Breaking Smart Card Implementations of
ElGamal Signature and Its Variants *

Yuliang Zheng! and Tsutomu Matsumoto?

! Monash University, Frankston, Melbourne, VIC 3199, Australia
yzheng@fcit.monash.edu.au
2 Yokohama National University, 156 Tokiwadai, Hodogaya, Yokohama 240, Japan
tsutomu@mlab.dnj.ynu.ac.jp

Abstract. We suggest several methods that may allow one to com-
pletely break cryptosystems implemented in a portable hardware device
such as a smart card. These cryptanalytic methods work by exploring
the hardware in such a way that the pseudo-random number generator
embedded in the device behaves predictably, even for a very short period
of time. While these attacking methods will be discussed by standing in
the position of an attacker, our genuine intention is to serve as an alarm
for users, developers and researchers in information security.

1 Cryptanalysis by Exploring Hardware Faults

On 25 September, 1996, Bellcore announced that D. Boneh, R. DeMillo (both of
Bellcore) and R. Lipton (of Princeton University) have found that RSA signature
generation/decryption key that is stored in a “tamper-proof” device such as a
smart card may be extracted by an attacker who is in possession of the device [4].
The media release explains that the attack works by subjecting the tamper-proof
device to certain types of physical stresses that would cause it to generate faulty
computations. Technical details on the attack were later published in [7]. Prior
to this, on 23 October 1996, six researchers from the National University of
Singapore demonstrated in detail how an attacker may extract a secret RSA key
stored in a “tamper-proof” device, again by subjecting the device to physical
stresses [3].

The above attacks have been considered specifically for smart card implemen-
tations of public key cryptosystems (including decryption, signature, authentica-
tion and identification). A few weeks after Bellcore’s media release, however, Bi-
ham and Shamir announced, with sufficient technical details, that practically all
smart card implementations of private key cryptosystems (such as DES, IDEA,
FEAL, ...) may be broken within the same attack model where an attacker
may introduce hardware faults into a “tamper-proof” device [6]. In less than
two weeks’ time, Biham and Shamir pushed their cryptanalysis further to show
that hardware faults may allow one to break a smart card implementation of a
private key cryptosystem whose algorithmic details are not public (for instance,

* Presented at the Rump Session of Asiacrypt’96, Kyongju, Korea, 5 November 1996.



the Skipjack cryptosystem) [5]. A further improvement to their attack can be
found in [1].

These attacks work primarily under the assumption that a computation pro-
cess within a smart card may result in a faulty outcome, or an attacker may
somehow flip a few bits in a secret key stored in a register. In this paper, we take
a different approach. In particular, we concern ourselves with pseudo-random
number generation which is a core part of most cryptosystems. Our cryptan-
alytic methods work by exposing a device to physical stresses in such a way
that a pseudo-random number generator (PRG) embedded in the device be-
haves predictably. Although our discussions will be mainly about smart card
implementations of ElGamal digital signature scheme, they can be easily gener-
alized to virtually all cryptosystems that rely on randomness for the assurance
of their security.

2 ElGamal Signature and Its Variants

ElGamal digital signature is based on the hardness of computing discrete loga-
rithm over a large finite field. It involves two parameters public to all users:

1. p: a large prime.
2. g: an integer in [1,...,p — 1] with order p — 1 modulo p.

User Alice’s secret key is an integer z, chosen randomly from [1,...,p — 1]
with z,/ (p — 1) (i.e., z, does not divide p — 1), and her public key is y, =
g%+ mod p.

Alice’s signature on a message m is composed of two numbers r and s which
are defined as

r = ¢°mod p
hash —Z,
; _ has (m) — =z " od (p—1)
x
where z is a random number from [1,...,p — 1] with 2/ (p — 1). It should be

stressed that = must be chosen independently at random every time a message
is to be signed by Alice.
Given (m,r,s), one can verify whether ghesh(m) —= yr - r*mod p is satisfied.
(r,s) is regarded as Alice’s valid signature on m only if the equation holds.
ElGamal signature scheme has been scrutinized extensively in the past decade.
It has also been generalized to numerous variants, including the notable DSA
and Schnorr signature scheme.

3 Breaking ElGamal Signature by Controlling the
Pseudo-Random Number Generator

Some of the attacks, such as those in [3, 1], work under the assumption that
an attacker can directly flip bits in an unknown secret decryption/signature



generation key. In this work we take a different approach. In Particular, we
focus on the generation of a pseudo-random number z, a crucial part of the
signature scheme.

We consider two types of ElGamal signature cards:

1. smart cards that use a piece of program that is known to the public to
generate pseudo-random numbers (smart cards with a software PRG).

2. smart cards that have a built-in hardware pseudo-random number generator
(smart cards with a hardware PRG).

3.1 Cards with a Software PRG

For a smart card with a software PRG, it must have a status register to store
data on its current status information Sj,f,. To produce a fresh pseudo-random
number, normally the piece of program would first fetch the current data Si,to
from the status register, calculate a number x from S;;, ¢,, update the contents in
the status register, and finally output = as an outcome. For an attacker who is in
possession of User Alice’s ElGamal card with a software PRG, the first thing he
would do is to identify the location of the status register in a chip embedded in
the card. This could be done by searching through public literature (some chip
manufacturers publish the layout of chips), or simply assuming that the register
would be located in the lower end of RAM (storing key or other important
information in low address locations in RAM is apparently a practice adopted
by many programmers [1]).

The attacker would proceed to expose that particular part of the smart card
(i.e., the status register) to certain physical stresses (such as laser, focused heat-
ing or radiation etc). This would suppress the original S;y r, in the status register,
and force it to temporarily turn into a constant data, say the all-one value. While
the physical pressure is still effective, the attacker may supply the smart card
with a message m and ask it to sign on the message. Assume that (r,s) is the
corresponding signature produced by the smart card.

Now the attack would be able to extract Alice’s secret signature generation
key z, as follows:

1. calculates zg from the all-one value using the public algorithm for PRG.

2. extracts x,:

2y = hash(m:—s-wo mod (p — 1)

3.2 Cards with a Hardware PRG

If Alice’s signature card has a built-in hardware PRG, the attacher could use
a technique similar to the one discussed above to force the output the PRG to
turn into a known number zg, say the all-one value. Some smart cards with a
built-in hardware PRG have the following property: when they are exposed in
certain “abnormal” physical environments, such as being supplied with a lower-
than-normal voltage, their PRG would produce a predictable output zq [2].



Either case would lead to the immediate breaking of the signature scheme:

Tq = hash(mi ~5 "0 hod (p—1)

In the above discussions we have assumed that the attacker may know directly
the output ¢ of a software or hardware PRG. This requirement can be weakened
if the attacker can ask a smart card to sign on two different messages. Assume
that the attacker can force the PRG to produce a fixed, but unknown, output
xp. While maintaining the stresses on the card, the attacker asks it to sign on
two different messages m; and ms. He would get

hash(mi) — x4 - 1o
m

(ro = g™ mod p,s; = od (p—1))

To

d
an hash(mz) — x4 - 1o

(ro = g™ mod p, s> = mod (p — 1))

To
as Alice’s signatures on my and msy respectively. From these data, the attacker
would be able to find out
hash — hash
2o = ash(my) — hash(ms) mod (p — 1)

51 — 82

and hence Alice’s secret signature generation key x,

2, = hash(mlr) — ST o (p—1)
0

We believe that from an attacker’s point of view, the two-message attack is
more effective and easier to carry out than one that requires the attacker to force
a PRG to produce a known outcome.

To close this section, we note that the cryptanalytic methods presented above
are also applicable to all the variants of ElGamal signature scheme, including
those based on elliptic curves. In addition, the general idea of manipulating a
PRG in a smart card can also be readily adapted to compromise smart, card
implementations of other types of cryptographic primitives that rely on pseudo-
random numbers for their security. These primitives include many types of digital
signature schemes, authentication and identification protocols.

4 The Importance of Un-Compromiseable
Pseudo-Random Generation

While attacks using register faults or computation process errors, as is the case
for cryptanalytic methods discussed in [7, 6] and other related papers, may be
foiled by using hardware fault tolerance technology and result verification, mali-
cious manipulation of pseudo-random number generation may be more difficult
to handle, as it cannot be detected by fault tolerance circuitry or result ver-
ification alone. Technically, embedding an un-compromiseable pseudo-random
number generator into a VLSI chip seems as challenging as making a truly
tamper-resistant VLSI chip.



References

1.

2.

R. Anderson. A serious weakness of DES. (posted to cypherpunks@toad.com, 2
November 1996).

R. Anderson and M. Kuhn. Tamper resistance — a cautionary note. In Proceedings
of the 1996 Useniz Electronic Commerce Conference, November 1996.

F. Bao, R. Deng, Y. Han, A. Jeng, T. H. Nagir, and D. Narasimhalu. A new attack
to RSA on tamperproof devices. (posted to cypherpunks@toad.com, 23 October
1996).

Bellcore. Now, smart cards can leak secrets. (press release, available at
http://www.bellcore.com/PRESS/ADVSRY96/smrtcrd.html, 25 September 1996).
E. Biham and A. Shamir. The next stage of differential fault analysis: How to
break completely unknown cryptosystems. (email message to a group of researchers
including one of the present authors, 30 October 1996).

E. Biham and A. Shamir. Research announcement: A new cryptanalytic attack on
DES. (posted to cypherpunks@toad.com, 18 October 1996).

D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking computations.
(extended abstract, available at http://www.bellcore.com/SMART/, 31 October
1996).

This article was processed using the BTEX macro package with LLNCS style



