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Abstract 

We propose a novel quantum cryptographic protocol without using polarized photons. The protocol consists of an optical 
coupler and four nonorthogonal coherent states which are analyzed by means of quadrature phase amplitudes of quantized 
light field. 

1. Introduction 

Quantum cryptography is based upon quantum me- 
chanical phenomena such as Heisenberg’s uncertainty 
principle and quantum correlation. The later is repre- 
sented by the EPR or Einstein-Podolsky-Rosen-Bohm 
gedankenexperiment [ 1,2]. A well-known protocol 
was suggested by Bennett, Brassard and co-workers 
in Refs. [ 3,4]. This protocol is now called BB proto- 
col. The BB protocol shows that information can be 
enclosed in one of four nonorthogonal quantum states 
(based on photon polarization) on two bases in such 
a way that any attempt to extract the information by 
an eavesdropper will randomize and hence destroy the 
information. In other words, the eavesdropper’s acts 
will definitely cause a change in the signal between 
the legitimate users, which therefore reveals the pres- 
ence of the eavesdropper. On the other hand it has 
been demonstrated that EPR and Bell’s theorem or in- 
equality [ 51 are also useful in quantum cryptography. 
Protocols based EPR and Bell’s theorem exploit the 
properties of quantum-correlated particles. In partic- 

ular, as eavesdropping unavoidably introduces some 
local condition, it causes the data measured by legiti- 
mate users to display no violation of Bell’s inequality 
and then reveals the attempt of eavesdropping [ 61. A 
further simplified protocol which does not use Bell’s 
inequality has been proposed by Bennett et al. [ 71. 
Although there are some other interesting protocols, 
for instance, by photon interferometry [ 81, teleport- 
ing [ 91, rejected-data [ lo], and so on, the BB proto- 
col and Ekert’s protocol are the most typical models 
in quantum cryptography. 

In this paper we develop a quantum cryptosystem 
which allows a cryptographic key bit to be encoded 
using four nonorthogonal quantum states described 
by non-commuting quadrature phase amplitudes of a 
weak optical field, but not photon polarization! The 
nonorthogonal states are designed to have a large 
multi-overlap, hence it is impossible to obtain a cer- 
tain result when performing a measurement on one 
of these states. Our system is constructed using an 
optical coupler as showed in Fig. 1, where a cryp- 
tographic communication is implemented between 
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Alice Fibre Bob 

-D 

Fig. 1. The schematic diagram of the quantum cryptosystem using 

an optical coupler. Alice’s (or sender’s) signal generator is labeled 
by GA; Bob’s (or receiver’s) is labeled by Gg. 

Alice and Bob. Alice is the sender who has a sig- 
nal generator which can produce four nonorthogonal 
states and Bob is the receiver who measures the sig- 
nal states by means of an optical coupler. One feature 
of the system is that it allows cryptographic signals 
to be coupled with Bob’s squeezed light [ 111. The 
coupling of light pulses provides us with a significant 
gain in the signal to noise ratio in comparison with 
that using a conventional coherent light source. This 
in turn provides us with a more efficient cryptographic 
key distribution protocol. 

2. Physical background 

Since our protocol appears to be substantially dif- 
ferent from that using polarized photons, we should 
explain the relationship between uncertainty and quan- 
tum measurement. 

For a quantum field mode c, we can write it in the 
form of c = cl + icz, where cl and c2 are quadrature 
phase amplitudes. The inequality of uncertainty for 
the quadrature phase amplitudes is given by 

(Ac:)(Ac;) L l/16, (1) 

where (AC:) ((AC:)) denotes the variance of cl (~2). 
Inequality ( 1) suggests that only one of two quadra- 
ture phase amplitudes can be accurately determined 
for one measurement. 

For a squeezed state which is a minimum un- 
certainty state, the equality of (1) will hold, while 
the variance of one of the quadrature components is 
squeezed (to zero for a perfect squeezed state) and 
the variance of the other quadrature component is en- 
larged (to infinity for a perfect squeezed state). For 
convenience, we assume that b is a squeezing mode. 
An ideal squeezed state is obtained from a vacuum 
state 10) by operation with the squeezing operator 

S(c) = exp( &f*b* - i,$bi2). 

followed by operation with the displacement operator 

D(P) = exp(@ - P*b), 

i.e., 

IL@) = D(P)S(S)IO). (2) 

where /3 is the amplitude of mode b, 5 = I exp( id), 
j,uJ2 = cosh2 JrJ, and 1~)~ = sinh2jrJ. P denotes a 
squeezing parameter. The variances of quadrature 
phase amplitudes can be described by 

(AbT) = i exp( -2r), (Ab$) = i exp(2u). (3) 

As showed in Fig. 2b, two orthogonal squeezed states 
are used by Bob as his input to the optical coupler. 
The mode bE = bl corresponds to r > 0, while the 
mode bN = ib2 corresponds to r < 0. One advan- 
tage of using squeezed light is that one of quadrature 
components can be measured with little influence of 
quantum noise. 

The area of ellipse for a mode represents uncer- 
tainty (or noise), for instance, we can see that, for the 
squeezed mode ~ = bl the x component (the pro- 
jection on x axis) is knowable (small noise, ideally 
zero), but the y component (the projection on y axis) 
is uncertain (large noise, ideally infinity). We can ex- 
plain the other mode similarly. 

For a coherent state, since the photon distribution 
is Poissonian, the uncertainties for both quadrature- 
phase amplitudes are equal and the equality in (1) 
also holds. Hence both variances of the quadrature 
phase amplitudes are l/4. Accordingly, in Fig. 2a we 
can see a noise circle for each coherent state, where 
we have assumed that mode a represents a coherent 
state with four encoding arrangements aE = al, aw = 
--al, aN = iaa, and us = -iu2 (east, west, north, and 
south states). Under our encoding strategy, overlaps 
among these states should be as large as possible, thus 
it is accordingly assumed that the overlap between the 
east and west states is approximately 65%, so does 
the overlap between the north and south states. This 
requires that the mean number of photons for each 
state should be around 0.1. The absolute magnitude of 
overlap of two coherent states can be calculated by 

I(@ = exp(-Ia- 812). (4) 
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Fig. 2. On planes of quadrature-phase amplitudes, (a) shows Alice’s encoding strategy based on four nonorthogonal coherent states; (b) 

shows Bob’s tap-fibre modes using squeezed light. Uncertainty of a state is represented by error ellipses for squeezed states and by error 

circles for coherent states. 

Using this formula, it is easy to find that the overlap 
between the east and west state or the north and south 
states is 65%, and between the east and north states is 
around 82% (the same for each other pairs of neigh- 
bour states). 

When a state is in an overlap between two states, 
it will not be able to be determined for sure because 
it could belong to either of these states. When a state 
is not in the overlap region, it will be possibly deter- 
mined without mixing with other states. Since under 
our arrangement total area of overlaps in a state is 
more than 90% and a large part of area has four over- 
lap layers, it is almost impossible to obtain a certain 
result when performing a measurement on these states. 

A homodyne detection is the most sound scheme 
for performing a measurement on a quadrature phase 
amplitude. The value of measurement is actually equal 
to the projection on the axis of the corresponding de- 
tector. We may lock a homodyne detector to an orien- 
tation, X, -x, y, or -y, which suits the measurements 
for different encodings, and consistently, we define 
four detection vectors V’, V_,, V,, or V-,, which in 
fact are four noncommuting projection operators. 

We first look at a homodyne detection performed on 
a single coherent state, the east state or the north state, 
and ignore the superposition for a while. In order to 
measure the east state, the homodyne detector must be 
locked at n direction (i.e., using V,) . This is because 
it has the largest probability of obtaining the correct 

result - a value of the mean (at), despite the uncer- 
tainty (A& =1/4. When utilizing the same projection 
operator V, to detect the north state, we will then be 
unable to obtain a correct value, but have a high prob- 
ability of obtaining zero (the uncertainty also equals 
l/4). On the other hand, if a state does not have any 
projection on the detection vector, the state will not 
be able to be determined. For example, using V,, we 

cannot determine the west state, since it does not have 
any useful projection on V’ (except the projection due 
to noise). It is concluded that for obtaining a correct 
detection the detection vector must be set accordingly 
to the direction of the signal state. 

Since we are using four nonorthogonal states and 
each state has a large area of overlap with other states, 
it is hardly possible to correctly determine one out 
of these states by using a homodyne detector. This 
feature presents a promise for us to apply these states 
to cryptography. 

As shown in Fig. 1, on the receiving side, we em- 
ploy an optical coupler which consists of two optical 
fibres. Alice’s signal mode is expressed by a creation 
operator ut or an annihilation operator a. Bob’s mode 
in the tap fibre is represented by a creation operator bt 

or an annihilation operator b. For an optical coupler 
with coupling constant K, the quantum fields after the 
coupling obey [ 121 

a’ = ( 1 - K) 1i2a + tc’/‘b, (5) 
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bt = - K'j2U + (1 - K)1'2b , (6) 

where 0 5 K < 1. K = 0 corresponds to no signal 
having been exchanged between the fibres, while K = 

1 corresponds to a complete signal having been ex- 
changed between the fibres. The corresponding field 
quadrature operators are 

a1 = (a+ a+)/& u2 = (a - a+)/2i, ” (7) 

bl=(b+b+)/2, b:!=(b-bt)/2i. (8) 

The explicit expression for quadrature components for 
coupled states can be obtained in terms of Eqs. (5) - 
(8). After coupling the mean number of photons at 
port one is given by 

@‘+a’) = (1 - K) (U+U) + /c(b+b) 

+ &i=-%? (a+b) + (b+u)), 

and at port two is given by 

(9) 

(b’+b’) = K(U+U)+(l -K) (b+b) 

- J<I-;cT;;< (u+b) + (b+u)>, (10) 

3. The protocol 

The basic intention is to establish a common key 
between two parties, Alice and Bob, who share no se- 
cret information at the beginning of the cryptographic 
communication. The optical coupler is controlled by 
Bob who can independently choose his own squeezed 
input source for it. Both signal generators are con- 
trolled by a time base that guarantees a perfect pho- 
ton coupling. The output signal is detected using two 
homodyne detectors, one for each port. Also, impor- 
tantly, in order to realize a perfect coupling, Alice and 
Bob also need to choose a phase reference before their 
communication starts. This can be done by Alice send- 
ing a sequence of bright reference pulses to Bob and 
publicly announcing their phase. 

Alice’s generator produces faint coherent light, on 
the average, 0.1 photon per pulse, i.e., (~+a) = 0.1. 
As we have mentioned, under this assumption the to- 
tal overlap on a state is over 90%. The probability a 
signal pulse contains one or more photon is approxi- 
mately 10%. This figure suggests that 90% of the to- 
tal pulses are vacuum. Note that it is possible to em- 
ploy weaker signal light such that the superposition 

of the four nonorthogonal states can be even larger, 
however we do not intend to do that, since our as- 
sumption is sufficient for our cryptographic protocol. 
Bob’s squeezed light is much brighter and has on the 
average one photon per pulse. 

Our quantum cryptographic key distribution proto- 
col is described as follows: 

4: 

Assuming that ai is randomly selected from four 
quantum states a = (u~,uw,aN,us}, Alice con- 
structs a vector A = (q,a~,...,a,) of n random 
choices, Lyi E a = {a~, uw, UN, us}. a is public in- 
formation, while A is private data only known by 
Alice. 
Bob independently chooses a vector B = (PI, j32.. . . , 
pn) of n random choices, pi E b = {bE, by}. b 
is public information, but B is private data only 
known by Bob. 
Alice sends a CX~ E A to Bob, while Bob injects a 
/3i which interacts with ai in Bob’s optical coupler. 
The coupling result is shown in Table 1. In terms 
of the subsequent detection, 

Bob sets /3: = 

C 

0 (a bright flash at Port 1 and nothing at Port 2)) 

1 (a bright flash at Port 2 and nothing at Port 1) , 

otherwise, Bob deletes the bit. Alice and Bob re- 
peat the process until the whole signal string is sent. 
‘tbright flash” means that two photons have been 
projected on Bob’s detection vector. Bob’s method 
can be summarized as screening criterion: An out- 
put bit from the optical coupler is recorded, if and 
only if Bob finds that two photons are projected on 
the detector at one port and nothing is projected on 
the detector at the other port. This criterion solves 
the problem caused by noise. Bob’s measurements 
are based on a homodyne detection scheme, where 
both detectors are arranged in terms of the tap-fibre 
mode used by Bob himself. If the tap-fibre mode is 
based on bE, both detectors should also be set to- 
ward the x direction; if the tap-fibre mode is based 
on bN, both detectors should be set up toward the 
y direction. Bob keeps B and B’ = (pi, /?i, . . . . p:) 
secret. 
Bob speaks to Alice publicly for each pi: Accept if 
Bob “saw” a bright flash at Port 1 (2) and nothing at 
Port 2 ( 1) (obeying the screening criterion) ; reject 
if Bob “saw” flashes at both ports or other instances 
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which do not satisfy the screening criterion. 
5: Since Bob’s result contains a large number of flaw 

bits owing to quantum noise and overlapping, Bob 
must announce to Alice which detection vector has 
been used for each accepted bit, but nothing about 
the outcome of the measurement. Alice asks Bob to 
delete all bits obtained using an incorrect detection 
vector, for example, Alice may ask him to delete 
a north-state-related “0” bit which is obtained by 
using V’. This step ensures that all flaw bits subject 
to the overlaps with two closer neighbour states (but 
not the opposite state) are removed. (We will give 
more explanation later.) 

6: Bob’s remaining bits still contain a number of flaw 
bits subject to overlap with the opposite states. In 
order to correct (but not remove) the flaw bits, the 
following steps should be taken: 

- Alice secretly divides all remaining bits related 
to each state, east, north, west, or south into N 
groups (N 2 loo), where each group contains m 
bits (in the present case, m 1 30 is appropriate). 
This requires that the number of original signal 
bits sent by Alice are sufficient. Each group in- 
volves only one signal state, but both binary bits. 
Amongst these binary bits, one fraction of binary 
bits (“0” or “1”) stems from the correct detec- 
tions and these bits are the majority; the other 
fraction of binary bits (“1” or “0”) comes from 
the overlap on the opposite state. Note that dur- 
ing the grouping the original positions of the bits 
were not changed. 

- Alice publicly announces the grouping result, 
without releasing any encoding information. So 
nobody knows which group belongs to which 
state, except Alice herself. Since each Bob’s 
detection vector has been used to two nonorthog- 
onal states, knowing the detection vector of each 
group releases no encoding information of the 
group. 

- Bob calculates the number of “0” or “1” bits in 
each group. The encoding of the majority bits will 
represent the encoding of all bits in the group. 
For example, if Bob finds that “0” bits are the 
majority,‘he will regard all bits in the group as 
“0”. So far Bob has corrected all mistakes caused 
by the overlap with the corresponding opposite 
state and has obtained the encoding information 
of each group. This step can only be implemented 

by Bob, because he is the only one who knows 
the measurement result. 

- Bob tells Alice the positions of all useful bits. 
Alice knows the full information of these bits. 

7: Alice and Bob keep the bits which have eventually 
survived as the secret key. 
Table 1 shows all possible detection results obtained 

by Bob when both light pulses have the same inten- 
sity. Instead of illustrating all cases in the table, we 
only focus on the first case, where Alice uses the east 
state an. The explanations for the remaining cases are 
similar. In the first case, Bob uses ~ (consistently use 
V’). According to the coupling equations, there are 
two possible outcomes: (i) The output at port 1 is en- 
hanced and the output at port 2 is reduced to a vacuum 
state due to the cancellation. Bob then further checks 
whether the outputs satisfy the screening criterion. If 
the answer is yes, a “0” is accordingly recorded. (ii) 
Because of the superposition between the east state 
and the opposite west state, a large fraction of bits as- 
sociated with the east state turn out being mixed with 
the west state, and Bob could then have a false result 
and a “1” is hence recorded. The later bit is obviously 
wrong, but Bob does not realize his mistake. In order 
to overcome this problem, Alice divides all accepted 
bits related to the east state into N (say 100) groups 
and each group contains m (say 30) bits (please see 
later analysis). By calculating the number of “0” or 
“1” bits, Bob is able to find the majority bits which 
will be used to represent the encoding of all bits in the 
group. The mechanism of this error correcting method 
is simple: since the overlap between the states is not 
lOO%, there is a larger probability of obtaining the 
east state rather than the west state. This is obviously 
true, because only if the superposition is lOO%, the 
probability of obtaining the east state or the west state 
is l/2, 

By means of a Q-representation, we can further ex- 
plain the error correcting method. A coherent state a! 
in a Q-representation is given by 

Q(r) = (l/r) exp(-b- 42>p (11) 

which actually represents a quasi-probability of the 
coherent state. For the east coherent state with an aver- 
age projection value of 0.33 (an intensity of 0.1 pho- 
ton) on the x axis (on the quadrature-phase plane), 
the probability of a projection being around 1 on a 
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Table 1 
The results of the photon coupling. The illustration is based on a quadrature plane. We have assumed equal intensity for both mode a and 

mode b, the symbol “x” represents “discarded”, C represents “Cancelled”, E represents “Enhanced”, and a sign, character or binary figure 
in front of “1” has a higher probability of appearance. In other words, those in front of “/” are correct; those behind “/” are associated 

with the overlap on the corresponding opposite state. The later ones can be corrected eventually 

Alice 

aE 

aw 

flN 

as 

Bob 

bE 

hi 

bn 

bN 

bE 

bN 

bn 

bN 

Coupling result 

.'= (l/d$[(+/-)Q,+bd 

b’=(l/&)t(-/+)a,+bil 
a’= (l/JZ)[(+/-)ai+ibzl 
b’= (I/&)[(-/+-)a~+&] 

Q'= (@)t(-/+)a~+ brl 

b’ = (I/&)[(+/-)a~ + 611 
u’= (l/fi)[(-/+)a~+ibzl 

b’ = Cl/&) [(+/--)a~ + ibzl 

a' = (l/&)[br + (+/-)iazl 
b’ = (l/h, tbl - (+/-)iazl 

c’ = (i/&j [(+/--)a2 + bzl 

b’ = -(i/d [(+/-)a;? - &I 

LI’ = (l/fi) tbr - (+/-)iazl 

b’ = (l/&)[br + (+/--&I 
c’ = -(i/v%[ (f/-)Q2- bzl 

b’ = CilJz) [(+/-)a2 + b21 

Measurement Final 

Vector status Result result 

v, E/C O/l 0 

VX C/E 

v, uncertain X 

v, uncertain 

v, C/E l/O 1 

VX E/C 

v, uncertain X 

v, uncertain 

v, uncertain X 

v, uncertain 

vr E/C O/l 0 

v, C/E 

v, uncertain X 

VX uncertain 

v, C/E t/0 1 

v, E/C 

small region (Ax) . y, where --0;) < y < co, is given 

by 

P(projection = llcv = 0.33) 

= -!- exp( -0.672)Ax 
J;r 

= 0.36A.x, (12) 

while the probability of projection being -1 on the 
small region is given by 

P(projection = -11~~ = 0.33) 

= -!_ exp( -1.332)Ax 
fi 

M 0.0963Ax. (13) 

It is easy to find that, amongst the total pulses with 
a value 1 or -1 projection on x axis, the l-pulses 
is 79% and the -l-pulses 21%. According to these 
data, we may roughly calculate the correctness rate 
of Bob’s error correcting: assuming that m = 30 and 
the minimal number of bits rn~,, for Bob to correctly 
identify the encoding is greater than m/2 = 15, we 
have the correctness rate: 

P(mtin > 42) 

=&(r) (0.79)‘(0.21)‘+’ M 0.9996. 
i=l 

(14) 

This value suggests that Bob is almost 100% correct. 
Note however that if an eavesdropper wants to mea- 
sure the signal, she cannot have such a high ratio of 
l-pulses to -l-pulses, since her detection is subject 
to the superposition from other two neighbour states, 
the north and south states. More serious problem for 
the eavesdropper is that she does not know which de- 
tection vector should be used. Bob does not have this 
problem, because Alice can ask him to delete all bits 
owing to the superposition with the two neighbour 
states and due to using incorrect detection vectors. 
This case will be further studied in next section. 

We now focus on the second case, i.e., Alice still 
uses a = at and Bob uses the other mode h (consis- 
tently uses V,) . Bob is obviously wrong. Most possi- 
bly, the outputs at one or both ports are nonzero, Bob 
can thus “view” a light flash with a various intensity 
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at one or both ports. These bits are useless and can be 
removed in terms of the screening criterion. However, 
since the measurement is subject to the noise or over- 
laps, we must consider that Bob might occasionally 
obtain a result which meets the screening criterion. 
When this happens, Bob will not be able to identify 
the flaw. In order to get rid of these flaw bits, no mat- 
ter what measurement result has been obtained, Alice 
will ask Bob to remove the bit. 

We have not explained the influence of overlaps 
associated with the two neighbour states, the north and 
south states. These instances actually belong to other 
two cases where Alice sends the north or south state. 
The corresponding flaw bits will be handled by Alice 
and Bob using a similar procedure to that given above. 

4. Eavesdropping 

Assume that there is an adversary called Eve who 
attempts to eavesdrop on Alice and Bob’s communica- 
tion. Eve could launch an intercept/resend attack. The 
first method Eve could choose is to measure the inter- 
cepted signal by using a similar optical coupler. If she 
does so, at least half of her measurements will be ran- 
dom, because she has to randomly select her tap-fibre 
states and detection vectors. Moreover, the remaining 
half of Bob’s measurements are also uncertain due to 
the superposition with respect to Alice’s signal. There- 
fore, it is impossible for Eve to regenerate and resend 
the signal to Bob, using her own measurement. 

Assume that Eve knows that four projection oper- 
ators, {V_x, V,, V_,, and Vy}, can be used to detect 
Alice’s signal and these detection vectors respectively 
suit detecting an, aw, aN, and as. Eve might then 
wish to use her detector to measure Alice’s signal di- 
rectly, instead of using an optical coupler. However 
since she does not know which state has been sent by 
Alice, she has no better way than to choose a detec- 
tion vector randomly. The probability of choosing the 
correct detection vector is obviously l/4. Fortunately, 
even if she happens to select the correct detector, her 
measurement is still uncertain because of the overlap 
of the encoding states. If Eve has a correct detection 
vector and knows that a projection of value 1 is im- 
portant, it is not hard to find there is a probability of 
3/S for her obtaining a wrong projection belonging to 
the neighbour states. These bits cannot be identified 

by Eve. The total success rate of measuring a bit is 
found to be l/ 10. In fact it is impossible for Eve to 
know whether or not she has used the correct detec- 
tion vector, since, from Bob’s public information, she 
can only know either V, or V, has been used by Bob 
(K or V, corresponds to two Alice’s states). This sug- 
gests that even if Eve’s success rate is l/ 10, she can- 
not know which detection is successful. Consequently, 
Eve achieves nothing from such eavesdropping. 

Eve may not do anything but just listens to Alice 
and Bob’s public conversation. After Alice and Bob 
implement the protocol, Eve is aware which detection 
vector has been used, which bits were accepted, and 
which detection vector has been applied to each group 
chosen by Alice. Because each Bob’s detection vector 
corresponds to two nonorthogonal states, Eve can only 
guess whether the bits in each group belong to either 
“0” or “1”. Hence, for each individual group, Eve has 
a l/2 chance to succeed. However, since the number 
of groups for each state N > 100, Eve’s success rate 
will be less than 1/24oo or approximately l/ lO’*O. In 
practice, it is highly unlikely for Eve to succeed. 

The requirement for the number of bits in each 
group depends on the superposition of encoding states. 
As discussed in the previous section, if the average 
number of photons is 0.1, m = 30 is appropriate for 
Bob to obtain a good success rate. However, if Eve has 
a little knowledge about the encodings, she could also 
implement a similar statistical analysis. How can Eve 
obtain a small piece of information on a group? Eve 
knows that it will not work, if she intercepts all sig- 
nal pulses. In order to avoid being detected, Eve may 
randomly intercept/measure only a small fraction of 
signal pulses using the four detection vectors, for in- 
stance 10% in the total number of pulses, and lets the 
rest go through without being interfered. Can Eve then 
have good guesses? In the case,m = 30, Eve intercepts 
only 3 pulses (among 30). The measurement on the 3 
pulses (based on randomly choosing measuring vec- 
tor) is not adequate for her to implement a statistical 
analysis. Moreover, intercepting 10% of total pulses 
could also result in a substantial influence on Bob’s 
measurement which could reveal Eve’s attempt. 

However, if the size of m is large, say 1000, with 
intercepting a small number of bits Eve may then have 
enough bits used for her statistical analysis. Again, 
the big problem for her is how to obtain useful en- 
coding information on these bits. The most thinkable 
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way could still be the interception, but according to 
the discussion in the second paragraph of present sec- 
tion, Eve cannot obtain any useful information even 
for a single bit. Consequently, even if m is large, Eve 
is still unable to carry out a statistical analysis. How- 
ever, there might be some other unseen way such that 
Eve could obtain a small fraction of information from 
Alice’s signal. A large m will then in principle be use- 
ful for Eve. Therefore we should define an upper limit 
for m. Because the upper limit depends on the super- 
position of the signal, we can only define a general 
criterion: the limit on m should be the minimum value 
where Bob has a satisfied success rate. 

Our protocol seems secure against eavesdropping 
discussed above, whereas we have not discussed more 
general measurements Eve could in principle make, 
such as a general measurement on the infinite di- 
mensional Hilbert space of light pulse. More analysis 
would be done in a subsequent paper. 

5. Signal to noise ratio 

We now turn our attention to the signal to noise 
ratio. We study the coupling quadrature amplitude u{. 
The other cases are similar. By averaging over the 
signal we find that the ratio of the intensity signal to 
noise for homodyne detection in coupling mode a{ is 

SNR = (a;)*/(Aa;*) 

= [ ( 1 - K) l’*(a) + K1/2(b1)]2 
(1 - ~1 (Auf) + ~(Abf) ’ 

(15) 

where only bright output pulses are considered (ac- 
cording to the screening criterion, only output at one 
port is bright). 

Photon attenuation has not been studied in this pa- 
per, however, the protocol proposed in this work also 
fits the situation when leakage of photons occurs. The 
reason is simply that Bob can discard all bits which 
do not satisfy the screening criterion and keep those 
which satisfy the screening criterion. If the leakage is 
considerable large, Alice may make her signal a bit 
stronger, say 0.15 photon on the average. The slightly 
stronger signal will not make the security worse. 

Because the tap-fibre mode is controlled by Bob, 
Bob can use a specific photon source. In particular, 
Bob can use squeezed light. An ideal squeezed state is 
a kind of minimum uncertainty state. One quadrature 
component (say at) of the field has smaller fluctua- 
tions than the other quadrature component (say a~), in 
terms of the uncertainty principle. Explicitly, (Au:) < 
l/4 and (Au:) > l/4. Using the quadrature compo- 
nent with smaller noise can greatly improve the signal 
to noise ratio of the system. 
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