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Abstract. Any software claiming to cryptographically protect the data
should use an encryption algorithm that meets public standards, and has
an extensive history of independent cryptanalytic validation. However,
even though they encrypt with strong encryption algorithm, most ex-
isting public-key cryptosystems, including RSA-OAEP, do not consider
the “memory reconstruction attack” or the “memory core-dump attack”
mounted by computer forensic software, information stealing viruses, or
other accidental reasons. To deal with this situation, this paper attempts
to analyze the existing provably secure cryptosystems under “Kerckhoffs’
assumption” : an attacker knows all details of the cryptosystem except
the key information, which security consequently rests entirely upon.

Keywords. Kerckhoffs’ assumption, provable security, chosen-ciphertext se-
curity.

1 Introduction

A basic rule of cryptography is to use published, public algorithms and proto-
cols. This principle, called Kerckhoffs’ assumption (also called Kerckhoffs’ law or
Kerckhoffs’ principle) was first stated in 1883 by Auguste Kerckhoffs : A cryp-
tosystem should be designed to be secure if everything is known about it except
the key information. It was reformulated (perhaps independently) by Claude
Shannon as “the enemy knows the system”. In that form it is called Shannon’s
Maxim.

Kerckhoffs’ assumption was one of six design principles laid down by Kerck-
hoffs for military ciphers. Kerckhoffs’ six cipher design principles were [22]:

1. The system must be practically, if not mathematically, undecipherable.



2. It must not be required to be secret, and it must be able to fall into the
hands of the enemy without inconvenience.

3. Its key must be communicable and retainable without the help of written
notes, and changeable or modifiable at the will of the correspondents.

4. It must be applicable to telegraphic correspondence.
5. It must be portable, and its usage and function must not require the con-

course of many people.
6. Finally, it is necessary, seeing the circumstances that the application com-

mands, that the system be easy to use, requiring neither mental strain nor
the knowledge of a long series of rules to observe.

Among the above six design principles, the second statement means that the
method used to encipher data is known to the opponent, and that security must
lie in the choice of key. A corollary of Kerckhoffs’ second principle is that the
fewer number of secrets a system has, the more secure it is. If the loss of any one
secret causes the system to break, then the system with fewer number of secrets
is necessarily more secure. The more secrets a system has, the more fragile it is.
The fewer secrets, the more robust.

In this paper, we explore a generalization of Kerckhoffs’ assumption fitted
for the computer era. By using this generalization, we will study the security of
the existing provably secure cryptosystems against chosen-ciphertext attack.

2 Security Definitions

Definition 1 (Generalized Kerckhoffs’ Assumption). Let’s consider a Tur-
ing Machine(TM), a program for which is an encryption or a decryption algo-
rithm. The TM has 5 tapes : input, output, random, work, and key. Generalized
Kerckhoffs’ assumption means an attacker knows all details of the TM except
the key tape, where “all details of the TM” consist of

– (External Details : the original Kerckhoffs’ assumption deals with only this
situation) a triple (G,E,D) satisfying the following conditions and the bit
sequence contained in the input/output tape of TM; and

• key generation algorithm G : G, on input 1k (the security parameter),
produces a pair of encryption/decryption keys (e, d). The encryption key
e is stored in the input tape, but the decryption key d is stored in the key
tape.

• encryption algorithm E : E takes as input a security parameter 1k, an
encryption key e from the range of G(1k), and a message m ∈ {0, 1}k,
and produces as output the ciphertext c ∈ {0, 1}∗1.

1 We use the notation c ∈ E(1k, e, m) to denote c being an encryption of message m
using key e with security parameter k. When clear, we use shorthand c ∈ Ee(m), or
c ∈ E(m).



• decryption algorithm D : D takes as input a security parameter 1k, a
secret decryption key d from the range of G(1k), and a ciphertext c from
the range of E(1k, e,m) and produces as output the message m.

– (Internal Details) The bit sequence contained in the random/work tape of
TM. If giving the attacker the ability not only to read but also to write or
modify the random/work tape of TM to get the faulty outputs, we can simu-
late the fault attacks [8].

Note here that, when Dd(resp. Ee) is being applied to a target ciphertext it-
self(resp. a plaintext corresponding to a target ciphertext), the attacker cannot
get access to the input/output/random/work tape of TM.

Under the assumption of Definition 1, attacks are classified based on what
information an attacker has access to in addition to intercepted ciphertext. The
most prominent classes of attack for public-key cryptosystems are : ciphertext-
only attack, known-plaintext attack, chosen-plaintext attack, and chosen-ciphertext
attack[29, 34]. In the following, we especially consider the chosen-ciphertext at-
tack under the generalized Kerckhoffs’ assumption. We note that the scope of
our assumption is very broad and may apply to other cryptographic primitives
as well (e.g., digital signatures).

Definition 2 (Chosen-Ciphertext Query under Generalized Kerckhoffs’
Assumption). Let k be a security parameter that generates matching encryp-
tion/decryption keys (e, d) for each user in the system. A chosen-ciphertext query
under generalized Kerckhoffs’ assumption is a process which, on input 1k and e,
obtains

– (External Details) the plaintext (relatively to d), in the output tape of de-
cryption oracle, corresponding to a chosen ciphertext; or an indication that
the chosen ciphertext is invalid2; and also

– (Internal Details) non-erased internal states contained in the random/work
tape of decryption oracle decrypting the submitted ciphertext.

2 As explicitly pointed out in [21], we stress that the adversary may query the decryp-
tion oracle with invalid ciphertexts. Although seemingly useless, such attacks are not
innocuous. The decryption oracle can for example be used to learn whether a chosen
ciphertext is valid or not. From this single bit of information and by iterating the
process, Bleichenbacher successfully attacked several implementations of protocols
based on PKCS #1 v1.5 [9]. More recently, Manger pointed out the importance of
preventing an attacker from distinguishing between rejections at the various steps of
the decryption algorithm, say, using timing analysis [28]. The lesson is that imple-
mentors must ensure that the reasons for which a ciphertext is rejected are hidden
from the outside world.



Definition 3 ([Static/Adaptive] Chosen-Ciphertext Attack under Gen-
eralized Kerckhoffs’ Assumption). A static chosen-ciphertext attack3 under
generalized Kerckhoffs’ assumption consists of the following scenario:

1. On input a security parameter k, the key generation algorithm G is run,
generating a public encryption key e ∈ G(1k) and a private decryption key
d ∈ G(1k) for the encryption algorithm E. The attacker of course knows the
public key e, but the private key d is kept secret.

2. [Find stage] The attacker makes polynomially (in k) many chosen-ciphertext
queries (as in Definition 2) to a decryption oracle. (The attacker is free to
construct the ciphertexts in an arbitrary way — it is certainly not required
to compute them using the encryption algorithm.)

3. The attacker prepares two messages m0, m1 and gives these to an encryption
oracle. The encryption oracle chooses b ∈R {0, 1} at random, encrypts mb,
and gives the resulting “target ciphertext” c′ to the attacker. The attacker is
free to choose m0 and m1 in an arbitrary way, except that they must be of
the same length.

4. [Guess stage] The attacker outputs b′ ∈ {0, 1}, representing its “guess” on b.

In an adaptive chosen-ciphertext attack under generalized Kerckhoffs’ assump-
tion, the attacker has still access to the decryption oracle after having received the
target ciphertext : a second series of polynomially (in k) many chosen-ciphertext
queries may be run. The unique restriction is not to probe the decryption oracle
with the target ciphertext c′.

The success probability in the previous attack scenario is defined as

Pr[b′ = b] .

Here, the probability is taken over coin tosses of the adversary, the key generation
algorithm G and the encryption algorithm E, and (m0,m1) ∈ M2 where M is
the domain of the encryption algorithm E.

The attack of Definition 3 is very powerful. The attacker not only can obtain
the plaintexts corresponding to chosen ciphertexts, but can also invade user’s
computer and read the contents of its memory (i.e., non-erased internal data)
[23, 24]. We believe that this attack model approximates more closely existing
security systems, many of which are built on such operating systems as Unix
and Windows where a reasonably privileged user can interrupt the operation of
a computing process and inspect its intermediate results at ease. Thus our attack
model can deal with the “memory reconstruction attack [10]” or the “memory
core-dump attack [23, 24]” mounted by computer forensic software4, information
stealing viruses, or other accidental reasons.

3 In the past, this attack has also been called “lunch-time attack” or “midnight at-
tack”.

4 Computer forensic is to gather and analyze data in a manner as free from distortion
or bias as possible to reconstruct data or what has happened in the past on a system.



Definition 4 (Chosen-Ciphertext Security under Generalized Kerck-
hoffs’ Assumption). “An encryption scheme is (t, q, ε)-secure under (lin, lout,
lrand, lwork)-generalized Kerckhoffs’ assumption” means that

– We basically assume that an attacker does not know the decryption key d
stored in the key tape of decryption oracle. Additionally, we suppose that at
least (lin + lout + lrand + lwork)-bit sequence collectable from each input tape,
output tape, random tape and work tape of decryption oracle is kept secret
to the attacker.

– In the above assumptions, the chosen-ciphertext attacker of Definition 3 can
break the encryption scheme with advantage less than ε, when s/he runs for
time t and makes q queries to the decryption oracle.

Note here that, under the generalized Kerckhoffs’ assumption, the power
of a chosen-ciphertext attack deeply depends on the four-tuple of (lin, lout, lrand,
lwork), so we can consider this four-tuple as one of the security evaluation criteria
of a given cryptosystem. Thus, for example, when two encryption schemes based
on the same cryptographic assumptions, Ee and E′

e, are given, we would say
something like : “Even if both of an encryption scheme Ee and an E′

e are IND-
CCA2 in terms of the definition of [4], when an attacker intentionally chooses and
sends invalid ciphertexts, (δin, δout, δrand, δwork) more bits of E′

e, except the key
information, should be kept secret than Ee using the same security parameter
as E′

e.”

2.1 Forward Security versus Ours

Forward security is defined as the confidence that the compromise of a long-term
private key does not compromise any earlier session keys. So, for example, even
if the private decryption key is compromised and an eavesdropper has captured
encrypted messages which has previously been sent, s/he will not be able to
decrypt them.

Proactive cryptography [31], exposure-resilient cryptography [11], forward-
secure signatures [2, 5], and key-insulated cryptography [15, 16] may all be viewed
as different means of taking this approach.

While the forward security model deals with a resistance to known-key at-
tacks, our model is motivated by work on strong chosen-ciphertext attack with
memory dump [23, 24]. In our model, an attacker knows even the internal states
of the system. The sole restriction is that the private decryption keys are inac-
cessible.

3 How to Measure the Amount of Information Appeared
in Work Tape

To determine the amount of bit sequence collectable from work tape, first of all,
we suppose a crypto library which provides the subroutines of Table 1, Table 2,



Table 3 and Table 4 for manipulating arbitrary length integers over the integers
and over finite fields5. Note here that the (unit) operations contained inside a
subroutine must be executed without external interruptions (e.g., memory core
dump, system crash, user signal to kill the transaction, and so on). After the
execution being successfully completed, the internal variables used by subroutine
are erased. Refer to [14, 23, 24] for details.

Table 1. Subroutines for basic calculations

Subroutine Functionality

Abs(x;a) x is the absolute value of a
Negate(x;a) x = −a
Add(x;a,b) x = a + b
Sub(x;a,b) x = a − b
Mul(x;a,b) x = a × b
DivRem(q,r;a,b) division of a by b, quotient in q, remainder in r
Power(x;a,e) x = ae

Sqr(x;a) x = a2

GCD(x;a,b) x = gcd(a, b)
XGCD(d,s,t;a,b) d = gcd(a, b) = a × s + b × t

Table 2. Subroutines for modular arithmetic

Subroutine Functionality

Mod(x;a,n) x = a mod n
NegateMod(x;a,n) x = −a mod n
AddMod(x;a,b,n) x = a + b mod n
SubMod(x;a,b,n) x = a − b mod n
MulMod(x;a,b,n) x = a × b mod n
InvMod(x;a,n) x = a−1 mod n
PowerMod(x;a,e,n) x = ae mod n
SqrMod(x;a,n) x = a2 mod n
Jacobi(a,n) compute Jacobi symbol of (a|n)

Now, we write pseudo-code to describe the given algorithm by using our
crypto library, and then count the size of the temporary variables used for inter-
mediate values or return value of subroutines. When writing the pseudo-code,
we assume that, the data can be packed into a variable bit-by-bit(or byte-by-
byte) as the bit-field structure of C programming language. Thus, for variables,

5 We name the module according to the NTL(A Library for doing Number Theory)
of Victor Shoup, and use “;” between output and input of all subroutines.



Table 3. Subroutines for bitwise operations

Subroutine Functionality

LeftShift(x;a,n) x is to shift the bits of a left by n
RightShift(x;a,n) x is to shift the bits of a right by n (the sign is preserved)
Bit And(x;a,b) x is the bitwise AND of a and b
Bit Or(x;a,b) x is the bitwise OR of a and b
Bit Xor(x;a,b) x is the bitwise XOR of a and b

Table 4. Etc.

Subroutine Functionality

GenPrime(n;l,err) generating a random prime n of length l so that the
probability that n is composite is bounded by 2−err

ProbPrime(n,NumTrials) perform up to NumTrials Miller-witness tests of n
HashH(x;a[,b,· · ·]) x is the hash value of H(a[, b, · · ·])
HashG(x;a[,b,· · ·]) x is the hash value of G(a[, b, · · ·])
MemKill(a[,b,· · ·]) delete and set to zero the memory allocated for a[, b, · · ·]

we use the notation V : V = vl−1256l−1 + vl−2256l−2 + · · · + v1256 + v0
def=

{vl−1vl−2 · · · v1v0}, where 0 ≤ vi < 256. To indicate some consecutive bytes of
an integer V , we use a shorter notation [V ]ba, meaning a sequence of bytes from
the b-th byte to a-th byte of v, {vb · · · va}.
Programming Style : Each programmer will, of course, have his or her own
preferences in wiring style. Since the programming style may effect the memory
use and the performance, we should restrict something on writing style of pseudo-
code : (i) do not reuse variables. For example,

result = function1(input); result = function2(result);

(ii) do not use nested functions as

result = function2(function1(input));,

but call them on consecutive lines as

result1 = function1(input); result2 = function2(result1);.

From now on, when we express “a cryptosystem is implemented with the
crypto library described in this section”, we assume

– the given cryptosystem is implemented with the crypto library and the pro-
gramming style defined in this section; and,

– operations contained inside a subroutine of library must be executed without
external interruptions; and,

– decryption key itself appeared in the pseudo-code is always protected even
if it is place on the work tape; and,

– the faulty behavior[8] of the cryptosystem is excluded from the evaluation.



4 Evaluation of Provably Secure Cryptosystems

For the last few years, many new schemes have been proposed with provable
security against chosen-ciphertext attacks. Before 1994, only theoretical (i.e.,
not very practical) schemes were proposed. Then Bellare and Rogaway [7] came
up with the random oracle model [6] and subsequently designed in [7] a generic
padding, called OAEP (Optimal Asymmetric Encryption Padding), to transform
a one-way (partially) trapdoor permutation into a chosen-ciphertext secure cryp-
tosystem. Other generic paddings, all validated in the random oracle model, were
later given by Fujisaki and Okamoto [18] (improved in [19]), by Pointcheval [33],
and by Okamoto and Pointcheval [30]. Recently, Coron et al. proposed a generic
IND-CCA2 conversion, which reduced the encryption size and/or speeded up the
decryption process [12]. The first practical cryptosystem with provable security
in the standard model is due to Cramer and Shoup [13]. They present an ex-
tended ElGamal encryption provably secure under the decisional Diffie-Hellman
problem. (Cramer-Shoup system is also provably secure under the weaker com-
putational Diffie-Hellman assumption in the random oracle model.)

In this section, we try to evaluate the existing provably secure cryptosystems
under the generalized Kerckhoffs’ assumption. Note here that, when evaluating
the existing provably secure cryptosystems, we do not consider the computa-
tional difficulties of the underlying cryptographic assumptions.

4.1 RSA-OAEP

We give here a brief overview of RSA-OAEP. We describe the RSA-OAEP
scheme as described in [32], but in our description, the decryption phase of
RSA-OAEP is divided into three parts : (i) RSA decryption, (ii) validity test,
and (iii) output.

Let k-byte string n = pq denote an RSA modulus, which is the product of two
large primes p and q. Furthermore, let e and d, satisfying ed ≡ 1 (mod lcm(p−
1, q − 1)), respectively denote the public encryption exponent and the private
decryption exponent. We assume a hash function H : {0, 1}k−hLen−1 bytes →
{0, 1}hLen bytes and a “generator” functionG : {0, 1}hLen bytes → {0, 1}k−hLen−1 bytes.
The public parameters are {n, e,G,H} and the secret parameters are {d, p, q}.

A mLen-byte plaintext message m is encrypted through RSA-OAEP as :

1. Form a data block DB of length k − hLen− 1 bytes as

DB = (H(L)‖0x00k−mLen−2hLen−2‖0x01‖m),

where L is an optional label to be associated with the message; the default
value for L, if L is not provided, is the empty string; and

2. Let maskedDB = DB⊕G(seed), with a random string seed of length hLen-
bytes6; and

6 In [32], maskedDB = DB ⊕ MGF (seed, k − hLen − 1).



3. Let maskedSeed = seed⊕H(maskedDB)7; and
4. Form an encoded message EM of length k bytes as

EM = (0x00‖maskedSeed‖maskedDB); and

5. RSA encryption c = EMe mod n.

Given a ciphertext c, m is recovered as :

(i) RSA decryption

1 : PowerMod(V 1; c, d, n);
/* V 1 def= {v1k−1︸ ︷︷ ︸

0x00

v1k−2......v1k−hLen−1︸ ︷︷ ︸
maskedSeed

v1k−hLen−2......v10︸ ︷︷ ︸
maskedDB

} */

2 : HashH(V 2; [V 1]k−hLen−2
0 );

3 : Bit Xor(V 3; [V 1]k−2
k−hLen−1, V 2);

4 : HashG(V 4;V 3);
5 : Bit Xor(V 5; [V 1]k−hLen−2

0 , V 4);
/* V 5 def= {v5k−hLen−2......v5k−2hLen−1︸ ︷︷ ︸

H(L)

v5k−2hLen−2......v1mLen+1︸ ︷︷ ︸
0x00k−mLen−2hLen−2

v5mLen︸ ︷︷ ︸
0x01

v5mLen−1......v50︸ ︷︷ ︸
m

} */

(ii) Validity Test

If (v5mLen �= 0x01
∨

[V 5]k−hLen−2
k−2hLen−1 �= H(L)

∨
v1k−1 �= 0x00) then

• MemKill(V 1, V 2, V 3, V 4, V 5); and
• Return(“Invalid Ciphertext”).

(iii) Output

• Return([V 5]mLen−1
0 ).

Theorem 1. RSA-OAEP, implemented with crypto library of Section 3, is IND-
CCA2 under (0, 0, 0, 2|n|)-generalized Kerckhoffs’ assumption. Here, |n| denotes
the bit length of modulus n.

Proof (Sketch). The problem with RSA-OAEP resides in that the validity test
cannot be performed (i.e., the adversary cannot be detected) until after the
RSA decryption is completed. Thus an attacker can freely mount an adaptive
chosen-ciphertext attack and extract the partial information from internal data
in the decryption oracle’s memory [23, 24]. To prevent this type of attack, V 1 =
0x00‖V 3 ⊕ V 2‖V 5 ⊕ V 4 should not leak out. Thus, the variables V 1, V 3 and
V 5 should be protected against the attacker.
7 In [32], maskedDB = seed ⊕ MGF (maskedDB, hLen).



4.2 Abe Scheme

Let (n, e) be RSA public encryption key and d be private decryption key. We
select a hash function H : Z∗

n × Z∗
n → {0, 1}lm , G : {0, 1}∗ → {0, 1}l where l is

a security parameter.
In Abe scheme8, ciphertext C of message m ∈ {0, 1}lm is C = (h, c, u, s) such

that h = re mod n, c = m ⊕ H(h, r), u = G(c, we mod n), s = w · ru mod n,
where r, w ∈U Z∗

n. Given a ciphertext C, m is recovered as follows. Contrary
to RSA-OAEP, the validity test of Abe Scheme is performed before the RSA
decryption :

(i) Validity Test

1 : PowerMod(V 1; s, e, n);
2 : PowerMod(V 2;h, u, n);
3 : InvMod(V 3;V 2, n);
4 : MulMod(V 4;V 1, V 3, n);
5 : HashG(V 5; c, V 4);
6 : Check if u �= V 5.

(ii) ElGamal decryption

If (u �= V 5) then
• MemKill(V 1, V 2, V 3, V 4, V 5); and
• Return(“Invalid Ciphertext”).

Else
7 : PowerMod(V 6;h, d, n);
8 : HashH(V 7;h, V 6);
9 : Bit Xor(V 8; c, V 7);

(iii) Output

• Return(V 8).

Theorem 2. Abe scheme, implemented with crypto library of Section 3, is IND-
CCA2 under Kerckhoffs’ assumption.

Proof (Sketch). Suppose that, given a target ciphertext C, a chosen-ciphertext
attacker modifies it and sends C ′ to a decryption oracle. Because Abe scheme is a
chosen-ciphertext secure encryption scheme, the work tape of decryption oracle
contains only V 1, V 2, V 3, V 4 and V 5. However, even though the attacker can
get access to these temporary variables, s/he has no advantage, since whatever
the attacker can compute with V 1, V 2, V 3, V 4 and V 5, s/he can also compute
only with C ′ by her/himself.
8 Although the motivation is quite different, a similar “validation-then-decryption”-

type RSA scheme was imagined by the authors of this paper : ciphertext C of
message m is (c, v1, v2) such that : c = we mod n, where w = s‖t, s = m⊕F (r), and
t = r⊕G(s), v1 = H(n, e, c, IDsender, x

−e mod n) with x ∈R Z∗
n, v2 = x·wv1 mod n.



4.3 Cramer-Shoup Scheme

We give here a brief overview of Cramer-Shoup scheme and refer the reader to
[13] for details. Here, for simplicity, the same notation H is used, but function H
may have different domain and image from that used in RSA-OAEP of Section
4.1 and Abe scheme of Section 4.2. Let G = 〈g〉 be a cyclic group of large prime
order q, generated by g.

The encryption of Cramer-Shoup scheme is (c1, c2, c3, c4) = (g1
s, g2

s,X1
s ·

m,X2
s ·X3

s·H(c1,c2,c3)) with public keys X1 = g1
z, X2 = g1

x1 · g2
x2 , and X3 =

g1
y1 · g2

y2 . The decryption is as follows :

(i) Validity Test

1 : HashH(V 1; c1, c2, c3);
2 : MulMod(V 2; y1, V 1, q);
3 : AddMod(V 3;x1, V 2, q);
4 : PowerMod(V 4; c1, V 3, p);
5 : MulMod(V 5; y2, V 1, q);
6 : AddMod(V 6;x2, V 5, q);
7 : PowerMod(V 7; c2, V 6, p);
8 : MulMod(V 8;V 4, V 7, p);
9 : Check if c4 �= V 8.

(ii) ElGamal decryption

If (c4 �= V 8) then
• MemKill (V 1, V 2, V 3, V 4, V 5, V 6, V 7, V 8); and
• Return(“Invalid Ciphertext”).

Else
10 : NegateMod(V 9; z, q);
11 : PowerMod(V 10; c1, V 9, p);
12 : MulMod(V 11;V 10, c3, p);

(iii) Output

• Return(V 11).

Theorem 3. Cramer-Shoup scheme, implemented with crypto library of Sec-
tion 3, is IND-CCA2 under (4|q|, 0, 0, 2|q|)-generalized Kerckhoffs’ assumption.

Proof (Sketch). For the scheme by Cramer and Shoup, some secret data are
involved in the validity test. As a consequence, not only the private decryption
key (i.e., z) of key tape but also the private validation keys (i.e., (x1, x2) and
(y1, y2)) of input tape need to be kept secret. Also V 2 and V 5 of work tape
should be protected.



4.4 Other Provably Secure Cryptosystems

Several variants of the basic RSA scheme[35] and the basic ElGamal scheme[17]
were proposed in order to make it provably secure against chosen-ciphertext
attacks. In this section, we review some of them in the chronological order of
their appearance and analyze their resistance under our security model. Table
5 shows, when implemented with crypto library of Section 3, how many bits of
information of decryption oracle except the decryption key should be protected
from the attacker of Definition 3. Here, ld denotes the bit length of decryption
key of key tape.

Tsiounis and Yung [37]

• encryption: (c1, c2, c3, c4) = (gy,Xy ·m, gk, y ·H(g, c1, c2, c3) + k)
• decryption: 1) PowerMod(V 1; g, c4, p);

2) HashH(V 2; g, c1, c2, c3);
3) PowerMod(V 3; c1, V 2, p);
4) MulMod(V 4;V 3, c3, p);
5) If (V 1 �= V 4) then
6) • MemKill(V 1, V 2, V 3, V 4); and
7) • Return(“Invalid Ciphertext”).

Else
8) • NegateMod(V 5;x, q);
9) • PowerMod(V 6; c1, V 5, p);
10) • MulMod(V 7;V 6, c2, p);
11) • Return(V 7).

Fujisaki and Okamoto [18]

• encryption: (c1, c2) = (gH(m‖s), (m‖s)⊕XH(m‖s))
• decryption: 1) PowerMod(V 1; c1, x, p);

2) Bit Xor(V 2;V 1, c2);
3) HashH(V 3;V 2);
4) PowerMod(V 4; g, V 3, p);
5) If (c1 �= V 4) then
6) • MemKill(V 1, V 2, V 3, V 4); and
7) • Return(“Invalid Ciphertext”).
8) Return(m of V 2).

• attack: 1) set (c′1, c
′
2) = (c1, c2 ⊕ r) for a random r

2) recover m from (m′‖ · · ·)⊕ r = m‖ · · ·
Fujisaki and Okamoto [19]

• encryption: (c1, c2, c3) = (gH(s,m),XH(s,m) · s, E sym
G(s)(m))



• decryption: 1) NegateMod(V 1;x, q);
2) PowerMod(V 2; c1, V 1, p);
3) MulMod(V 3;V 2, c2, p);
4) HashG(V 4;V 3);
5) V 5 = Dsym

V 4 (c3);
6) HashH(V 6;V 3, V 5);
7) PowerMod(V 7;X,V 6, p);
8) MulMod(V 8;V 7, V 3, p);
9) If (c2 �= V 8) then
10) • MemKill(V 1, V 2, V 3, V 4, V 5, V 6, V 7, V 8); and
11) • Return(“Invalid Ciphertext”).
12) Return(V 5).

• attack: 1) set (c′1, c
′
2, c

′
3) = (gr · c1,Xr · c2, c3) for a random r

2) recover m = m′

Pointcheval [33]
• encryption: (c1, c2, c3) = (gH(m‖s),XH(m‖s) · k, (m‖s)⊕G(k))
• decryption: 1) NegateMod(V 1;x, q);

2) PowerMod(V 2; c1, V 1, p);
3) MulMod(V 3;V 2, c2, p);
4) HashG(V 4;V 3);
5) Bit Xor(V 5;V 4, c3);
6) HashH(V 6;V 5);
7) PowerMod(V 7; g, V 6, p);
8) If (c1 �= V 7) then
9) • MemKill(V 1, V 2, V 3, V 4, V 5, V 6, V 7); and
10) • Return(“Invalid Ciphertext”).
11) Return(m of V 5).

• attack: 1) set (c′1, c
′
2, c

′
3) = (c1, c2, c3 ⊕ r) for a random r

2) recover m from (m′‖ · · ·)⊕ r = m‖ · · ·
Baek, Lee, and Kim [3]

• encryption: (c1, c2) = (gH(m‖s), (m‖s)⊕G(XH(m‖s)))
• decryption: 1) PowerMod(V 1; c1, x, p);

2) HashG(V 2;V 1);
3) Bit Xor(V 3;V 2, c2);
4) HashH(V 4;V 3);
5) PowerMod(V 5; g, V 4, p);
6) If (c1 �= V 5) then
7) • MemKill(V 1, V 2, V 3, V 4, V 5); and
8) • Return(“Invalid Ciphertext”).
9) Return(m of V 3).

• attack: 1) set (c′1, c
′
2) = (c1, c2 ⊕ r) for a random r

2) recover m from (m′‖ · · ·)⊕ r = m‖ · · ·
Schnorr and Jakobsson [36]

• encryption: (c1, c2, c3, c4) = (gy, G(Xy) +m,H(gs, c1, c2), s+ c3 · y)



• decryption: 1) PowerMod(V 1; g, c4, p);
2) NegateMod(V 2; c3, q);
3) PowerMod(V 3; c1, V 2, p);
4) MulMod(V 4;V 1, V 3, p);
5) HashH(V 5;V 4, c1, c2);
6) If (c3 �= V 5) then
7) • MemKill(V 1, V 2, V 3, V 4, V 5); and
8) • Return(“Invalid Ciphertext”).

Else
9) • PowerMod(V 6; c1, x, p);
10) • HashG(V 7;V 6);
11) • SubMod(V 8; c2, V 7, p);
12) • Return(V 8).

Okamoto and Pointcheval [30]
• encryption: (c1, c2, c3, c4) = (gy,Xy ⊕R, E sym

G(R)(m),H(R,m, c1, c2, c3))
• decryption: 1) PowerMod(V 1; c1, x, p);

2) Bit Xor(V 2;V 1, c2);
3) HashG(V 3;V 2);
4) V 4 = Dsym

V 3 (c3)
5) HashH(V 5;V 2, V 4, c1, c2, c3);
6) If (c4 �= V 5) then
7) • MemKill(V 1, V 2, V 3, V 4, V 5); and
8) • Return(“Invalid Ciphertext”).
9) Return(V 4).

• attack: 1) set (c′1, c
′
2, c

′
3, c

′
4) = (c1, c2, c3, c′4) with c′4 �= c4

2) recover m = m′

Table 5. Analysis of several RSA and ElGamal variants.

Variant Type ld (lin, lout, lrand, lwork)

RSA-OAEP [32, 7] DtV |lcm(p − 1, q − 1)| (0, 0, 0, 2|n|)
Tsiounis-Yung [37] VtD |q| (0, 0, 0, 0)
Cramer-Shoup [13] VtD |q| (4|q|, 0, 0, 2|q|)
Fujisaki-Okamoto [18] DtV |q| (0, 0, 0, 2|p|)
Fujisaki-Okamoto [19] DtV |q| (0, 0, 0, |q| + 2|p| + |G(·)|)
Pointcheval [33] DtV |q| (0, 0, 0, |q| + 2|p| + 2|(m‖s)|)
Baek-Lee-Kim [3] DtV |q| (0, 0, 0, |p| + 2|(m‖s)|)
Schnorr-Jakobsson [36] VtD |q| (0, 0, 0, 0)
Okamoto-Pointcheval [30] DtV |q| (0, 0, 0, 2|p| + |G(·)| + |m|)
Abe [1] VtD |lcm(p − 1, q − 1)| (0, 0, 0, 0)

DtV : Decryption-then-Validation
VtD : Validation-then-Decryption



5 Conclusion

In this paper we attempted to discuss the security of a cryptosystem under the
sole assumption that the secret key is protected. Although putting additional
assumptions to the ideal scenario at present, we hope that in the future cryp-
tographers will improve our model and analyze the security of their schemes in
this setting.
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