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Abstract

One-way hash algorithms are an indispensable
tool in data security. Over the last decade or
so a number of one-way hash algorithms have
been designed and many of them have been used
in numerous applications. Recent progress in
cryptanalytic attacks on one-way hash algorithms
by Wang and co-workers, however, has brought
up the urgency of research into new and more
secure algorithms. The goal of this paper is
two-folded. On one hand we propose a simple
technique to affix authentication tags to mes-
sages prior to being hashed by an iterative one-
way hash algorithm with the aim of increas-
ing the overall security of the algorithm against
cryptanalytic attacks. One the other hand we
advocate the importance of a system oriented
approach towards the design and deployment of
new families of one-way hash algorithms that
support greater scalability and facilitate migra-
tion to newer member algorithms upon the com-
promise of deployed ones. We base our obser-
vations on a common sense premise that there is
no specific one-way hash algorithm can remain
secure forever and it will eventually be broken
by a cryptanalytic attack faster than exhaustive
research.
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1 Introduction

The most notable technique for designing one-
way hash algorithms is an iterative method pro-
posed by Damgaard and Merkle in their papers
presented at CRYPTO’89 [2, 8]. Damgaard and
Merkle’s technique is also called the MD-streng-
thening. The core of the Damgaard-Merkle de-
sign is a block compressor that takes as input a
message block of fixed size and outputs a new
block that too has a pre-specified size. To hash
a message of arbitrary size, one adds a padding
to the end of the message and views the padded
message as a concatenation of message blocks
each of which has the same size required by the
block compressor. This iterative approach is il-
lustrated in Figure 1 where the block compres-
sor is denoted byF and the message blocks by
M1, M2, . . ., Mn, all of which contain the same
number of bits.

The iterative approach advocated by Damgaard
and Merkle has greatly influenced the design of
a number of one-way hash algorithms, includ-
ing but not limited to SHA1 and its siblings [9],
the MD family [6, 12, 13], HAVAL [22], and
the RIPEMD family [11, 3].

Since the publication of these algorithms,
we have witnessed the steady accumulation of
novel cryptanalytic techniques to attack these
algorithms. Perhaps the most significant de-



Figure 1: Damgaard-Merkle Iterative One-Way Hash

velopment so far is a sequence of successful
attacks discovered by Xiaoyun Wang and co-
workers [16, 20, 17, 19, 21, 18]. The collid-
ing MD5 based RSA public key certificates suc-
cessfully created by Lenstra, Wang and de Weger
[7] demonstrate quite convincingly the poten-
tial effectiveness and practicality of the new crypt-
analytic attacks. A few other relevant papers
include [1, 5, 4].

These latest advancements in breaking iter-
ative one-way hash algorithms remind us of the
importance of developing new ideas on the de-
sign of stronger one-way hash algorithms. One
obvious approach would be to research into com-
pletely new design methods that are different
from the iterative method of Damgaard and Merkle.
A more conservative approach would be to in-
vestigate techniques that may be used to en-
hance the security of iterative algorithms based
the MD-strengthening.

In addition to technical approaches to more
secure one-way hash algorithms, we believe that
other issues such as deployment, upgrading, scal-
ability and choices for users and security risk
mitigation should also be taken into account when
designing new algorithms for future applications.

This paper contributes to the endeavor of
searching for new one-way hash algorithms for
future applications in two different ways. The
first is technical. Specifically we propose to use
authentication tags to strengthen the security of
an iterative one-way hash algorithm. And the

second is presented with a view to minimize
costs and inconvenience accompanying upgrad-
ing an existing one-way hash algorithm to newer
one.

2 Technical Approaches

With the Damgaard and Merkle technique, a
message is always padded to the end to ensure
that the resultant message can be viewed as the
concatenation of a multiple number of equally
sized blocks required by the underlying block
compressor. The padding is generated on-the-
fly according to pre-determined rules. The length
in bits of the original message is typically in-
cluded in the padding.

Padding a message before applying an it-
erative hashing to blocks of the message can
be viewed as a technique that maps the origi-
nal, less structured message to one that is struc-
turally richer. When resultant messages are highly
structured, a collision attacker is forced to look
for colliding messages from the structured mes-
sages rather than from the original unstructured
ones, whereby significantly increasing the hur-
dle for the attacker to launch a successful at-
tack. We note that converting to structured mes-
sages is in a way reminiscent of error correcting
codes which are widely used in communication
systems.

We examine two related techniques for adding
structural information to messages to be hashed.



The first technique is more suitable for rela-
tively short messages or long messages that can
be scanned twice, while the second technique is
designed for data streams or long messages that
only allow to be scanned twice locally.

In [15], Szydlo and Yin discuss different
approaches to enhancing MD5 and SHA-1 that
are built using the Damgaard and Merkle tech-
nique.

2.1 Global Tagging

We observe that in most applications, messages
to be hashed are relatively short. These appli-
cations include authenticated key establishment
(SSL, IPsec), authenticated message exchange,
authenticated financial transactions, one-way hash
based pseudo-random number generation, pub-
lic key certificates, and many others. Some ap-
plications may involve long messages that are
stored in a secondary storage, and hence may
be scanned twice or more during the process of
creating an authentication tag. Affixing an in-
tegrity check sum to a large software and data
package or the entire contents on a large capac-
ity storage medium like a DVD and a magnetic
or optical tape falls into this type of applica-
tions.

This motivates us to look into ways to add
structured information to an entire message prior
to being hashed by an iterative one-way hash al-
gorithm. Two crucial requirements for adding
information to a message are that the operation
is fast and the resultant message corresponds to
an element from a large set of highly structured
mathematical objects.

One method is to compute a tag using a fast
message authentication code (MAC) and affix
the tag to both the start and the end of the orig-
inal message. The key required by the message
authentication code may be a public value and
fixed across all applications. Alternatively, the
key may act as a tweakable parameter that is
chosen at random for a specific set of appli-
cations and may or may not be made public.
The resultant message that has the message au-
thentication tag affixed to both ends would then
be padded in a way similar to MD5 or SHA1

and hashed iteratively using an block compres-
sor. This approach is indicated in Figure 2, and
can be described in a slightly formal way as fol-
lows:

Let M be a message, MAC be a message
authentication code,D0 be an initial hash value
required by the underlying iterative one-way hash
algorithm, andK1 be a key for a message au-
thentication code which is either fixed across all
applications or agreed upon by relevant parties
for a specific application. Also letpadding de-
note information that is padded to the end of a
message, and MD be an iterative hash operation
such as one based on the MD-strengthening. MD
takes as input an initial hash value and a mes-
sage whose length is a multiple of the basic
block required by the underlying block com-
pressor. And finally letD denote the hash value
of the entire message. Then the proposed ap-
proach can be summarized as follows:

1. Computing MAC tag:T = MAC(K1,M);

2. Affixing MAC tag: M ′ = (T,M, T );

3. Padding:Padding = PAD(M ′), M ′′ =
(M ′, Padding);

4. Iterative Hashing:D = MD(D0,M
′′)

For a very short message, say one that has
fewer than a couple of thousand bits, additional
padding may be required prior to computing a
MAC tag to ensure that the resultant message
contains an adequate number of (say at least 16)
basic blocks for the iterative one-way hash.

2.2 Local Tagging

In some applications it may be impractical to
affix a message authentication tag of an entire
message to both ends of the message. An ex-
ample of such applications include those that
involve stream data such as digitized voice and
video images. Another example is hashing with
resource constrained devices such as a smart
card which may not have adequate buffer mem-
ory for the storage of a message in its entirety
which may be required in order to scan the mes-
sage twice or more.



Figure 2: Global Tagging

For these applications, a possible approach
is to compute an authentication tag on part of a
message and affix the tag to both ends of the
part involved. Specifically, we can view the
original message as the concatenation of a se-
quence of message segments, each of which is
in turn the conjunction of a number of basic
message blocks required by an iterative block
compressor. The length of a segment can be as
long as practical, only restricted by such factors
as buffer size and permissible processing delay.

With this method, the cryptographic key re-
quired for computing the message authentica-
tion tag of the first segment can be either fixed
or selected for specific applications. For a sub-
sequent segment, the intermediate hash value
obtained just before arriving at the message seg-
ment can be used to derive a key for the mes-
sage authentication code. Figure 3 illustrates
this approach. Likewise, the approach can also
be described in a slightly formal way.

Let M be a message, MAC be a message
authentication code,D0 be an initial hash value
required by the underlying iterative one-way hash
algorithm, andK1 be a public value acting as
a key for the message authentication code.K1

can be either fixed across all applications or agreed
upon for a specific set of applications. View the
messageM as the concatenation of segments
of equal size, namely,M = S1S2 · · ·S`, where
all Si’s have an equal number of (say at least

16) message blocks. Also let MD be a hash
operation that, given an initial hash value and
a message segment, iteratively applies to the
message blocks a block compressor such as one
based on the MD-strengthening. Further, let
GetMACkey be a simple function that creates
a key for a message authentication code from
an intermediate hash value, and PAD an oper-
ation to create a padding of an input message.
And finally let D denote the hash value of the
message. The proposed approach can be sum-
marized as follows:

1. Let Y0 = D0;

2. For i = 1, 2, . . . , ` do the following:

(a) Computing MAC tag:Ti = MAC(Ki, Si);

(b) Affixing MAC tag: S∗i = (Ti, Si, Ti);

(c) Iterative Hashing:Yi = MD(Yi−1, S
∗
i );

(d) Setting MAC Key:Ki+1 = GetMACkey(Yi);

3. Padding:Padding = PAD(S∗1S∗2 · · ·S∗` );

4. Finalizing:D = MD(Y`, Padding).

Note that the last segmentS` may need to
be padded prior to the computation of the MAC
tag in order for it to have an adequate number
of basic message blocks.



Figure 3: Local Tagging

2.3 Variants

A number of variants of the above method can
be considered to trade the level of security for
efficiency. In one of these variants message au-
thentication tags are computed and affixed to
every second segment. The number of segments
can be made sure to be an odd number of at least
three (3) so that the last segment is always af-
fixed with tags to both ends. In another variant,
the size (number of blocks) of a segment may
be a variable from a specified range, determined
by a previous intermediate hash value.

We also note that an authentication tag may
be slightly modified, say by flipping all of its
bits, when it is attached to the end of a message
segment.

In addition, the idea of affixing authentica-
tion tags may be adapted to the composition of
one-way hash algorithms. Specifically we con-
sider the sequential composition of two differ-
ent one-way hash functionsH1 and H2. As
an example, consider a messageM that can be
scanned twice. One may compute its hash value
as follows:

D = H2(H1(M),M, H1(M))

See also Figure 4. It is hoped that the com-
putational effort for breaking the sequentially
composed hash algorithms is the sum of efforts
for breaking the two individual hash algorithms

separately, although a rigorous analysis yet needs
to be carried out.

2.4 A Candidate Message Authentica-
tion Code

While in theory any MAC can be used in the
calculation of authentication tags of segments,
a good candidate MAC should fulfill a couple of
important requirements. The first requirement
is that the MAC must admit fast computation.
The second requirement is the MAC can handle
messages of variable lengthes, especially those
that are long. And the third requirement is that
the probability for one to find a second message
that collides a known message is diminishingly
small for all messages one might encounter in
practice.

A careful examination of known message
authentication codes against these requirements
shows that very good candidates can be selected
from authentication codes constructed from uni-
versal hash functions. Technically such an au-
thentication code can be obtained from an “al-
most strongly universal (ASU)” or “almost exc-
lusive-OR universal (AXU)” hash family by exc-
lusive-ORing the output of a function from the
universal hash family with an additional key cho-
sen at random. Of particular interest is a univer-
sal hash family based on polynomial evaluation
in a finite field called the evaluation hash [14].



Figure 4: Sequential Composition

An analysis and comparison of performance of
a few notable universal hash families including
the evaluation hash can be found in [10].

Each instance of the evaluation hash is spec-
ified by two elementsα andβ of the finite field
GF (2t), wheret serves as a security parameter
that determines the overall level of security of
the message authentication code. A message
M is viewed as the conjunction ofn blocks
m1, m2, · · ·, mn, each of which hast bits and
hence can be viewed as an element ofGF (2t).
Note that padding to the last blockmn may be
needed to ensure that it too hast bits. As a re-
sult the messageM can be viewed as a polyno-
mial m(x) of degreen − 1 in GF (2t), namely
m(x) = m1+m2x+ · · ·+mnxn−1. The MAC
tag of the message is then defined as follows:

tag = β + α ·m(α)
= β + m1α + m2α

2 + · · ·+ mnαn

where all the operations are inGF (2t).
With the evaluation hash based message au-

thentication code, the probability of finding a
second message that collides a known message
is approximatelyn2−t, whenα andβ are cho-
sen at random and unknown to a collision finder.
Assuming thatt = 128 andn <= 232, then the

probability to successfully find a collision is at
most2−96, a vanishingly small value. Note that
the negligible probability of success still holds
even if the collision finder has knowledge onα
andβ but does not use it in finding a collision.
In particular, the probability for a new message
obtained by flipping a few bits of a known mes-
sage to collide the known message is bounded
by the same vanishingly small value, if the flip-
ping is done in a way that is not correlated to
the values ofα andβ.

2.5 Advantages and Disadvantages

A major advantage of the two technical approaches,
namely global tagging and local tagging, is that
they allow the separation of the design of ba-
sic block compressors from the transformation
of messages to be hashed. As a result, it has the
potential to harden existing widely deployed one-
way hash algorithms such as SHA1 by convert-
ing a message into a structured one prior to the
use of the one-way hash algorithm. Further re-
search on the effectiveness of this technique is
required prior to its use in practice.

The converting operation can be done by
employing a plug-and-play software routine or
an additional piece of hardware handling the



computation and affixation of authentication tags.
As a result if the technique is indeed effective in
hardening an existing one-way hash algorithm,
it would help prolong the usability and life-span
of widely deployed one-way hash algorithms
and create more time for the smooth transition
or migration to newer and hopefully more se-
cure one-way hash algorithms.

A possible disadvantage is that additional
computation is required to computer message
authentication tags for message segments, re-
sulting in a loss in the speed or performance of
a one-way hash algorithm.

3 Risk Mitigation Friendly One-
Way Hash Family

In the second part of this paper we turn our
attention to a different aspect concerning the
design, deployment and upgrading of one-way
hash algorithms. It is important to note that
one-way hash algorithms, and in fact almost all
cryptographic techniques, are only some of the
numerous tools used by an organization in achiev-
ing their organizational objectives, and for many
organizations security is typically not consid-
ered as theirdirect goals, but rather intermedi-
ate steps on the way to achieve their real busi-
ness objectives.

Further, in many organizations the deploy-
ment of cryptographic solutions is considered
as part of a broader set of measures to miti-
gate risks that accompany the business opera-
tions of these organizations. Within this con-
text, we feel that it is important for the designer
of cryptographic algorithms to keep in mind the
issue of minimizing costs associated with de-
ployment, maintenance, upgrading and replace-
ment of a cryptographic tool including one-way
hash algorithms.

In the remaining part of this section we fo-
cus on a number of ideas on the design and
deployment of future one-way hash algorithms
that we hope will facilitate the process of mit-
igating risks in an unavoidable event when a
one-way hash algorithm is eventually broken
and rendered useless.

We emphasize that requirements we are go-
ing to present are not intended to be formal, and
some of the requirements may not be necessar-
ily consistent with others.

3.1 Parameterized One-Way Hash Al-
gorithms

Instead of focusing on a single candidate one-
way hash algorithm and hoping that it is se-
cure an extended period of time, we propose
to design a family of one-way hash algorithms.
Each member of the family would have a well-
understood level of security and performance,
and all the member algorithms can be identified
with a simple parameter or index. The param-
eter should correspond to a security level and
allows all the members to be arranged or sorted
more or less according to the security level.

A well designed parameterized family of one-
way hash algorithms would have a considerably
large number of members (say over 20). Such
a one-way hash family would not only provide
different applications with one-way hash algo-
rithms that have most appropriate levels of se-
curity and performance, but also make it eas-
ier scale up, that is, to switch to a new member
algorithm in an event when an algorithm used
currently turns out be to vulnerable to attacks.

In a loose sense, HAVAL can be considered
as a 15-member one-way hash family. Each
member algorithm in HAVAL can be specified
by a combination of rounds and sizes of out-
put hash values. Likewise, SHA-0, SHA-1 and
their newer siblings SHA-224, SHA-256, SHA-
384 and SHA-512 can be viewed to form a fam-
ily of one-way hash algorithms. And similarly,
MD2, MD4 and MD5 can be regarded as a fam-
ily. Further RIPEMD, RIPEMD128 and RIPEMD160
can be considered to be a family. In fact, one
may also view all these algorithms as members
of a larger family that is designed according to
the MD-strengthening.

3.2 Diverse Internal Structures

One problem with the SHA, MD, HAVAL, and
RIPEMD one-way hash families is that mem-



bers in a family share a similar or identical struc-
ture. An undesirable consequence of this “ge-
netic homogeneity” is that they may also share
the same types of weaknesses. Once a particu-
lar member is found to have certain weaknesses,
the level of confidence on other members of the
same family would drop too, even though spe-
cific weaknesses are yet to be found with the
other members.

It is therefore desirable for each member of
the same family to be designed with structures
that are as diverse as practical. While diversity
in structure may not necessarily render the al-
gorithms stronger in the long run, it neverthe-
less may increase significantly the amount of
effort for “copycat attacks”, namely adapting
techniques for attacking one member to another
from the same family.

3.3 Same Code Size

One-way hash algorithms that can be compiled
into binary code of identical length/size would
facilitate switching from one algorithm to an-
other, especially when a algorithm is embedded
in firmware or in a complex system that does
not allow easy recompilation. The firmware for
a device is typically stored in non-volatile mem-
ory whose size may not be easily changed once
the device is shipped to a user. Therefore up-
grading the firmware to a newer version with a
different one-way hash algorithm can be made
easier if the algorithms have the same code size.
For some large, complex systems, the current
trend is to update parts of the system without
the need to completely stop the whole system.
Such a system should benefit from the use of
one-way hash algorithms with the same size.

We note that this requirement may conflict
that of having diverse structures.

3.4 Comparable Computational Perfor-
mance

When a practitioner decides to adopt a specific
cryptographic algorithm, one of the many fac-
tors that he would have to consider is computa-
tional delay the algorithm introduces. The algo-

rithm would be used only if the delay is within
the acceptable range for the specific applica-
tions where the algorithm is intended to be used.
It is therefore desirable that computational per-
formance of member algorithms that are within
the same vicinity when ordered according to a
parameter is comparable. Satisfying this prop-
erty will allow switching from one algorithm
to another to be carried out without impacting
significantly the overall performance of appli-
cations which use the algorithm.

3.5 Supporting the Same API

When members of a one-way hash family are
implemented either in software or hardware, it
would be preferable that all member algorithms
can be implemented in such a way that they can
be called or invoked by the same application
programming interface (API). To meet this re-
quirement, all member algorithms should have
the same number and types of parameters in the
API.

This requirement may not be as easy to meet
as one would think at the first glance, if one
also wishes to meet the requirement of diverse
structures for member algorithms, especially in
resource constraint environments such as em-
bedded and mobile computing devices.

3.6 Building an Online Repository

A final aspect we consider is related to a repos-
itory of approved or standardized one-way hash
algorithms and implementations. The idea is to
build an online repository in such a way that
applications can query the repository with a set
of requirements and receive without too much
delay from the repository (the executable, au-
thenticated code of) the best candidate that ful-
fill the requirements. This query and feedback
process may need to be done on the fly and in
real time to achieve the goal of “hot switching”
or “just-in-time switching”.

Even assuming that such a approach is fea-
sible, there is likely a large cost associated with
the establishment of such a repository as well as
the development of applications that are made



aware of the repository. In addition, success of
this type of repositories would rely heavily on
the availability of an authentication infrastruc-
ture such as a public key infrastructure or PKI.
Since one-way hash algorithms are also used in
a PKI, it appears that we may have to address
two circular problems which rely on each other
for proper functions. Nevertheless, if the repos-
itory can be built, it is envisioned that many ap-
plications may be freed from updates, recom-
piling and redeployment.

4 Future Research

The speculation on the potential of using au-
thentication tags to strengthen an iterative one-
way hash algorithm needs to be further exam-
ined in a careful manner before it is put in prac-
tice. More research needs to be done with re-
spect to one-way hash families that meet some
or all of the requirements outlined in Section 3.
We hope this paper serves as an opener for new
approaches and ideas that may lead to better,
more secure and more usable one-way hash al-
gorithms.
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