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1 Introduction

The details of the formerly Soviet (now Russian) encryption algorithm were published in
GOST 28147-89 [5]. The aim of the designers was to provide an encryption algorithm with
a flexible level of security. The algorithm is an example of DES-type cryptosystem with a
drastically simplified key scheduling. It encrypts 64-bit messages into 64-bit cryptograms
using 256-bit keys. The GOST document [5] recommends the following four modes: simple
substitution mode (electronic codebook mode), stream mode called the (I-mode in [5]), stream
mode with feedback, and authentication mode.

2 The description of the GOST algorithm

The GOST algorithm consists of 32 iterations (twice more than for the DES). A single iter-
ation is shown in Figure 1. There are two secret components in the algorithm: the 256-bit
cryptographic key K and the definition of S-boxes 57,...,5s.

The cryptographic key K = (Ky,...,K7) is stored in the key storage unit KSU as a
sequence of eight 32-bit words (Ko,...,K7). The 32-bit word K, is called a partial key
(i =0,...,7). To encrypt a 64-bit long message, it is first split into two 32-bit parts which
are placed into 32-bit registers R; and R,. The contents of register R, is added modulo 232
to the partial key Ko (the adder C'M;), i.e.

R+ Ko (mod 2°?).

The resulting 32-bit sequence is divided into eight 4-bit blocks. The eight 4-bit blocks are the
inputs to the eight corresponding S-boxes 51, ...,5s. Every 5;,¢=1,...,8,is a permutation.
The eight 4-bit outputs of S-boxes are stored in the shift register R where the contents is
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Figure 1: Information flow for a single iteration of the encryption/decryption in GOST

rotated 11 bits the left (towards the high-order bits). The contents of R is now added bitwise
(Exclusive-Ored or XORed) to the contents of Ry by the adder C'M;. The output from C M,
is stored in R, and the old value of R; is stored in R5. This concludes the first iteration.

The other iterations are similar to the first one. In the second iteration, we use the partial
key K; from the KSU. The iterations 3,4,5,6,7,8 apply partial keys Ky, K3, K4, K5, K¢, K7,
respectively. Tterations from 9 to 16 and from 17 to 24 use the same partial keys. The
iterations from 25 to 32 apply the reverse order of partial keys, so the 25-th iteration uses the
key K7, the 26-th iteration - the key Kg and so on. The last iteration uses the key K. Thus
the order of the partial keys in the 32 iterations is as follows:

Ko,.... K7, Ko,..., K, Ko, ..., K7, K, ..., Ko.

After 32 iterations the output from the adder C'Mj is in Ry and R; stores its previous
value. The contents of registers Ry and R is the 64-bit ciphertext (cryptogram) for a 64-bit
plaintext.

3 General properties of GOST

The GOST algorithm replicates the general structure of the DES. It is obvious that the
designers of the algorithm tried to achieve a balance between the efliciency and the security
of the algorithm. They used simple and regular building blocks. In particular, GOST deviates
from DES in the following ways:

1. The complicated key schedule has been omitted and replaced by a regular sequence of
partial keys.

2. The cryptographic key has been lengthened to 256 bits as compared to 56 bits for DES.
Moreover, the actual amount of secret information in the system, including the S-boxes,
comprises approximately 610 bits of information.



3. The 8 S-boxes Sy, S5, --, S are permutations S; : GF(2*) — GF(2*), which require in
total the equivalent storage of 2 DES S-boxes.

4. The subkey for each round is combined using 32-bit addition with carry rather than
48-bit XOR as in DES.

5. The irregular permutation block P in DES has been replaced by a simple shift register
R which rotates the contents 11 bits to the left after each round.

6. The number of rounds has been increased from 16 to 32.

As the security of the algorithm relies on the secrecy of both the cryptographic key and the
eight permutations 5;,¢ = 1,...,8, users have to know how to select these two secret elements.
The cryptographic key can be selected at random but the selection of S; permutations is left
to the central authority who know how to choose “good” permutations. Therefore from the
users’ point of view, the security is related to the secrecy of their key K. Note that the central
authority can select weak permutations (for instance linear or affine), so that they can break
the algorithm.

Looking at the structure of the GOST algorithm, one can ask whether the use of per-
mutations instead of much bigger class of all functions, will compromise the security of the
system. Even and Goldreich [2] proved that any DES-type encryption with a single iteration
of the type

I' = R,
R = L,8f(R)

generates the alternating group, where f : GF(2%*) — GF(2%?) is a Boolean function, the
input is (L, R) and the output is (L', R'). Later Pieprzyk and Zhang [6] showed that if f is
a permutation then the DES-type encryption still generates the alternating group. Thus the
use of permutations instead of functions does not deteriorate the security of the algorithm
when a large number of rounds are considered.

The concatenation of C'M;, S-boxes §, and the cyclic shift R can be seen as a round
function F. The F function maps a 32-bit input string into an output string of the same
length, subject to the control of a 32-bit subkey. The central part of the F function is eight
4 x 4 S-boxes. The F function operates by firstly dividing a 32-bit input string into 8 blocks,
each of 4-bits, and then substituting each block with four bits specified by the corresponding
S-box.

Lemma 3.1 For a fized key the F functlion in GOST is a permutalion.

Proof:  Since in GOST the S-boxes are permutations and the cyclic shift is a permutation
we only have to consider the adder CM;. If 2 + k = y+ k (mod 23?), then 2 —y = 0
(mod 23?). This is not possible as z < 2%? and y < 232, O

This result is in contrast to the F’ function of DES, the latter is discussed by Desmedt,
Quisqauter and Davio [1].



4 Avalanche Characteristic of C' M

For a fixed key we obtain a complete description of the avalanche characterics of the GOST
adder C'My, i.e., of the probability distribution of the number of output bits changed if

changes are made to one input bit.
We have to take into account the fact that addition by C'M; is done modulo 232, and this

entails the carry of bits the left.
Let ag, a1, ..., as; be the the bits of Ry. Changing ag (the highest order bit of Ry), changes
only one output bit, as this adds 232 to R;. More generally, the following holds.

Lemma 4.1 Changing any bit a; of Ry, changes exactly one output bit with probability 1/2.

Proof. If bit a; is changed, carry only affects the bits aj, where h < ¢. The total number of
combinations of these bits is 2. The i-th coordinate of exactly 2~! combinations is zero. And
changing the i-th coordinate produces a change in one output bit only for these combinations.
Hence the probability of changing only one output bit is 271/2¢ = 1/2. O

Using this lemma, and a more elaborate counting argument we obtain the probability
distribution for bits a¢;, 0 < ¢ < 7, given in Table 1. This analysis extends to all 32-bits of R;.

Theorem 4.1 The probability distribution of changes to output bits, given in Table 1 extends
to all the bits a;, 7 <1 < 31. That is, changing the a,,-th bit changes k output bits of Ry with

probability:
2m—k—|—1 /2m+1

if 1 <k < m, and m-bils are changed with probabilily 2/2™11.

Table 1: Avalanche characteristic.

Bit \Bits changed | 1 3 4 5 6 7 8
ag 1
2 2
a1 1 1
4 2 2
@2 8 8 8
a 38 4 2 2
3 16 16 16 16
a 16 38 4 2 2
4 32 32 32 32 32
a 32 16 8 4 2 2
5 64 64 64 64 64 64
a 64 | 32 | 16 | 8 | 4 | 2 | 2
6 128 | 128 | 128 | 128 | 128 | 128 | 128
a 128 | 64 | 32 | 16 8 4 | 2 2
7 256 | 256 | 256 | 256 | 256 | 256 | 256 | 256




5 Cyclic Shifts R in GOST

The primary effect of the cyclic shift is to provide diffusion. To study this we assume that
KSU = 0 and disregard the effect of the key. Firstly we concentrate only on the mixing effect
of the cyclic shift within one arm of the algorithm. We consider two cases of the algorithm
in the simple substitution mode:

1. S-boxes are the identity transformation,

2. S-boxes are complete spread funclions, i.e. every input bit effects every output bit of
the S-box, or equivalently every output bit depends on every input bit.

Let R} denote the input to the right-half of the algorithm at round 4, and aj,---aj, the
individual input bits to this round.

5.1 Case 1: S-boxes are the identity

We consider the bits affected by a} — the first input to round 1. Then we have

1 2 3 4
a0—> a,ll — a,22 — al
*0?2—>a6233_>a;:>
10 13 16 19

a3 = Gy = 05 = dag
22 25 28 31
= a7" = ag° = ag = ayg-

where = stands for a three round transformation. Hence after 32 rounds a} occupies every
other bit of the R;-half exactly once. It is easy to see that any other cyclic shift rot(7)-which
rotates Ry by 7 places, has the same property provided that ged(7,32) = 1, or equivalently if
¢ is odd.

5.2 Case 2: S-boxes are complete functions

We consider now the spread of the bit a} in the case that an input to an S-box affects all the
output bits. It can be seen from Figure 2 that the avalanche effect of this bit influences all
32 bits of the R;-half after 8 rounds. We also note that

ah = ap — ay = al — db,
where — denotes a single round and = a multiple round.

The level of spread at each round determines functional dependencies; e.g. if in round 1,
16 bits are affected, then an affected bit in round 4 depends on 16 input bits.

Figures 3 to 6 show the functional dependencies of a}y,i € {4,5,7,8} on al, 0 <i<3l.
It can be seen that a5 depends on a},---al,.

We note that as long as the cyclic shift is not a multiple of 4 spreading occurs and 8
rounds are necessary to affect all the bits of R;. However the spreading depends on the shift.
For example, if the cyclic shift is rot(1) (see Figure 7), the effect of a} does not reach a},
for © < 8. We can compare rotations by introducing a measure p(¢)-the minimum number
of rounds required so that an affected bit occupies every position in Ri. It can be seen that
p(1) =8 and p(11) = 4.
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Figure 2: Diffusion of dependencies for a single bit aj with complete S-boxes
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Figure 3: Illustration of dependencies of a3 on a! (0 <7< 31)
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Figure 4: Illustration of dependencies of af on a} (0 <4 < 31)
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Figure 5: Illustration of dependencies of af on a! (0 < i < 31)
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Figure 6: Illustration of dependencies of a§ on a} (0 <7 < 31)
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Figure 7: Diffusion of dependences if the cyclic shift is rot(1)



Lemma 5.1 To compare the effects of rotations we need only consider rotations rot(z) for
either 1 = 1,5,...,29, or i = 3,7,...,31. p(i) is completely determined by the multiplicity of
4 in 2.

Proof.  Since ged(7,32) = 1, then either rot(¢) =1 (mod 4), or rot(¢) =3 (mod 4). Now,
changing either 1 bit or 3 input bits affects all 4 output bits of an S-box. O

Using this lemma we observe that the minimum number of rounds such that a bit affected
by a} occupies every position in R at least once is:

Table 2: Spreading induced by rotations.

rot(i) [ 1/3 [ 5/ 7 [9/ 11 [ 13/ 15 | 17/ 19 | 21/ 23 | 25/ 27 | 29/ 31
p() | 8 | 5 4 5 5 4 5 8

Theorem 5.1 The absolutely least number of rounds of GOST so that a} occupies every
position in Ry al least once is four.

Proof: We argue that at least four rounds are required for complete diffusion for any rotation.
For any rotation rot(z), a 4-bit block is diffused into a 8-bit block after two rounds. After
three rounds the 8-bit block is diffused into a 12-bit block. But no matter how these blocks are
arranged they cannot cover 32 bits. (At most, if they do not overalp, they cover 448412 = 24
bits.) So at least four rounds are needed for complete diffusion. Table 2 shows that this
minimum value is attained by rotations: rot(9), rot(11), rot(21), rot(23), g

Note also that 11 and 23 do not divide 2% — 1, the modulus of the adder C'My (the adder
C'M, is used in the stream mode - see [5]). This could have influenced the choice of rotation
by 11 bits for the cyclic shift register.

In the above analysis we have not taken account of swapping of the two halves. To study
this we can start the algorithm with R, = 0. Let R} denote the left-hand input to the
algorithm at round 7, we also denote rot(i) by r; and by S the permutation induced by the
S-box. (S : GF(2**) — GF(2%?)). With these conventions the symbolic equations for two
rounds of the algorithm are:

R% = Rl@T‘Z’S’T‘Z’SRl,
R% = ’T'Z'SRl,

and after three rounds

R:l)) = 7’15R1 o, ‘}"Z'S(Rl o, ’TZ'S’T'Z'SRl),
R% = Ri®r;Sr;SR;q.



Theorem 5.2 For input to GOST which satisfies the relation r;S(Ry & r;.57SRy) =
SR B r;Sr;Sr;S Ry, five rounds are required for the diffusion of Ry by the two halves.

Proof.:  Using this relation, we see that R? and Rg contain the expression r157;57;57m;95R4.
This expression can be rewritten using the relation 7,5 = S’r; for some S’. (Which is a
consequence of the fact that the r; and the S-boxes generate a group.) Using this, we can
write

S SriSriSRy = 5(4)7'?]%1.

(S(”) denotes the composition of n S-boxes, i.e., the product of the induced permutations.)
Now, Table 2 shows that five rounds are required for diffusion in the two arms of the algorithm,
i.e, for rotations: rot(9),rot(11), rot(21),rot(23). g

6 Selection of S-boxes

We note that GOST has an effective key length of approximately 610 bits, where 256 bits are
used to represent the key and the remaining bits encode the S-boxes. Fach of the 8 S-boxes
is a permutation of the integers [0,1,---,14,15], and there are 16! ~ 242 such permutations.
It follows that 8 - 44.2 &~ 354 bits are required to specify 8 random S-boxes from the set of
all 4-bit permutations, giving a total of 256 + 354 = 610 key bits. To reduce the size of the
key required, the designers could alternately generate a collection of S-boxes (a pool) of a
relatively small size, say 10,000, and use the key to specify a S-box from this fixed pool.

As noted the set of all possible §-boxes is quite large, and does not permit an exhaustive
search to find S-boxes optimal to a set of criteria. Experiments with randomly selected S-
boxes have been done and the resulting S-boxes were checked for their resistance to linear
and differential cryptanalysis.

6.1 Linear Cryptanalysis

In the case of linear cryptanalysis we are looking for S-boxes S = [f1, fa, f3, fa], fi : GF(2%) —
GF(2), for which each f; has a high nonlinearity. It is known that the maximum nonlinearity
(distance to the set of affine functions) for 4-bit functions is 6, and since the f; are balanced,
the only possible values of nonlinearity are {0,2,4}. ;From a sample of 10 million S-boxes
it was found that the distribution of nomnlinearity of the f; was approximately: 14% at 2,
81% at 4 and less than 5% at 6. Gordon and Retkin [3] have enumerated the class of n-bit
permutations for which all f; are nonlinear, and for n = 4, a direct calculation shows that
99% of all mappings are nonlinear in all 4 output functions. Together with the experimental
data, these results suggest that randomly selected 4-bit permutations are highly likely to be
nonlinear in all output bits, and there is an 86% chance that each output function will have
a nonlinearity of 4.

In linear cryptanalysis a linear approximation to a S-box S = [fi, f2, f3, f4], fi =
fi(zrzoxszy) is considered as follows. Let ¢ = 41i2i3t4,j = j1J273ja be the 4-bit binary
representation of two integers 0 < ¢,j < 16. Consider the approximation L(z,7) defined as

L) = #{zzm _ zzjkfkm}, 1)

X k=1 X k=1



where X = zj292324 varies over all 16 possible values. It follows that L(7,j) gives the distance
of the function > F_; Jef(X) to the linear function S 41 ixzk. In linear cryptanalysis we are
interested in the values of ¢,j which maximize |L(%,7) — 16|; this is directly related to the
nonlinearity of the functions Y 7_, Jef(X). Our experiments have shown that most of the
St_1 jef(X) are likely to have a nonlinearity of 4, so that |L(i,j) — 16] < 12 most of the
time.

If the subkeys are combined using the XOR operation so that adding (XORing) the various
round approximations enables the key bits to be isolated, and hence approximated. However
this analysis breaks down when the key is added modulo 232 with carry (as in the GOST F
function), since the key bits from several round approximations cannot be combined directly
(that is, Matsui’s Piling-Up lemma does not apply).

6.2 Differential Cryptanalysis

In differential cryptanalysis we are looking for mappings whose XOR tables exhibit a relatively
flat distribution (all values are small). It is known [4] that the largest entry in the XOR table
of an n-bit permutation is tending to be at most 2n as n increases. Applying this result
directly to 4-bit mappings indicates that the probability of the most likely input/output
difference pair AX,AY in a 4-bit permutation is approximately % = % JFrom a sample of
10 million random permutations it was found that 90% had a maximum XOR table value
of at most 8, as predicted, with over 60% having a maximum value of 6. We note that no
permutations with a maximum value of 2, the so-called differentially 2-uniform mappings,
were found in this sample. However, we did find permutations for which a nonzero input
difference AX leads to a nonzero output AY with probability 1. For example, the permutation
T = (15,13,9,11,7,14,10,3,2,12,8,6,0,5,1,4), where 7(0) = 15,7(1) = 13 and so on, all
inputs of difference AX = 3 = 0011 lead to the output difference AY = 4 = 0100. In fact,
1096 permutations with this property were found.
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