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Efficient ID-based key sharing schemes are desired worldwide for secure communications on
Internet and other networks. The Key Predistribution Systems (KPSs) are a large class of such
key sharing schemes. The remarkable property of KPSs is that in order to share the key, a
participant should only input its partner’s identifier to its secret KPS algorithm. Although it has
many advantages in terms of efficiency, on the other hand it is vulnerable to certain collusion
attacks. While conventional KPSs establish communication links between any pair of entities
in a communication system, in many practical communication systems, such as broadcasting,
not all links are required. In this paper, we propose a new version of KPS which is called
the Hierarchical KPS. In the Hierarchical KPS, simply by removing unnecessary communication
links, we can significantly increase the collusion threshold. As an example, for a typical security
parameter setting, the collusion threshold of the Hierarchical KPS is 16 times higher than that of
the conventional KPS while using the same amount of memory at the KPS center. The memory
required by the user is even reduced by a factor 1/16 in comparison with the conventional linear

scheme. Hence, Hierarchical KPS provides a more efficient method for secure communication.
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1. INTRODUCTION

For information security, ID-based key distribution tech-
nologies are quite important. The concept of ID-based key
cryptosystems was originally proposed by Fiat and Shamir
[1, 2]. Maurer and Yacobi then presented an ID-based key
distribution scheme following Shamir’s concept [3, 4]. How-
ever, their scheme required a huge computational power.
Okamoto and Tanaka [5] also proposed a key distribution
scheme based on a user’s identifier, but it required prior
communications between a sender and a receiver to share
the employed key. Although Tsujii and others proposed
several ID-based key distribution schemes [6, 7], almost
all of them had been broken [8]. Thus, the performance
of these schemes is unsatisfactory. However, Blom’s ID-
based key distribution scheme [9], which is generalized by
Matsumoto and Imai [10], cannot be overlooked, especially
in terms of computational complexity and non-interactivity.
Many useful schemes based on Blom’s scheme have been
proposed [10, 11, 12, 13, 14, 15] which are known as Key
Predistribution Systems (KPSs).

In a KPS, no previous communication is required and its
key distribution procedure consists of simple calculations.
Furthermore, in order to share the key, a participant should
only input its partner’s identifier to its secret KPS algorithm.
Blundo et al. [14, 16] showed a lower bound of memory
size of users’ KPS algorithms and developed a KPS for
conference key distribution. Moreover, Fiat and Naor [15]
and Kurosawa et al. [17] applied KPSs to a broadcasting
encryption system.

Although a KPS has many desired properties, it too has
the following problem: when a number of users, which
exceeds a certain threshold, cooperate they can calculate the
central authority’s secret information. Setting up a higher
collusion threshold in this scheme requires larger amounts of
memory in the center as well as for the users. The solution
of this problem will make KPSs much more attractive for
ID-based key distribution.

Although KPSs provide common keys for all possible
communication links among entities, in practical com-
munication systems most of them will not be necessary.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002



294 G. HANAOKA et al.

By removing these unnecessary communication links, we
can increase the collusion threshold significantly. This will
be explained by means of a new version of the KPS called
the Hierarchical KPS. A Hierarchical KPS demonstrates
how to optimize a KPS for a communication system against
collusion attacks. The Hierarchical KPS is constructed
based on the Matsumoto–Imai scheme [10]. Since the
key distribution procedure in the Matsumoto–Imai scheme
consists of simple calculations only, computational cost
in a Hierarchical KPS can also be set to be quite small.
As an example, for a typical security parameter setting,
the collusion threshold of a Hierarchical KPS is 16 times
higher than that of a conventional KPS while using the
same amount of memory in the KPS center. The memory
required by the user can even be reduced to 1/16 of that of a
conventional KPS.

Section 2 gives a brief review of the KPS. In Section 3,
the Hierarchical KPS is introduced. This is followed by
the evaluation and discussion of the security of Hierarchical
KPSs in Section 4. Section 5 closes the paper with some
concluding remarks.

2. A BRIEF OVERVIEW OF KPSs

2.1. Key Predistribution System

A KPS consists of two kinds of entities: the KPS center
and the users who want to share a common key. The KPS
center possesses a secret algorithm by which it can generate
an individual KPS algorithm for each user. These individual
algorithms are (pre-) distributed by the center to their users
and allow each user to calculate a common key from the ID
of his communication partner.

The KPS is generalized as follows [10]. First the
KPS center produces a random symmetric function f (x, y),
which is called the KPS-center algorithm. f (xA, y) is given
to user A as his secret KPS algorithm by the KPS center,
where xA indicates the effective ID of A. When users
A and B want to set up a cryptographic communication,
they can share a common key f (xA, xB) by inputting their
communication partners’ identifiers to their secret KPS
algorithms.

2.2. Matsumoto–Imai scheme [10]

This subsection explains how the users’ secret KPS
algorithms are generated and how users share a common key
in the manner of the Matsumoto–Imai scheme. Note that all
the calculations in this paper are related to the finite field
GF(2).

Let the m-dimensional vectors xA and xB be the effective
IDs of entities A and B, respectively. The (m × m)

symmetric matrices G(µ) (µ = 1, . . . , h) are KPS-center
algorithms. The G(µ)s are produced by the KPS center and
kept secret from all other entities. G(µ) generates the µth
bit of a communication key between users A and B, so h is
the length of this key. X

(µ)
A and X

(µ)
B are the secret KPS

algorithms of A and B, respectively. X
(µ)
A and X

(µ)
B are

calculated by the KPS center as follows:

X
(µ)
A = xA G(µ), X

(µ)
B = xB G(µ).

X
(µ)
A and X

(µ)
B are contained in tamper-resistant modules

(TRMs) and distributed to A and B, respectively. (If
procedures for inputting data into a TRM are thought to be
complicated, a TRM is not necessary.) By using X

(µ)
A and

X
(µ)
B , A and B share their symmetric key as follows:

A : k
(µ)
AB = X

(µ)
A

txB, B : k
(µ)
AB = X

(µ)
B

txA,

where k
(µ)
AB indicates the µth bit of the shared key kAB

between A and B.

2.3. Property and problem of KPSs

KPSs, including the Matsumoto–Imai scheme, have three
noteworthy properties. First, there is no need to send
messages for the key distribution between entities who
want to establish a cryptographic communication channel.
Second, the key distribution procedure consists of simple
calculations so that computational costs are quite small.
Finally, in order to share the key, a participant has
only to input its partner’s identifier to its secret KPS
algorithm. Thus, KPSs are very applicable to one-pass or
quick-response transactions, e.g. mail systems, broadcasting
systems, electronic toll collection systems and so on.

However, a KPS has a certain collusion threshold; when
more users cooperate they can calculate the KPS-center
algorithm G(µ). For example in the Matsumoto–Imai
scheme, as already mentioned above G(µ) is an (m × m)

matrix. Hence, by using m linearly independent secret KPS
algorithms, the KPS-center algorithm can be easily revealed
(note however that, in order to participate in this collusion
attack, each adversary has to break his TRM). Thus, m

is determined by the number of users. In order to avoid
such collusion attacks, we need to increase the value of m.
However, since the number of elements ofG(µ) is m2, a quite
large memory size is required for the KPS center in order to
increase the value of m. Furthermore, the memory size of a
user’s secret KPS algorithm is thereby enlarged in proportion
to m. Although these memory sizes are not small, they are
proven to be optimal [14]. Therefore, in the conventional
KPS, we cannot cope with collusion attacks efficiently. This
can be a serious problem, especially in a situation where
the available memory is strictly limited (e.g. IC cards). For
example, m = 8192 is selected as the collusion threshold in
the ‘KPSL1 card’ [18], where the key length is 64 bits. The
secret algorithm itself then consumes 64 kbytes of memory
size for each IC card. Therefore, a KPS was considered to
be somewhat expensive for realistic IC card systems at that
time. Furthermore, by introducing 128–256 bit symmetric
key cryptosystems, the required memory size will be 128–
256 kbytes.

Although the conventional KPS provides a common key
between any pair of entities, most of them are not necessary
in practical communication systems. When no keys are
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FIGURE 1. Communication links in a Hierarchical KPS.

provided for such unnecessary communication links, the
collusion threshold can be increased and the memory size
of the users decreased, while the memory size of the KPS
center stays the same.

3. HIERARCHICAL KPS

In practical communication systems, such as broadcasting,
entities are classified into three classes: consumer, provider
and server. Figure 1 displays the structure of their
communication links. Consumers, i.e. the majority of
entities, receive information from any provider. Servers
hold information required by providers. For example,
in broadcasting, addressees and broadcasting stations are
regarded as consumers and providers, respectively. Certain
entities that provide information for broadcasting stations
are regarded as servers. In such a communication structure,
communication links between consumers are not necessary.
Only communication links to providers are required for the
consumers. Similarly, although some communication links
between providers and servers are required, not all of them
are necessary. Furthermore, although communication links
among providers/servers are required, not all of them are
necessary. So, providers and servers can be divided into
multiple groups. Then, we should realize the possibility to
share a common key only for:

• links between consumers and providers;
• links among providers who belong to the same group;
• links among servers who belong to the same group;
• links between providers and servers, assuming the

group of providers and the group of servers are allowed
to communicate with each other.

Necessary communication links in this structure are
summarized in Table 1.

As mentioned above, in the Matsumoto–Imai scheme the
collusion threshold can be increased by replacing the square
(m × m) matrix G(µ) of the center algorithm by a larger
square matrix; this however requires a significantly larger
memory size in the KPS center. Another possibility is to

TABLE 1. Required communications in practical communication
systems, where ©, � and × indicate required, partly required and
unnecessary, respectively.

Consumer Provider Server

Consumer × © ×
Provider © � �
Server × � �

replace the (m×m) square matrix by a rectangular (m′ ×n′)
matrix of the same size, m2 	 m′ × n′, m′ > m, n′ < m.
This requires the set of users to be split into two distinct
subsets. The threshold for a collusion of members of the
first subset is m′ and that of the second subset is n′. Then a
member of one subset can share a common key only with any
of the members of the other subset; common keys between
members of the same subset are not possible. This type of
KPS with asymmetric center algorithm will be used below
to realize key distribution between consumers and providers,
since no common keys are required among consumers.

From the requirement that the memory size of the KPS
center should be fixed, i.e. from the equation m2 	 m′ × n′,
it becomes clear that the collusion threshold m′ for the
consumers will increase when n′ decreases. This means that
there should only be a few members in the second subset.
Therefore, a member of this subset is a group of providers
who all provide access to several groups of servers. In
other words, a ‘layer’ of provider groups is inserted between
the consumers and the groups of servers, see Figure 1.
Therefore, the new version of a KPS is called a ‘Hierarchical
KPS’. The following sections explain it in detail.

3.1. Key distribution between consumers and providers

The improvement that we have made in a KPS starts
with replacing the symmetric matrices for the KPS-center
algorithm in the Matsumoto–Imai scheme with asymmetric
(m × n) matrices G(µ) (µ = 1, . . . , h, m ≥ n).
Then key distribution between consumers and providers is
implemented in the following way.

Let the m-dimensional vector xC be the effective ID
of consumer C and the n-dimensional vector yP be the
effective ID of provider P . Then C’s secret KPS algorithm
X
(µ)
C is calculated by

X
(µ)
C = xC G(µ),

and Y
(µ)
P is P ’s secret KPS algorithm which is calculated as

follows:
Y
(µ)
P = yP

tG(µ).

C and P share their symmetric key kPC according to

C : k
(µ)
PC = xC G(µ) tyP = X

(µ)
C

tyP ,

P : k
(µ)
PC = yP

tG(µ) txC = Y
(µ)
P

txC,

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002



296 G. HANAOKA et al.

FIGURE 2. Key distribution between a consumer and a provider in a Hierarchical KPS.

FIGURE 3. The embedded symmetric matrix G
(µ)
sym in G(µ).

where k
(µ)
CP indicates the µth bit of kCP, the shared key

between C and P . Figure 2 illustrates the key distribution
between a consumer and a provider in a Hierarchical KPS.

3.2. Key distribution among providers

In this subsection, we explain key distribution among
providers with asymmetric matrices G(µ).

For key distribution among providers we embed a
symmetric matrix G

(µ)
sym in G(µ), where G

(µ)
sym consists of

rows in G(µ) as shown in Figure 3. Therefore, it is obvious
that G(µ)

sym can be embedded in G(µ) if m ≥ n. By using

G
(µ)
sym, providers can share their keys as shown in Figure 4.

According to the selection of rows belonging to G
(µ)
sym in

G(µ), elements from Y
(µ)
P and Y

(µ)

P ′ are selected to form

n-dimensional vectors Y (µ)
P and Y

(µ)

P ′ . Using Y
(µ)
P and Y

(µ)

P ′ ,
two providers P and P ′ share their key as follows:

P : k
(µ)

PP ′ = Y
(µ)
P

tyP ′, P ′ : k
(µ)

PP ′ = Y
(µ)

P ′ tyP .

Again, k(µ)PP ′ indicates the µth bit of the shared key kPP ′
between P and P ′. We should note here that the usage
of the symmetric matrix is almost the same as that for key
distribution in a conventional KPS.

Although providers can share their keys by using this
method, it also has the following problems:

• G
(µ)
sym might be revealed by consumers’ collusion

attacks, if the selection of rows belonging to G
(µ)
sym

in G(µ) has been exposed (for convenience, call this
selection k

(µ)
sel );

• the length of a key between two providers may not be
longer than a key between a provider and a consumer.

As already mentioned, we assume that there are some
groups of providers where each provider communicates only
with other providers in his group. The above problem can be
solved if more than one G(µ)

sym is extracted from oneG(µ) and

more than one k(µ)sel is distributed to each group of providers.

Suppose that G(µ),ij
sym (i = 1, . . . , Nsym, j = 1, . . . , NP )

are n × n symmetric matrices embedded in G(µ) and
k
(µ),ij
sel (i = 1, . . . , Nsym, j = 1, . . . , NP ) are a selection

of rows belonging to G
(µ),ij
sym in G(µ). Nsym is the number

of embedded symmetric matrices that are distributed to one
group of providers and NP is the number of groups of
providers. Here, each of G(µ),ij

sym (i = 1, . . . , Nsym, j =
1, . . . , NP ) is embedded in G(µ) as shown in Figure 3 and
each of the rows in G(µ) belongs to one of G(µ),ij

sym (i =
1, . . . , Nsym, j = 1, . . . , NP ) at the most. Note that
NsymNP should not be more than m/n considering the

security of the system. k
(µ),ij
sel (i = 1, . . . , Nsym) are

distributed to all providers in the j th group Pj . Then, key
distribution between providers P and P ′, where both belong
to Pj , is carried out as follows:

P : k
(µ),ij
PP ′ = Y

(µ),ij
P

tyP ′ (i = 1, . . . , Nsym),

P ′ : k
(µ),ij
PP ′ = Y

(µ),ij
P ′ tyP (i = 1, . . . , Nsym),

where k
(µ),ij
PP ′ (i = 1, . . . , Nsym) indicates the µth bit of
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FIGURE 4. Key distribution among providers.

the shared key k
ij
PP ′ (i = 1, . . . , Nsym) between P and P ′,

and elements from YP and YP ′ are selected according to
k
(µ),ij
sel (i = 1, . . . , Nsym) to form n-dimensional vectors

Y
(µ),ij
P and Y

(µ),ij
P ′ (i = 1, . . . , Nsym).

So, if a G(µ),i0j
sym has been exposed by a certain consumer’s

attack, the providers in Pj can deal with this attack by

using another k
(µ),i1j

sel , i1 �= i0. Furthermore, by using

multiple k
(µ)
sel simultaneously, providers can share longer

keys. For example, if both k
(µ),i0j

sel and k
(µ),i1j

sel are used
simultaneously, the length of the keys among providers in
Pj can be 2h, which is twice the length of the keys between
consumers and providers. Accordingly, the keys shared
among providers can be at most Nsymh.

Additionally, note that this scheme permits a provider to
belong to multiple groups concurrently.

3.3. Key distribution between providers and servers

As already mentioned, servers can share keys with providers,
assuming that the groups they belong to are allowed to
communicate with each other. In this subsection, we show
how to produce a server’s secret KPS algorithm.

Let the n-dimensional vectors zS be the effective ID of
server S and let Z(µ),ij

S be the secret KPS algorithm of S
which is calculated as follows:

Z
(µ),ij
S = zS G

(µ),ij
sym (i = 1, . . . , Nsym).

Herein it is assumed that S belongs to a group of servers Sj
that is allowed to communicate with the providers in group
Pj . By using this secret KPS algorithm, communication
keys are shared between S and P as follows:

S : k
(µ),ij
SP = Z

(µ),ij
S

tyP (i = 1, . . . , Nsym),

P : k
(µ),ij
SP = Y

(µ),ij
P

tzS (i = 1, . . . , Nsym),

where k(µ),ijSP (i = 1, . . . , Nsym) indicates the µth bit of the

shared key k
ij
SP (i = 1, . . . , Nsym) between S and P .

Similarly to the key distribution among providers, even
if G

(µ),i0j
sym is exposed by a certain attack, S and P can

still share their key using other Z(µ),i1j

S and Y
(µ),i1j

P , i1 �=
i0. Moreover, by concurrent use of their secret KPS
algorithms again, longer keys can be used. For example, if

Z
(µ),i0j
S , Z

(µ),i1j
S and Y

(µ),i0j
P , Y

(µ),i1j
P are used, the length

of a shared key will be 2h. As mentioned above, the
maximum length of the key shared between providers and
servers in this manner can be Nsymh.

Note that a group of servers can be allowed to
communicate with multiple groups of providers in this way
and that a server can belong to multiple groups of servers.

3.4. Key distribution among servers

Any pair of servers in the same group can share their
communication key using the servers’ secret KPS algorithms
mentioned in Section 3.3. Namely, a pair of servers S and
S′, belonging to Sj , share their common key as follows:

S : k
(µ),ij
SS ′ = Z

(µ),ij
S

tzS ′ (i = 1, . . . , Nsym),

S′ : k
(µ),ij
SS ′ = Z

(µ),ij
S ′ tzS (i = 1, . . . , Nsym),

where k(µ),ijSS ′ (i = 1, . . . , Nsym) indicates the µth bit of the

shared key k
ij
SS ′ (i = 1, . . . , Nsym) between S and S′, zS ′ is

the effective ID of S′ and Z
(µ),ij
S ′ (i = 1, . . . , Nsym) are the

secret KPS algorithms of S′ that are produced similarly to
those of S.

Similarly to the key distribution among providers or that
between providers and servers, if G

(µ),i0j
sym is exposed by

a certain attack, S and S′ can still share their key using
other Z(µ),i1j

S and Z
(µ),i1j

S ′ . Moreover, concurrent use of
their secret KPS algorithms again results in longer keys.
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Using Z
(µ),i0j
S , Z

(µ),i1j
S and Z

(µ),i0j

S ′ , Z
(µ),i1j

S ′ , the length of
the shared key is doubled. Therefore, the keys shared among
providers can be at most Nsymh long.

4. EVALUATION AND SECURITY DISCUSSION

4.1. Communications with Hierarchical KPSs

Here we confirm whether or not Hierarchical KPSs can
provide the required communication links in practical
communication systems. As already discussed, required
communication links are consumer–provider, provider–
provider (within a group of providers), provider–server (if
the group that the provider belongs to and the group that
the server belongs to are allowed to communicate with each
other) and server–server (within a group of servers). It
can be seen that these communications are available by the
method described in Sections 3.1–3.4. Hence, it is confirmed
that all required functions are provided by Hierarchical
KPSs.

Furthermore, a Hierarchical KPS offers a higher level of
security than the Matsumoto–Imai scheme. As mentioned in
Sections 3.2–3.4, the keys among providers, those between
providers and servers and those among servers can be Nsymh

bits long, which is more than the length h of keys between
consumers and providers. Hence, these communications can
be carried out more safely than those by the Matsumoto–
Imai scheme, assuming that the number h of matrices for the
KPS-center algorithm is the same in the Hierarchical KPS
and in the Matsumoto–Imai scheme.

4.2. Collusion attack against G(µ)

In hierarchical KPSs, in order to break the whole system,
adversaries have to obtain G(µ) by using information
that they can access. There are mainly three kinds of
collusion attacks againstG(µ): the consumers’ collusion, the
providers’ collusion and the consumers and servers’ mixed
collusion. The servers cannot reveal G(µ) by themselves.

First, we address collusion attacks by consumers and
providers. In order to break the whole system, collusion of m
consumers or n providers is necessary from the information
theory point of view, due to the fact that the quantity
of the center’s secret information is hmn bits, whilst the
consumer’s secret KPS algorithm has hn bits of information
and the provider’s secret KPS algorithm has hm bits of
information.

It should be noted that the mixed collusion between
consumers and providers is inefficient since the information
available to the consumers and the providers is not indepen-
dent. The number of either consumers or providers joining
in the collusion attack must exceed the corresponding
threshold m or n to succeed the attack. The security of the
collusion attack of consumers and providers can basically be
addressed by the following theorem.

THEOREM 1. Let {C1, . . . , Ct1} and {P1, . . . , Pt2} be the
sets of t1 consumers and t2 providers, respectively. Let
xCi and X

(µ)
Ci

be the effective ID of Ci and the secret KPS

algorithm of Ci (i = 1, . . . , t1), respectively. Let yPj and

Y
(µ)
Pj

be the effective ID of Pj and the secret KPS algorithm
of Pj (j = 1, . . . , t2), respectively. Then, in order to

uniquely specify G(µ) by using X
(µ)
Ci

(i = 1, . . . , t1) and

Y
(µ)
Pj

(j = 1, . . . , t2), t1 ≥ m or t2 ≥ n is necessary.

Proof. It is sufficient to prove that there exists more than
one different matrix M such that xCi · M = 0 for any
xCi (1 ≤ i ≤ t1) and M · tyPj = 0 for any yPj (1 ≤ j ≤ t2),
assuming that t1 < m and t2 < n.

Here, we define a vector space X and its orthogonal
complement X⊥ as follows:

X := 〈xC1, xC2, . . . , xCt1
〉 ⊂ GF(2)m,

X⊥ := {x ∈ GF(2)m | x · tx ′ = 0 for all x ′ ∈ X }.
Then, we have

dimX = tx , 1 ≤ tx ≤ t1 (≤ m− 1),

dimX⊥ = m− tx.

This means that X⊥ has a basis consisting of m− tx linearly
independent vectors:

X⊥ = 〈v1, v2, . . . , vm−tx 〉,
where each vi (1 ≤ i ≤ m − tx) is an m-dimensional row
vector over GF(2). Hence,

M =
(m−tx∑

i=1

λ1,i
tvi,

m−tx∑
i=1

λ2,i
tvi, . . . ,

m−tx∑
i=1

λn,i
tvi

)

= (tv1,
tv2, . . . ,

tvm−tx )!

where

! =




λ1,1 λ2,1 . . . λn,1
λ1,2 λ2,2 . . . λn,2
...

... . . .
...

λ1,m−tx λ2,m−tx . . . λn,m−tx


 ,

and λi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m − tx) ∈ GF(2). Since
M · tyPj = 0 for any yPj (1 ≤ j ≤ t2), we have

(tv1,
tv2, . . . ,

tvm−tx )!
tyPj = 0

for any yPj (1 ≤ j ≤ t2). Therefore,

! tyPj = 0 (1)

since v1, v2, . . . , vm−tx are linearly independent.
Here, we define a vector space Y and its orthogonal

complement Y⊥ as follows:

Y := 〈yP1, yP2, . . . , yPt2 〉 ⊂ GF(2)n,

Y⊥ := {y ∈ GF(2)n | y · ty ′ = 0 for all y ′ ∈ Y}.
Then, we have

dimY = ty , 1 ≤ ty ≤ t2 (≤ n − 1),

dimY⊥ = n − ty .
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This means that Y⊥ has a basis consisting of n − ty linearly
independent vectors:

Y⊥ = 〈u1, u2, . . . , un−ty 〉,
where each ui (1 ≤ i ≤ n − ty) is an n-dimensional row
vector over GF(2). Hence, from Equation (1)

! =




∑n−ty
i=1 ω1,iui∑n−ty
i=1 ω2,iui

...∑n−ty
i=1 ωm−tx ,iui




= $




u1
u2
...

un−ty




where

$ =




ω1,1 ω2,1 . . . ωm−tx ,1
ω1,2 ω2,2 . . . ωm−tx ,2
...

... . . .
...

ω1,n−ty ω2,n−ty . . . ωm−tx ,n−ty


 ,

and ωi,j (1 ≤ i ≤ m − tx , 1 ≤ j ≤ n − ty) ∈ GF(2).
Therefore, we have

M = (tv1,
tv2, . . . ,

tvm−tx )$




u1
u2
...

un−ty


 .

Hence, there exist 2(m−tx)(n−ty ) different M with the choices
of ωi,j (1 ≤ i ≤ m− tx , 1 ≤ j ≤ n − ty).

Actually, since symmetric matrices are embedded in G(µ),
leakage of one k

(µ),ij
sel brings an (n − 1)/2 reduction of

the collusion threshold of consumers. However, although
all k(µ),ijsel s are exposed, the collusion threshold is still high
enough because we assumed m � n (note that the collusion
threshold of providers cannot be reduced).

Next, we consider the mixed collusion attack by
consumers and servers. Although servers and consumers
can collude to reveal G(µ), the influence that the servers
can make in the attack is limited. If the selection of
rows belonging to embedded symmetric matrices in G(µ) is
somehow exposed, the influence made by the servers could
be stronger. However, even in this case, the collusion attack
is not effective if the collusion threshold of consumers is
sufficiently high. The security of this kind of attack is
addressed by the following theorem.

THEOREM 2. Let {C1, . . . , Ct1} and {S1, . . . , St2} be the
sets of t1 consumers and t2 servers, respectively. Let xCk and

X
(µ)
Ck

be the effective ID of Ck and the secret KPS algorithm

of Ck (k = 1, . . . , t1), respectively. Let zSl and Z
(µ),ijl
Sl

(i =

1, . . . , Nsym) be the effective ID of Sl and the secret KPS
algorithm of Sl (l = 1, . . . , t2), respectively, assuming that
Sl belongs to Sjl . Even if k(µ),ijsel (i = 1, . . . , Nsym, j =
1, . . . , NP ) are exposed, in order to uniquely specifyG(µ) by

using X
(µ)
Ck

(k = 1, . . . , t1) and Z
(µ),ijl
Sl

(l = 1, . . . , t2, i =
1, . . . , Nsym), t1 + Nsymt2 ≥ m is necessary.

Proof. Here, we assume among Sl (l = 1, . . . , t2) that
there exist ei servers which belong to Si (i = 1, . . . , NP ),
respectively, such that

∑NP

i=1 ei = t2. Without loss of

generality, we also assume that, for
∑j−1

i=0 ei < l <∑j

i=0 ei + 1, Sl belongs to Sj , where e0 is defined as zero.
Then, it is sufficient to prove that there exists more than

one different matrix M such that for any xCk (1 ≤ k ≤ t1)

xCk · M = 0 and zSl · Dij = 0 (i = 1, . . . , Nsym) for

any zSl (
∑j−1

b=0 eb < l <
∑j

b=0 eb) for j = 1, . . . , NP ,

where, similarly to G
(µ),ij
sym in G(µ), each of Dij (i =

1, . . . , Nsym, j = 1, . . . , NP ) is an embedded symmetric
matrix in M , assuming that t1 +Nsymt2 < m.

Here, we define vector spaces Zj (j = 1, . . . , NP ) and
their orthogonal complements Zj

⊥ (j = 1, . . . , NP ) as
follows:

Zj :=
〈
zSl

( j−1∑
b=0

eb < l <

j∑
b=0

eb + 1

)〉
⊂ GF(2)n,

Zj
⊥ := {z ∈ GF(2)n | z · tz′ = 0 for all z′ ∈ Zj }.

Then, we have

dimZj = tzj , 1 ≤ tzj ≤ ej ,

dimZj
⊥ = n− tzj .

This means that Zj
⊥ has a basis consisting of n − tzj

linearly independent vectors:

Zj
⊥ = 〈v(j)1 , v

(j)

2 , . . . , v
(j)
n−tzj

〉,

where each v
(j)

1 , v
(j)

2 , . . . , v
(j)
n−tzj

is an n-dimensional row

vector over GF(2). Therefore, each row (or column) of
Dij (i = 1, . . . , Nsym, j = 1, . . . , NP ) can be expressed
as a linear combination by using the basis.

Next, we define a vector space X and its orthogonal
complement X⊥ as follows:

X := 〈xC1, xC2, . . . , xCt1
〉 ⊂ GF(2)m,

X⊥ := {x ∈ GF(q)m | x · tx ′ = 0 for all x ′ ∈ X }.
Then, we have

dimX = tx, 1 ≤ tx ≤ t1 (≤ m− 1),

dimX⊥ = m− tx .

These results imply that each column of M can be written
by a linear combination of a basis vi (1 ≤ i ≤ m′) for some
m′ such thatm′ ≥ m−tx−NsymNPn+∑NP

j=1(n−tzj )Nsym(=
m − tx − ∑NP

j=1 tzj Nsym ≥ m − t1 − t2Nsym > 0), where
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TABLE 2. Collusion thresholds to calculate G(µ), G(µ),ij
sym .

Colluders G(µ) G
(µ),ij
sym

Providers n n

Consumers m m − n+ log2 n

Servers − n†
Providers + servers n providers n‡

† Collusion by servers that belong to the group of servers Sj .
‡ Collusion by any providers and servers that belong to Sj .

vi (1 ≤ i ≤ m′) are linearly independent m-dimensional
vectors over GF(2). Namely,

M =
( m′∑

i=1

ψ1,i
tvi,

m′∑
i=1

ψ2,i
tvi, . . . ,

m′∑
i=1

ψn,i
tvi

)
,

= (tv1,
tv2, . . . ,

tvm′ )+

where

+ =



ψ1,1 ψ2,1 . . . ψn,1
ψ1,2 ψ2,2 . . . ψn,2
...

... . . .
...

ψ1,m′ ψ2,m′ . . . ψn,m′


 ,

and ψi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m′) ∈ GF(2).
Hence, there exist 2m

′n different M with the choices of
ψi,j (1 ≤ i ≤ m′, 1 ≤ j ≤ n).

Theorem 2 implies that, in the worst case, a collusion
of Ns servers and Nc consumers might reveal G(µ) if
NsNsym + Nc ≥ m. Therefore, the proposed scheme
is considered secure if m is determined to be sufficiently
large. Since for typical security parameter settings we have
Nc � NsNsym, this attack is not effective if the collusion
threshold of consumers is large enough to prevent only
consumers’ collusions. Furthermore, the above attack can be
performed in the case where the selection of rows belonging
to embedded symmetric matrices in G(µ) is exposed to
colluders. Also, we need to note that Theorem 2 does not
show a sufficient condition for revealing G(µ) by consumers
and servers, but a necessary condition. A more strict
security analysis in which the selection of rows belonging
to embedded symmetric matrices in G(µ) is not exposed is
an interesting open problem.

In Table 2, collusion thresholds against G(µ) are shown.
This means that a Hierarchical KPS can be designed
as shown above based on the collusion thresholds n for
consumers and m for providers. In a conventional KPS,
however, mixed collusions can also be effective. This is why
in conventional KPSs the collusion threshold should be (n+
m), so that for the center algorithm (n+m)×(n+m)matrices
are needed in the Matsumoto–Imai scheme. Based on this
assumption, the memory requirements of a Hierarchical KPS
and a conventional KPS will be compared in the next section.
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FIGURE 5. Comparison of the required memory size for the KPS-
center algorithm in a Hierarchical KPS with that in a conventional
KPS, where n indicates the collusion threshold for providers.
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FIGURE 6. Comparison of the required memory size for a
consumer’s secret KPS algorithm in a Hierarchical KPS with that
in a conventional KPS, where n indicates the collusion threshold
for providers.

4.3. Memory requirements

Considering these collusion thresholds, m and n are
determined mainly by the numbers of consumers and
providers, respectively. Similarly, the required memory
size for the KPS-center algorithm is determined to be
proportional to n times m, while in the Matsumoto–
Imai scheme the required memory size for the KPS-
center algorithm is proportional to 1

2 (n + m)(n + m +
1). Furthermore, the memory size for the consumers’
secret KPS algorithms is proportional to n. Since in the
Matsumoto–Imai scheme this is proportional to (n + m),
the memory size for the consumers’ secret KPS algorithms
can be reduced considerably. Note that for general purpose
applications the Matsumoto–Imai scheme, similar to Blundo
et al.’s [14] and some other schemes, satisfies the memory
size optimally of both the KPS center and of the users.
Thus, the memory size in the Matsumoto–Imai scheme is
regarded as that of a conventional KPS. As the number
of consumers is usually much higher than the number
of providers, these reductions made in memory size are
significant. Figures 5 and 6 show the memory size required
for the KPS-center and a consumer. In the Matsumoto–
Imai scheme, the required memory size for the KPS center
algorithm grows in proportion to the square of the collusion
threshold, and the required memory size for users’ secret
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TABLE 3. Required memory size for each type of entity.

KPS center Consumer Provider Server

Hierarchical KPS hnm + NPNsym|ksel| hn hm + Nsym|ksel| hNsymn

Conventional KPS 1
2 (n +m)(n + m + 1) h(n+ m) h(n+ m) h(n+m)

KPS algorithms increases in proportion to the collusion
threshold. In contrast, in a Hierarchical KPS, the required
memory size for the KPS center algorithm increases in
proportion to the collusion threshold for consumers, but the
required memory size for consumers’ secret KPS algorithms
remains unchanged when increasing the collusion threshold
for consumers, assuming that the collusion threshold for
providers is fixed (since the number of providers is much
smaller than the number of consumers, a low collusion
threshold will be sufficient to avoid a providers’ collusion
attack). We also need to note that the KPS center algorithm
and providers have to keep the selection of rows in G(µ) for
the embedded symmetric matrices. Hence, NPNsym|ksel|-
bit and Nsym|ksel|-bit memory will be required additionally
for the KPS-center algorithm and for the provider’s secret
algorithm, respectively, where |ksel| is the required memory
size for a selection of rows belonging to an embedded
symmetric matrix in G(µ).

Also, when taking into account the higher collusion
threshold, the difference of the required memory size
between a Hierarchical KPS and a conventional KPS will
be even more significant.

In summary, the collusion threshold in a Hierarchical KPS
can be much higher than that of a conventional KPS when
using the same size of memory in the KPS center. Table 3
shows the required memory sizes for each type of entity,
assuming that the same collision threshold of consumers
is determined in both conventional and Hierarchical KPSs.
Only the memory size for the providers is not reduced
significantly in a Hierarchical KPS in comparison to that in
the Matsumoto–Imai scheme. However, this is not a serious
problem since such an amount of memory should be easily
available for providers.

4.4. Collusion attack against G
(µ),ij
sym

Here, we discuss the collusion attack of consumers against
G
(µ),ij
sym in more detail.

Note that, in order to reveal G(µ),ij
sym , the adversary requires

n combinations of the consumers’ secret KPS algorithms
that fulfill the following condition.

CONDITION (∗). For the linear sum of the consumers’
IDs participating in the combination, all the elements except
those selected by k(µ),ijsel are entirely zero (see Figure 7).

By using n such combinations, G(µ),ij
sym can be revealed

easily, when the involved sums are linearly independent.
Hence, this attack can be realized by only n colluders in the
worst case. However, the possibility of its success seems

FIGURE 7. The required combination of consumers’ IDs to

reveal G(µ),ij
sym , where xCi

(i = 1, . . . , t) are effective identifiers
of consumers Ci (i = 1, . . . , t).

infeasible. Here, we estimate the number of colluders that
yields a more feasible possibility to realize the attack.

When t consumers collude, the number of combinations
of consumers’ IDs is 2t − 1. Since the probability that
a randomly selected combination fulfills the condition (∗)
is 2n−m, the expectation Ecol(t) of the number of the
combinations that fulfill the condition (∗) is approximated
as follows:

Ecol(t) = (2t − 1)(2n−m) 	 2t+n−m. (2)

Thus, to achieve Ecol(t) ≥ n, we require t ≥ m − n +
log2 n. Hence,m−n+log2 n can be regarded as the collusion
threshold of this attack. Although this threshold seems to be
still high, we can find that less than n colluders are required
to reveal G(µ),ij

sym if k(µ),ijsel is exposed. Thus, k(µ),ijsel must be
kept secret from entities with the exception of its legal users.
Basically, m and n are defined according to the number
of consumers and providers, respectively. However, since
the collusion threshold to reveal G(µ),ij

sym by consumers is
defined by both m and n, this must also be considered when
choosing m and n. The collusion thresholds against G(µ),ij

sym

are summarized in Table 2. Although k(µ),ijsel can be revealed
without difficulty if G(µ) is exposed, we do not need to take
care of this attack since the collusion threshold of G(µ) is set

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002



302 G. HANAOKA et al.

up high enough to prevent any possible collusion attacks in
the real world.

As mentioned in Section 3.2, by embedding multiple
symmetric matrices in G(µ), the damage made by exposing
k
(µ),ij
sel can be reduced. Namely, if a G(µ),ij

sym is revealed, only

the group that uses this G(µ),ij
sym is affected. Even though a

G
(µ),ij
sym has been damaged, the communication can still be

realized by using another G(µ),ij
sym .

Additionally, although a collusion attack of providers can
also reveal G(µ), the collusion threshold of this attack is the
same as that of an attack against G(µ),ij

sym by the providers.

Hence, in order to reveal G(µ),ij
sym , the providers have to reveal

G(µ). Moreover, by a collusion attack of servers, G(µ),ij
sym can

be revealed. However, only the servers that belong to Sj
can carry out this attack. In such an attack, the collusion
threshold is n, and it is regarded as being high enough
because there are not many servers in comparison to the
number of consumers.

4.5. Applications

A Hierarchical KPS can be applied to many kinds of
communication systems. In practical communication
systems, we often find two kinds of entities that are regarded
as consumers and providers. Usually, a minority of entities
in the system communicate with almost all of the other
entities, while the majority communicate only with specific
entities (or the minority). Hence, we can regard the minority
and the majority as providers and consumers, respectively.
Furthermore, in communication systems, we often find
entities that provide information to specific providers. Such
entities are regarded as servers.

As an example, in broadcasting, addressees and broad-
casting stations can be regarded as consumers and providers,
respectively. Certain entities that serve information for the
broadcasting stations take the role of servers. Assuming that
the numbers of addressees, broadcasting stations and servers
are 10,000,000, 5000 and 200,000, respectively, we can set
up m = 131,072 and n = 512 approximately. Then the
number Nsym · NP of embedded symmetric matrices is 256.
Thus, the collusion threshold of addressees is m = 131,072,
which is 16 times as large as the number 8192 with a
conventional KPS, assuming that the utilized memory size is
the same in both the Hierarchical KPS and the Matsumoto–
Imai scheme. In this case, for the Matsumoto–Imai scheme
8192 × 8192 symmetric matrices are used as the KPS-center
algorithm. Even when all of the information for the location
of embedded symmetric matrices in the center algorithm is
exposed, the collusion threshold is still eight times that of
a conventional KPS. Furthermore, the memory requirement
(using h = 64 bits) is hn = 32,768 bits (= 4 kbytes),
which is 1/16 of the requirement of 64 kbytes required in
a conventional KPS.

An electronic toll collection (ETC) system may also be
one of the applications of our scheme. We have shown an
efficient credit-payment system for ETC and an optimized

KPS for it in [19]. This optimized KPS can be regarded as a
particular implementation of a Hierarchical KPS.

4.6. Generalization of Hierarchical KPSs

It is a well known fact that for most KPSs the center
algorithm can be described as symmetric matrices [9, 10,
11, 12, 14]. Therefore, by replacing these matrices with
the particular asymmetric matrices described in this paper
(see Figure 3) it is possible to construct the hierarchical
structure (see Figure 1) based on these KPSs. For example,
in a straightforward manner, we can construct a hierarchical
KPS based on Blom’s scheme [9]. The performance of this
scheme is exactly the same as that of the Hierarchical KPS
based on the Matsumoto–Imai scheme.

5. CONCLUSION

In this paper, a Hierarchical KPS, which is a new style of
KPS, was proposed. It has been pointed out that certain
collusion attacks can be effective against KPSs. On the other
hand, it has been shown how KPSs can be improved for
practical communication systems to increase their resistance
against collusion attacks. To be specific, by removing
communication links that are not required in a practical
communication system, resistance against collusion attacks
is increased significantly. For a typical security parameter
setting, the collusion threshold of the improved KPS is
16 times higher than that of the conventional KPS while
using the same amount of memory in the KPS center. The
memory required by the users is even reduced to be 1/16 of
that for the conventional KPS. Hence, a Hierarchical KPS
provides a higher level of security against collusion attacks
and offers a simplified implementation due to its reduced
memory sizes. This makes a Hierarchical KPS attractive for
various applications like broadcasting and E-commerce on
the Internet. Additionally, since public-key cryptosystems
do not have great advantages over KPSs in terms of
computational cost, ID-basedness and so on, the efficient
combination of a public-key cryptosystem and our scheme
will produce a more efficient and secure communication
system than one single use of public-key cryptosystems.

ACKNOWLEDGEMENTS

Part of this work was performed as part of a Research
for the Future Program (RFTP) supported by the Japanese
Society for the Promotion of Science (JSPS) under contract
No. JSPS-RFTF 96P00604. The first author is supported by
a Research Fellowship of the JSPS. Part of this research was
presented at ASIACRYPT’99 [20].

REFERENCES

[1] Fiat, A. and Shamir, A. (1986) How to prove yourself:
practical solutions to identification and signature problems. In
Proc. CRYPTO’86. Lecture Notes in Computer Science, 263,
186–194. Springer, Berlin.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002



A HIERARCHICAL NON-INTERACTIVE KEY-SHARING SCHEME 303

[2] Shamir, A. (1985) Identity-based cryptosystems and signature
schemes. In Advances in Cryptology–CRYPTO’84. Lecture
Notes in Computer Science, 196, 47–53. Springer, Berlin.

[3] Maurer, U. and Yacobi, Y. (1992) Non-interactive public-key
cryptography. In Advances in Cryptology—EUROCRYPT’91.
Lecture Notes in Computer Science, 547, 498–507. Springer,
Berlin.

[4] Maurer, U. and Yacobi, Y. (1993) A remark on a non-
interactive public-key distribution system. In Advances in
Cryptology—EUROCRYPT’92. Lecture Notes in Computer
Science, 658, 458–460. Springer, Berlin.

[5] Okamoto, E. and Tanaka, K. (1989) Identity-based infor-
mation security management system for personal comuputer
networks. IEEE J. Selected Areas Commun., 7, 290–294.

[6] Tanaka, H. (1988) A realization scheme of the identity-based
cryptosystems. In Advances in Cryptology—CRYPTO’87.
Lecture Notes in Computer Science, 293, 340–349. Springer,
Berlin.

[7] Tsujii, S. and Chao, J. (1992) A new ID-based key sharing
system. In Advances in Cryptology–CRYPTO’91. Lecture
Notes in Computer Science, 576, 288–299. Springer, Berlin.

[8] Coppersmith, D. (1994) Attack on the cryptographic scheme
NIKS-TAS. In Advances in Cryptology—CRYPTO’94. Lec-
ture Notes in Computer Science, 839, 40–49. Springer, Berlin.

[9] Blom, R. (1983) Non-public key distribution. Advances in
Cryptology–CRYPTO’82, pp. 231–236. Plenum, New York.

[10] Matsumoto, T. and Imai, H. (1988) On the KEY PREDIS-
TRIBUTION SYSTEM: a practical solution to the key dis-
tribution problem. In Advances in Cryptology–CRYPTO’87.
Lecture Notes in Computer Science, 293, 185–193. Springer,
Berlin.

[11] Gong, L. and Wheeler, D. J. (1993) A matrix key-distribution
scheme. J. Cryptology, 2, 51–59.

[12] Jackson, W. A., Martin, K. M. and O’Keefe, C. M. (1994)
Multisecret threshold schemes. In Advances in Cryptology–

CRYPTO’93, Lecture Notes in Computer Science, 773, 126–
135. Springer, Berlin.

[13] Desmedt, Y. and Viswanathan, V. (1998) Unconditionally
secure dynamic conference key distribution. ISIT’98, Cam-
bridge, MA, August 16–21. IEEE, New York.

[14] Blundo, C. et al. (1993) Perfectly secure key distribution
for dynamic conferences. In Advances in Cryptology—
CRYPTO’92. Lecture Notes in Computer Science, 740, 471–
486. Springer, Berlin.

[15] Fiat, A. and Naor, M. (1994) Broadcast encryption. In
Advances in Cryptology—CRYPTO’93. Lecture Notes in
Computer Science, 773, 480–491. Springer, Berlin.

[16] Blundo, C., Frota Mattos, L. A. and Stinson, D. R.
(1996) Trade-offs between communication and storage in
unconditionally secure schemes for broadcast encryption and
interactive key distribution. In Advances in Cryptology—
CRYPTO’96. Lecture Notes in Computer Science, 1109, 387–
400. Springer, Berlin.

[17] Kurosawa, K., Yoshida, T., Desmedt, Y. and Burmester, M.
(1998) Some bounds and a construction for secure broadcast
encryption. In Advances in Cryptology–ASIACRYPT’98.
Lecture Notes in Computer Science, 1514, 420–433. Springer,
Berlin.

[18] Matsumoto, T. et al. (1990) A prototype KPS and its
application—IC card based key sharing and cryptographic
communication. IEICE Trans., E73, 1111–1119.

[19] Hanaoka, G., Nishioka, T., Zheng, Y. and Imai, H. (2000)
An optimization of credit-based payment for electronic toll
collection systems. IEICE Trans., E83-A, 1681–1690.

[20] Hanaoka, G., Nishioka, T., Zheng, Y. and Imai, H.
(1999) An efficient hierarchical identity-based key-sharing
method resistant against collusion-attacks. In Advances in
Cryptology–ASIACRYPT’99. Lecture Notes in Computer
Science, 1716, 348–362. Springer, Berlin.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002


