudo-random string
generators and one-way hash functions behave in a dual fashion.

It has been proved that pseudo-random string generators can be constructed under
the assumption of the existence of one-way functions [ILL89]. However, at the time
when this paper was written, the best known result on the construction of (universal)
one-way hash functions was based on the assumption of the existence of one-way quasi-
injections [ZMI90a]. (See also [ZMI90b].) The aim of this research is to explore the
intuition that there is a duality between pseudo-random string generators and one-way
hash functions, and to apply techniques developed for the former to the construction of
the latter under weaker assumptions. Though our aim has not been achieved yet, we

obtain a new construction for (universal) one-way hash functions assuming the existence
of one-way permutations. Using the construction, we design hash functions that are very
efficient and seem to be also one-way.

The paper is organized as follows. In Section 2, we introduce notions and notation.
In Section 3, we discuss a duality between the construction of pseudo-random string
generators and that of one-way hash functions. Applying the duality, we present in Section
4 a construction for universal one-way hash functions assuming the existence of one-
way permutations. Under a stronger assumption, the existence of distinction-intractable
permutations, we prove in section 5 that the construction constitutes a collision-intractable
hash function. In Section 6, we use ideas behind the construction to design practical
(supposed) one-way hash functions. The fastest of these functions compress nearly 2n-bit
long input into n-bit long output strings by applying only twice a one-way function.

2 Terminology and Preliminaries

The set of all positive integers is denoted by N. Let ¥ = {0,1} be the alphabet we
consider. For n € N, denote by X" the set of all strings over 3 with length n, by ¥* that
of all finite length strings including the empty string, denoted by A, over ¥, and by ¥+
the set ¥* — {A}. The concatenation of two strings z,y is denoted by z ¢y, or simply
by zy if no confusion arises. When z,y € X", the bit-wise mod2 addition, also called the
exclusive-or (XOR), of x and y is denoted by = @ y. The length of a string z is denoted
by |z|, and the number of elements in a set S is denoted by £S.

Let ¢ be a monotone increasing function from N to N, and f a (total) function from
D to R, where D = U, D,,D,, C ¥* and R = U, Rn, R, C 2. D is called the
domain, and R the range of f. In this paper it is assumed, unless otherwise specified,
that D, = X" and R,, = 2. Denote by f, the restriction of f on ¥". We are concerned
only with the case when the range of f, is /™) i.e., f, is a function from £" to L™, f
is an injection if each f, is a one-to-one function, and is a permutation if each f, is a one-
to-one and onto function. f is (deterministic/probabilistic) polynomial time computable
if there is a (deterministic/probabilistic) polynomial time algorithm (Turing machine)
computing f(z) for all z € D. The composition of two functions f and g is defined as
fog(z) = f(g(z)). In particular, the i-fold composition of f is denoted by f@.

A (probability) ensemble E with length ¢(n) is a family of probability distributions
{E,|E, : ¥¥™ —[0,1],n € N}. The uniform ensemble U with length £(n) is the family
of uniform probability distributions U,, where each U, is defined as U,(z) = 1/2" for
all z € £, By z €5 L we mean that z is randomly chosen from $4™ according
to E,, and in particular, by z€xzS we mean that = is chosen from the set S uniformly
at random. FE is samplable if there is a (probabilistic) algorithm M that on input n
outputs an z € XM and polynomially samplable if furthermore, the running time of M
is polynomially bounded.

2.1 Pseudo-random String Generators and One-Way Functions

Let ¢ be a polynomial. A statistical test is a probabilistic polynomial time algorithm T
that, on input a string z, outputs a bit 0/1. Let E' and E? be ensembles both with
length ¢(n). E' and E? are called indistinguishable from each other if for each statistical
test T, for each polynomial @, for all sufficiently large n, | Pr{T(x;) = 1} — Pr{T'(z3) =
1} < 1/Q(n), where x; €5 X 1y €52 ¥4, A polynomially samplable ensemble E
is pseudo-random if it is indistinguishable from the uniform ensemble U with the same
length.

Now we further assume that ¢ is a polynomial with ¢(n) > n. A string generator
extending n-bit input into £(n)-bit output strings is a deterministic polynomial time
computable function g : D — R where D = |J, X" and R = |J, £™. ¢ will be denoted
also by ¢ = {g, | n € N}. Let ¢,(U) be the probability distribution defined by the
random variable g, (z) where z€g¥", and let g(U) = {g.(U) | n € N}. Clearly, ¢g(U)
is polynomially samplable. The following definition can be found in [Yao82] (see also
[BM84], [GGMS86] and [ILL89]).

Definition 1 g = {g, | n € N} is a (cryptographically secure) pseudo-random string
generator (PSG) if g(U) is pseudo-random.

One-way function is the basis of most of modern cryptographic functions and protocols
[IL89]. The following definition is from [ILL89].

Definition 2 Let f : D — R, where D = U, X" and R = U, 2™, be a polynomial
time computable function, and let E be an ensemble with length n. We say that (1) f is
one-way with respect to E if for each probabilistic polynomial time algorithm M, for each
polynomial Q and for all sufficiently large n, Pr{f,(z) = f,(M(fn.(2)))} < 1/Q(n), when
x €g Dy. (2) f is one-way if it is one-way with respect to the uniform ensemble U with
length n.

We note that a function f is one-way (with respect to the uniform ensemble U with
length n) iff f is one-way with respect to all pseudo-random ensembles with the same
length. This fact will be used in the proof for Theorem 2. Next we introduce the concept
of (simultaneously) hard bits.

Definition 3 Assume that f : D — R is a one-way function, where D =J, X" and R =
U,, 2™ Also assume that iy, s, . . ., i are functions from N to N, with 1 < i;(n) <n for
each 1 < j <t. Denote by E! and E? the probability distributions defined by the random
variables Ti () * * * Tiy(n)Ti, ()0 f () and vy - - -rory o f (1) respectively, where t€RY", x5, () is
the ij(n)-th bit of v and rj€gX. Let E' = {E} | n € N} and E* = {E? | n € N}. We say
that (1) i1(n) is a hard bit of f if for each probabilistic polynomial time algorithm M, for
each polynomial Q) and for all sufficiently large n, Pr{M(f,(z)) = z)} < 1/2+1/Q(n),
where x€RX" and xi) is the i1(n)-th bit of an z' € X" satisfying f(x) = f(2'). (2)
i1(n),is(n), ..., i(n) are simultaneously hard bits of f if E* and E? are indistinguishable
from each other.

2.2 One-Way Hash Functions

There are basically two kinds of one-way hash functions: wuniversal one-way hash func-
tions and collision-intractable hash functions (or shortly UOHs and CIHs, respectively).
In [Mer89] the former is called weakly and the latter strongly, one-way hash functions re-
spectively. Naor and Yung gave a formal definition for UOH [NY89], and Damgard gave
for CIH [Dam89]. The definition for UOH to be given below is from [ZMI90a] [ZMI90b]
in which many other results, such as a construction for UOHs assuming the existence of
one-way quasi-injections, are presented.

Let ¢ and m be polynomials with ¢(n) > m(n), H be a family of functions defined by
H = U, H, where H, is a (possibly multi-)set of functions from 4™ to ¥™™ . Call H
a hash function compressing £(n)-bit input into m(n)-bit output strings. For two strings
r,y € 2 with z # y, we say that x and y collide under h € H,, or (z,%) is a collision
pair for h, if h(x) = h(y).

H is polynomial time computable if there is a polynomial (in n) time algorithm com-
puting all h € H, and accessible if there is a probabilistic polynomial time algorithm that
on input n € N outputs uniformly at random a description of h € H,,. All hash functions
considered in this paper are both polynomial time computable and accessible.

Let H be a hash function compressing ¢(n)-bit input into n-bit output strings, and F
an ensemble with length ¢(n). The definition for UOH is best described as a three-party
game. The three parties are S (an initial-string supplier), G (a hash function instance
generator) and F' (a collision-string finder). S is an oracle whose power is un-limited, and
both G and F' are probabilistic polynomial time algorithms. The first move is taken by
S, who outputs an initial-string x €5 L4 and sends it to both G and F. The second
move is taken by GG, who chooses, independently of x, an h€grH,, and sends it to F'. The
third and also final (null) move is taken by F', who on input x € X" and h € H,, outputs
either “?” (I don’t know) or a string y € 4™ such that = # y and h(z) = h(y). F wins
a game iff his/her output is not equal to “?”. Informally, H is a universal one-way hash
function with respect to E if for any collision-string finder F', the probability that F' wins
a game is negligible. More precisely:

Definition 4 Let H be a hash function compressing ¢(n)-bit input into n-bit output
strings, P a collection of ensembles with length ¢(n), and F a collision-string finder.
H is a universal one-way hash function with respect to P, denoted by UOH/P, if for each
E € P, for each F, for each polynomial Q, and for all sufficiently large n, Pr{F(x,h) #
?} < 1/Q(n), where x and h are independently chosen from 4™ and H,, according to E,
and to the uniform distribution over H, respectively, and the probability Pr{F(x,h) #7}
is computed over S H, and the sample space of all finite strings of coin flips that F
could have tossed.

If F is an ensemble with length ¢(n), UOH/FE is synonymous with UOH/{E}. In this
paper we only consider one version of UOH that is denoted by UOH/EN|[{], where EN|{] is
the collection of all ensembles with length ¢(n). Other versions such as UOH/PSE[(] and
UOH/U are also of interest, where PSE[{] is the collection of all polynomially samplable

ensembles and U is the uniform ensemble, all with length ¢(n). Relationships among
various versions of one-way hash functions including UOH/EN[¢], UOH/PSE[(], UOH/U

and CIH are discussed in [ZMI90a] [ZMI90b]. Of the results obtained in the two papers
the most important is that one-way hash functions in the sense of UOH/EN[{] exist iff
those in the sense of UOH/U exist.

We end this section with a definition for CIH that corresponds to collision free function
family given in [Dam89]. Let A, a collision-pair finder, be a probabilistic polynomial time
algorithm that on input h € H, outputs either “?” or a pair of strings =,y € £ with
x # y and h(z) = h(y).

Definition 5 H is called a collision-intractable hash function (CIH) if for each A, for
each polynomial Q), and for all sufficiently large n, Pr{A(h) #7} < 1/Q(n), where he g H,,
and the probability Pr{A(h) #7} is computed over H, and the sample space of all finite
strings of coin flips that A could have tossed.

3 Extending and Compressing Methods

In this section we discuss a duality between the construction of pseudo-random string
generators and that of one-way hash functions. Throughout this section, ¢ and s are
integers, (o, (1, ..., s are polynomials in n with y(n) = n and ¢;(n) < £;11(n), and k is a
polynomial in n such that ¢ - k(n) > n. Denote by ¢ the polynomial ¢ - k.

3.1 Serial Versions

Two extending and two compressing methods which are serial in nature are introduced
below. Lemma 1 (serial-extending 1) is the dual of Lemma 3 (serial-compressing 1), and
Lemma 2 (serial-extending 2) is that of Lemma 4 (serial-compressing 2).

3.1.1 Serial Extending Lemmas

For each 0 < i < s—1, let ¢' = {g° | n € N} be a PSG extending ¢;(n)-bit input into
l;11(n)-bit output strings. The following lemma is a direct consequence of the definition
for PSG.

Lemma 1 (serial-extending 1) Let g = {g, = g5 ' 0g520---0g¢% | n € N}. Then g
is a PSG extending n-bit input into {s(n)-bit output strings.

A PSG extending n-bit input into (n + t)-bit output strings is called a t-extender. Let
y be a finite length string. Denote by head;(y) the first ¢ bits and by tail;(y) the last i
bits of y. The following lemma is due to Boppana and Hirschfeld [BH89].

Lemma 2 (serial-extending 2) Let e = {e, | n € N} be a t-extender. For an n-bit
string =, let bj(z) = head, o e, o (tail, o e,)*V(z), where 1 < i < k(n). Let g, be the
function defined by gn(x) = by (x) ©---0by(x) o bi(x). Then g = {g, | n € N} is a PSG
extending n-bit input into £(n)-bit output strings.

3.1.2 Serial Compressing Lemmas

Foreach 1 < i < s, let H = J,, H' be a UOH/EN[¢;] (or CIH) compressing ¢;(n)-bit input
into ¢;_1(n)-bit output strings. Naor and Yung proved the following serial compressing
lemma [NY89].

Lemma 3 (serial-compressing 1) Let H = J,, H,, where H, = {h =hjohyo---ohy |
h; € H:,1 < i < s}. Then H is a UOH/EN[l,] (or CIH) compressing {s(n)-bit input
into n-bit output strings.

Let ¢'(n) = n+t, and let C = |, C,, be a UOH/EN[{'] (or CIH) compressing ¢'(n)-bit
input into n-bit output strings. Such a UOH/EN[¢'] (or CIH) is called a t-compressor.
Then we have the following lemma that is a restricted version of Theorem 3.1 of [Dam89].
The main idea behind the lemma also appeared in [Mer89], where it was called the “meta-
method”.

Lemma 4 (serial-compressing 2) Let C' = U, C,, be a t-compressor. For each ¢ € C,,
and each o € X", let heo be the function defined by heo(z) = c(--- (c(a © bpwmy(x)) ©
biny—1(2)) - - -0by(x)), where ¥ = xyp) - - - 21 is an £(n)-bit string and b;(x) = Tyi—1)4¢ - - -
Tyi—1y42Te(i—1)+1- Let Hy, = {heolc € Cp,a € X}, and H = U, H,. Then H is a
UOH/EN|{] (or CIH) compressing {(n)-bit input into n-bit output strings.

3.2 Parallel Versions

In their nice paper [GGMS86], Goldreich et al. presented a method for constructing pseudo-
random functions from pseudo-random string generators. Their construction provides us
a configuration for generating pseudo-random strings in parallel, when given polynomially
many processors. This observation is the very basis of Micali and Schnorr’s parallel PSGs
[MSc88]. On the other hand, a parallel hashing method was considered in several papers
such as [WC81], [NY89] and [Dam89]. Duality between these two methods is clear. Details
are omitted here.

4 PSGs and UOHs from One-Way Permutations

Throughout this section, it is assumed that f is a one-way permutation on D = {J,, X",
and that ¢(n) has been proved to be a hard bit of f.

4.1 PSGs from One-Way Permutations

Denote by extract;(z) a function extracting the i-th bit of x € ¥". The following theorem
is due to Blum and Micali [BM84].

Theorem 1 Let ¢ be a polynomial with {(n) > n, and let g, be the function defined by
gn () = by () -+~ ba()b1 () where v € T and b;(x) = extract;,)(fY(z)). Then under

the assumption that f is a one-way permutation, g = {gn|n € N} is a PSG extending
n-bit input into £(n)-bit output strings.

The efficiency of g can be improved by changing extract;:,,)() to a function that extracts
all known simultaneously hard bits of f.

4.2 UOHs from One-Way Permutations

Forb € ¥, v € ¥" ! and y € ¥, define ins;(x,b) = ,_ 175 9+ x;bx;_1 -+ 2271, and
denote by drop,(y) a function dropping the i-th bit of y. As the dual of Theorem 1, we
have the following result.

Theorem 2 Let { be a polynomial with {(n) > n, a € X" and x = Ty(n) " - - Towy where
x; € X for each 1 < i < (n). Let hy be the function from L™ to X" defined by: yy =
a, Y1 = dropz(n)(fn (lnsz(n) (y()a xl(n))))a Yy = dropz(n) (fn(lnsz(n) (yj—la xl(n)fj+1)))a)
ho(x) = fr(i08in) (Yem)—1,1)). Let Hy, = {ho | @ € ¥ '} and H = U,, H,. Then under
the assumption that f is a one-way permutation, H is « UOH/EN[{] compressing {(n)-bit
input into n-bit output strings.

Proof : Assume that E is an initial-string ensemble and F' a collision-string finder.
Let €5 Y. We show that if F' finds with probability p(n) a string 2’ such that
h(x) = h(z'") where hegrH,,, then there is a probabilistic polynomial time algorithm M
that finds, with probability greater than p(n)/(¢(n) — 1), the inverse f'(w) of an n-bit
string w €7 X", where T is a pseudo-random ensemble.

The proving procedure consists of three parts. In the first part, we show that every
execution of f, in h defines two pseudo-random ensembles S/ and R/, if a€zX""'. From
each S’ we construct another pseudo-random ensemble 7. In the second part, we con-
struct a probabilistic polynomial time algorithm M. M first obtains w € X", where T
is an ensemble chosen uniformly at random from all ensembles 77. Then it computes the
inverse f, !(w) by the use of the collision-string finder F. In the third part we estimate
the probability that M outputs f, ' (w) correctly.

Let S, be the probability distribution defined by f,, (ins; (@, ¢()), where aegX™ !
and () is the last bit of 2 €5 ™. Let S' = {S! | n € N}. Clearly S is polynomially
samplable (when x €5 2 is given). Now we show that S' is indistinguishable from the
uniform ensemble.

Let A be a probabilistic polynomial time algorithm. For v € X, denote by Pr” the
probability that A outputs 1 on input f,(ins;p) (e, v)). Since acgX™ ! and i(n) is a
hard bit of f (by assumption), we can think of 2z = f,(ins;xn) (v, Z¢m))) as a probabilistic
encryption of) [GM84]. Thus for any probabilistic polynomial time algorithm A, for
any polynomial @, for all sufficiently large n, we have | Pt —Pr'| < 1/Q(n). Now let
v€RY. Then Pr’ = Pr’ . Pr{v = 0} + Pr' - Pr{v = 1} = (Pr” + Pr')/2, and hence
|Pr¥ — Pr°| = |Pr” — Pr'| = |Pr® — Pr'|/2 < 1/2Q(n). This implies that |[Pr’ — Prém| <
1/2Q(n), no matter how 2 is chosen from . Note that when a€grX""! and vERY, we
have f, (ins;n) (o, v))ERX", since f is a permutation. From these discussions, we see that
S! is indeed pseudo-random.

Let R = {R, | n € N}, where R is defined by drop;, (fn(insim) (@, Z¢()))). Then R
is also pseudo-random.

Let S? = {S2 | n € N}, where S? is defined by f,(ins;u) (8, Zgn)-1)), 6 € "' and
Tyn)—1 is the second last bit of z €p 24" Then S? is also pseudo-random, for otherwise
there would be a statistical test distinguishing R' from the uniform ensemble with length
n — 1. Similarly, for each 2 < j < ¢(n), we can define S7, R’ and prove that they are both
pseudo-random.

For each S/, 1 < j < #(n) — 1, define T7 as follows: w €p; X" is produced by
first generating a string w' €g; X", then reversing the i(n)-th bit of v, i.e., w = w' &
0n=i 101 = £, (insin) (Y; 1, Ten)—j1)) ® 0" E@ 101 =1 where 0° denotes the all-0
string of length i and @ the bit-wise exclusive-or operation on two strings. Obviously, T”
is also pseudo-random.

We are ready to describe the algorithm M. Let O be an oracle that on input n € N
outputs a string x €5 L4,

Algorithm M:
1. Choose a€pr¥"!.
2. Query the oracle O with n. Let the answer by O be z. Note that x €5 S,

Choose at random a 1 < k < ¢(n) — 1, and let T = T*.

- W

Let w = fo(insin) (Yk—1, Tem)—k+1)) @ 0~ 1011 je. choose a w € X"

5. Query the collision-string finder F' with n,h and z. If F' finds a string z' such
that h(x) = h(z'), then output ins;() (Yj_1, Thgm) 1), Where yp_y and zj,,) ., are
defined similarly to y_; and)41 respectively. Otherwise, output a z€p%".

The running time of M is clearly bounded by a polynomial in n. Now we esti-
mate the probability that the algorithm M outputs f,'(w) correctly. Note that when
F finds an z’ such that h(x) = h(z'), then there is an 1 < m < {(n) — 1 such that
inS;(n) (Ym—1, Te(m)—m+1) 7 0Si(n) (Y15 To(n)—mey1) A0 I08i(0) (Yj-1, Te(n)—j41) = I0Si(n) (Y51,
x’é(n)fjﬂ) for each m < j < {¢(n). Since k is chosen independently of F', the prob-
ability that &k = m is 1/(¢(n) — 1). So the probability that M outputs f'(w) cor-
rectly is Pr{M outputs f,'(w)} > Pr{M outputs f, '(w) | F finds 2’} -Pr{F finds 2’} =
p(n)/(€(n) —1).

When p(n) > 1/Q(n) for some polynomial @, i.e., H is not a one-way hash function
in the sense of UOH/EN[{], we have Pr{M outputs f,'(w)} > 1/Q" where Q' is the
polynomial defined by @'(n) = Q(n)(¢(n) — 1). In other words, f is not one-way with
respect to the pseudo-random ensemble 7', hence not one-way with respect to the uniform
ensemble U (see the note following Definition 2). This is a contradiction and the proof is
completed. g

Now let I(n) = {iy,42,...,0mn)} be known simultaneously hard bits of f with #(n) =
O(logn). Let b = by - boby € S, 2 € 71 and y € X", Define insyg(z,b) =
T t(n) " ** Tigg,Oi(n) Tiyy—1* * * Tiy 1Ty 1 - 971, and denote by dropy, (y) a function drop-
ping the 7;-th, is-th, ..., isy)-th bits of y. Then by changing drop,,)() to drop;,(), and
Ti $0 Ty(n)(i—1)+t(n) * * * Ti(n)(i—1)+2Tt(n)(i—1)+1, the above constructed H is improved to a hash
function that compresses ¢(n)f(n)-bit input into n-bit output strings.

5 CIHs from Distinction-Intractable Permutations

We were not able to prove that the hash function H constructed in Section 4.2 is also a
CIH. Under a stronger assumption to be stated below, H can be proved to be indeed a
CIH.

Assume that f : D — R is a polynomial time computable function. f is distinction-
intractable at the i(n)-th bit if it is computationally difficult to find a pair of strings
x,y € D, such that f,(x) and f,(y) differ only at the i(n)-th bit. More precisely, f is
distinction-intractable at the i(n)-th bit if for each probabilistic polynomial time algorithm
M, for each polynomial @, for all sufficiently large n, Pr{f.(x) #in) fau(y)} < 1/Q(n),
where (z,y) = M(f) and xy #(,) 22 means that 2, and x, differ only at the i(n)-th bit.
It is not hard to verify that distinction-intractableness implies one-wayness.

Theorem 3 Assume that f is a permutation that is distinction-intractable at the i(n)-th
bit. Then the hash function H constructed in Section 4.2 is a CIH.

Proof : Assume for contradiction that H is not a CIH. Then there are a polynomial @,
an infinite subset N’ C IN and a probabilistic polynomial time algorithm M such that M
on input h€gH, finds with probability 1/Q(n) a collision-pair (x, '), for all n € N'.
Since h(z) = h(z'), there is an 1 < m < {(n) — 1 such that ins;y) (Ym—1, Ten)-m+1) 7#
Si(n) (Y15 Togny—m1) a0 i08i) (-1, Togny—j+1) = i0Si(n) (Y1, oy —j1) for each m <
j < {(n). Here x;,z},y; and y, are defined in the same way as in the proof for Theorem 2.
It is not hard to see that f, (ins;m) (Ym—1, Ten)—m+1)) and fr, (ins;m) (Yr,_1, x’e(n)_mﬂ)) differ
only at the i(n)-th bit, i.e., fn(inSim) (Ym—1, Tem)-—m+1)) Fitm) fn(iDSim) (Yrn_1, xj_,(n)fmﬂ)).
Thus for each n € N’, M can be used to find, with the same probability 1/Q(n), a
pair of strings w(= insiu) (Ym—1, Ten)-m+1)) and w'(= inSim) (Y1, Ton)—m1)) such that
fu(w) #imy fn(w'). This contradicts the assumption that f is distinction-intractable at
the i(n)-th bit, and the theorem follows. O

In [Dam89] a CIH is constructed under the assumption of the existence of claw-free
pairs of permutations. Let fO and f' be permutations over |J, ¥". Intuitively, (f°, f!) is a
claw-free pair of permutations if for all sufficiently large n, it is computationally infeasible
to find a pair of strings (z,y) such that z,y € X", z # y and f°(x) = f}(y). From a
claw-free pair of permutations (f°, f!), one constructs a function h : U, ¥"*' — U, I" as
follows: For each n, let h,(z' ¢ x1) = f¥(2'), where 2’ € ¥™ and z; € ¥. Let h, be an
instance of H,, and let H = {J,, H,. In [Dam89] H was proved to be a CIH.

Now we show a relationship between distinction-intractable permutations and claw-
free pairs of permutations:

Theorem 4 Assume that f is a permutation that is distinction-intractable at the i(n)-th
bit. Let f' be the permutation defined by f'(x) = fu(z) ® 0*~™10M™ =1 where x € B".
Then (f, f') is a claw-free pair of permutations.

Proof: Assume that we can find two strings x, y € 3" such that x # y and f(x) = f'(y).
Then f(z) = f(y) @ 0" ™M10{M 1 ie. f(x) #iwm f(y). This is a contradiction. O

It is not clear whether or not the inverse of the above theorem is also true, i.e.,
whether or not we can construct a distinction-intractable permutation from a claw-free
pair of permutations.

6 Practical One-Way Hash Functions Are Easy to
Find

In this section we show that ideas underlying Theorems 2 and 3 can be used to design
practical one-way hash functions. The fastest of these hash functions compress nearly 2n-
bit long input into n-bit long output strings by applying only twice a one-way function.

Let f : D — R be a one-way function where D = U, %", R = U, ~™™ and m
is a polynomial. Let k be a real with k& > 1, s an integer with s > 2 and {(n) =
s(n — [n/k]). Typically, we choose 1 < k < 10 and 2 < s < 5. For each a € Xl"/k,
associate with it a function h, defined by: yo = a,y; = tail |, (fulyo © 2°)),...y; =
tail k) (fo(yjm1 © 2°9HY), L ho(2) = fu(ys—1 © zt). where z = 2°-- 222! € T and
gt a? o a0 € Xkl Let H, = {ho|a € 2%k} and H = U, H,,.

In practice, we first choose, uniformly at random, a string « from Sk and fix
it. Then by using the function h, as is defined above, we can compress ¢(n)-bit input
into n-bit output strings. This procedure is called the Hashing Method, and can be used
as a basic step of the serial compressing method defined in Lemma 4 and the parallel
compressing method mentioned in Section 3.2.

We were not able to prove that the hash function H is a CIH or a UOH/EN|[/],
even under the assumption that 1 up to n — [n/k| are all simultaneously hard bits of
f. A sufficient condition for H to be a CIH is that it is computationally difficult to find
two distinct strings x,y € X" such that tailj, | (fo(2)) = tailje (fa(y)). A (secure)
public-key encryption function can be viewed as a function satisfying the condition. For
a common-key block cipher, the function from its key space to ciphertext space induced
by a randomly chosen plaintext can also be viewed as a function satisfying the condition.

It seems that, when f is carefully chosen, H is strong enough and also efficient enough
for practical applications. In the remaining portion of this section, we present two concrete
examples. One is based on the Rabin encryption function, and the other on a common-key
block cipher called xDES. There is another good example based on the RSA encryption
function with low exponents. Discussions for it are analogous to the first example, and
hence omitted here.

6.1 Compressing via the Rabin Encryption Function

Let M, = pq where p and ¢ are n/2-bit long randomly generated primes. Denote by
Zr, the residue classes of integers modulo M,,. The Rabin encryption function rabin is
defined by rabin,(z) = x? mod M,, where x € Z);,. For Blum integers M, i.e.,p=q =3
(mod 4), it was proved that 1 up to O(logn) are simultaneously hard bits of rabin. Now
let £ = 10. When n is large (say > 500), as the authors know, no currently existing
algorithms can efficiently find two distinct elements x,y € Z;, such that the last n/10
bits of 22 mod M,, coincide with that of y* mod M,,.

By the use of the Rabin encryption function and the Hashing Method, we can compress
900-bit input to 500-bit output strings by performing only twice the multiplication of two
500-bit integers modulo an integer of the same length. This procedure can be implemented
very efficiently, even by software.

6.2 Compressing via xDES

Let m be a polynomial. Informally, a common-key block cipher with length m(n) is a pair
of polynomial time computable functions (encrypt, decrypt), where encrypt and decrypt
are functions from U, X" x ¥™™ to £™™) that have the following properties:

1. ptxt = decrypt, (key, encrypt,(key, ptzt)) for all key € X" and all ptot € ¥,

2. Tt is computationally difficult to find ptzt from encrypt, (key, ptzt) for any ptrzt €
™" without knowing key.

Let f be the function from U, X" to U, ™™ that is defined by f,(z) = encrypt,(z,),
where a€zX™™ . Then each f, can be used to compress strings by the Hashing Method.
To prevent the compressing method from meet-in-the-middle attacks, n should be chosen
in such a way that m(n) is sufficiently large, say > 120. A rigorous treatment of this
subject can be found in [NS90].

Consider the perhaps most widely used modern encryption algorithm DES. According
to our definition, DES is the restriction of some common-key block cipher on X% x ¥64,
DES should not be directly used to compress strings by the Hashing Method, for its key
length is too short. Now we use DES as bricks to build a common-key block cipher called
xDES. Our building method is based on a theory on the construction of secure block
ciphers developed in [ZMI89].

Let r be a polynomial with r(i) > 2i + 1. xDES is defined by xDES?, xDES!, xDES?,
xDES?, - -, where xDES is the same as DES and, for each i > 1, xDES' is a function
from Y°67(0)7 x 331280 £ 3128 consisting of (i) rounds of Type-2 transformations [ZMI89).
More details follow.

1. The definition for xDES?: Same as DES.

2. The definition for xDES’ where i > 1: Let key = key, ()0 - -okey, (i) 2 0keyy(iy,1 0+ - -©
keys ;o - -okeys sokeys 10keyy jo - -okeyr ookey, 1 and ptat = ptaty;o- - -optatyoptaty,
where key;, ;, € ¥° and ptat;, € X% forall1 <4y <r(i),1 <iy <diand 1 <iz < 2.
Then ctzt = xDES!(key, ptat) is computed as follows:

Step 0: Let co,1 = ptaty, coo = ptaty, -, coi-1 = ptato; 1, Cogi = ptaty.

Step j, foreach 1 < j < r(i): Let ¢;1 = ¢j_1,9,¢j2 = ¢j_11®DES(key;j1,¢j-12), -,
Cj2i—1 = Cj—1,2i-2,Cj2i = Cj—1,2i—1 D DES(keyj,ia Cj—l,Zi)-

Step 7(i) + 1: Let ctat = ¢y, 0+ © Cr(iy2 © Cr(iy,1 -

Let r(i) = 2i +1 and k£ = 3. Using the Hashing Method, we can compress 224-bit

input into 128-bit output strings by performing only twice xDES!, i.e., 6 times DES.

Finally, we note that xDES can also be used in normal encryption/decryption op-

erations, and DES can be replaced by any other secure common-key block encryption
algorithm.

References

[BM84] M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudo-random bits, STAM J. on Comp. 13 (1984) 850-864.

[BH89] R. Boppana and R. Hirschfeld, Pseudorandom generations and complexity classes,
in: S. Micali, ed., Randomness and Computation, (JAI Press Inc., 1989) 1-26.

[Dam89] I. Damgard, A design principle for hash functions, Presented at Crypto’89
(1989).

[GGM86] O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions,
J. of ACM 33 (1986) 792-807.

[GM84] S. Goldwasser and S. Micali, Probabilistic encryption, J. of Comp. and Sys. Sci.
28 (1984) 270-299.

[ILL89] R. Impagliazzo, L. Levin and M. Luby, Pseudo-random generation from one-way
functions, Proc. of the 21-th ACM STOC (1989) 12-24.

[IL89] R.Impagliazzo and M. Luby, One-way functions are essential for complexity based
cryptography, Proc. of the 30-th IEEE FOCS (1989) 230-235.

[Mer89] R. Merkle, One way hash functions and DES, Presented at Crypto’89 (1989).

[MSc88] S. Micali and C.P. Schnorr, Super-efficient, perfect random number generators,
in: S. Goldwasser, ed., Proc. of Crypto’88, (Springer-Verlag, 1990) 173-198.

[NY89] M. Naor and M. Yung, Universal one-way hash functions and their cryptographic
applications, Proc. of the 21-th ACM STOC (1989) 33-43.

[NS90] K. Nishimura and M. Sibuya, Probability to meet in the middle, J. of Cryptology
2 (1990) 13-22.

[WC81] M. Wegman and J. Carter, New hash functions and their use in authentication
and set equality, J. of Comp. and Sys. Sci. 22 (1981) 265-279.

[Yao82] A. Yao, Theory and applications of trapdoor functions, Proc. of the 23-th IEEE
FOCS (1982) 80-91.

[ZMI89] Y. Zheng, T. Matsumoto and H. Imai, On the construction of block ciphers
provably secure and not relying on any unproved hypotheses, Presented at Crypto’89,
(1989).

[ZMI90a] Y. Zheng, T. Matsumoto and H. Imai, Connections among several versions of
one-way hash functions, Proc. of IEICE of Japan E73 (July 1990).

[ZMI90b] Y. Zheng, T. Matsumoto and H. Imai, Structural properties of one-way hash
functions, Presented at Crypto’90, (1990).

n-Bit Input

go,n
/ Jin \
¢ e *
' b
/ Js—1,n \

! !

l5(n)-Bit Output

Figure 1: Serial-Extending 1

n-Bit Input

t Bits

Y

t - k(n)-Bit Output

Figure 2: Serial-Extending 2

ls(n)-Bit Input

n-Bit Output

Figure 3: Serial-Compressing 1

t - k(n)-Bit Input

n-Bit Output

Figure 4: Serial-Compressing 2

n-Bit Input
!

Jr
Jr
¢...|

Jn

||

¢(n)-Bit Output

Figure 5: Construction of PSG

¢(n)-Bit Input

Jn

n-Bit Output

Figure 6: Construction of UOH/EN[/(]

