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Abstract. In this paper, we prove that a slightly modi-
fied version of Zheng and Seberry’s public key encryption
scheme presented at Crypto ’92 is secure against adaptive
chosen ciphertext attacks in the random oracle model, as-
suming the Gap Diffie–Hellman problem is intractable.
A further contribution of this paper is to show that Sol-
dera, Seberry, and Qu’s recent security analysis of Zheng
and Seberry’s scheme is in fact flawed.
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1 Introduction

1.1 Zheng and Seberry’s encryption scheme

Since Diffie and Hellman proposed a concept of public key
encryption, designing secure yet efficient public key en-
cryption schemes has been a challenging task for many
cryptographers. In addition to security and efficiency,
simplicity in designing public key encryption schemes has
been regarded as of particular importance due to the fact
that a number of cryptographic software packages are ac-
tually implemented by application programmers who are
not experts in cryptography.
For these reasons, the three earliest, surprisingly sim-

ple and efficient schemes proposed by Zheng and Se-
berry at Crypto ’92 [12] are still worth focusing on, al-
though more than 10 years have passed since its proposal.
It is interesting to note that a number of recently pro-
posed efficient and provably secure public key encryp-
tion schemes, including DHIES [1] and REACT [8], bear
a close resemblance to one of the schemes proposed by
Zheng and Seberry, which we call the “Zheng–Seberry
scheme”. This particular scheme is the focus of this pa-
per. Despite its design simplicity and efficiency, a problem

remaining with Zheng and Seberry’s scheme is that it
could not provide reductionist security: Lim and Lee [6]
showed that in the Zheng–Seberry scheme the method
for providing authentication capability fails, which in ef-
fect makes it impossible to prove the security in terms of
indistinguishability under a chosen ciphertext attack as
shown later by Soldera et al. [10]. Lim and Lee [6], how-
ever, proposed a countermeasure for the attack, and this
was reflected in the new descriptions of the scheme by
Zheng [11]. But no formal security analysis for this was
presented in either [6] or [11].
Recently, an attempt to provide provable security

to the Zheng–Seberry scheme was made by Soldera et
al. [10]. They proposed a slightly different modification
of the Zheng–Seberry scheme and claimed it is secure
against adaptive chosen ciphertext attack in the random
oracle model [3], assuming the hardness of the Decisional
Diffie–Hellman (DDH) problem. However, we will demon-
strate in a later section that their security proof contains
serious flaws.

1.2 Our contribution and organization of the paper

The main contribution of this paper is to prove that the
modification of the Zheng–Seberry scheme originally con-
sidered by Lim and Lee [6] is actually secure against an
adaptive chosen ciphertext attack in the random oracle
model, assuming the Gap Diffie–Hellman (GDH) prob-
lem [7] is intractable.
The remaining part of this paper is organized as fol-

lows. In Sect. 2, we recall some basic facts on public key
encryption and chosen ciphertext security. In the same
section, we review the definition of the GDH problem. In
Sect. 3, we present a slight modification of the Zheng–
Seberry scheme as considered in [6]. Security analysis
of this scheme follows in Sect. 4. Implementation issues
regarding the modified Zheng–Seberry scheme are dis-
cussed in Sect. 5. Finally, flaws in Soldera et al.’s security
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proof for their modification of the Zheng–Seberry scheme
are discussed in detail in Sect. 6.

2 Preliminaries

2.1 Public key encryption scheme

A public key encryption scheme denoted by PKE consists
of the following algorithms.

– A randomized common parameter generation algo-
rithm GC(k) that takes a security parameter k ∈ N
as input and generates a common parameter cp con-
taining, say, the security parameter k, descriptions of
a mathematical group, and hash functions.
– A randomized key generation algorithm GK(cp) that
takes a common parameter cp as input and generates
a public key pk and a private key sk, both of which
contain cp.
– A randomized encryption algorithm E(pk,m) that
takes the public key pk and a plaintextm as input and
encryptsm, creating a ciphertext c.
– A deterministic decryption algorithm D(sk, c) that
takes the private key sk and a ciphertext c as input
and outputs a plaintextm if c is valid or a special sym-
bol “Reject”, otherwise.

2.2 Chosen ciphertext security for public key encryption
scheme

We recall the security notion for a public key encryp-
tion scheme against an adaptive chosen ciphertext attack.
Note that the notion recalled in this paper is the “indis-
tinguishability under adaptive chosen ciphertext attack”,
sometimes called “IND-CCA2” [2]. For brevity, we will
use the term “IND-CCA” instead.
Let ACCA denote an attacker. Note that ACCA is as-

sumed to be a probabilistic Turing machine taking a secu-
rity parameter k as input.
Now, consider the following game, which consists of

several stages.

Setup: The common parameter generation algorithm
on input of the security parameter k is run. On input
of the resulting common parameter cp, the key gener-
ation algorithm is run. The resulting public key pk is
given to ACCA. (Note that pk contains cp.)
Phase 1: ACCA interacts with the decryption oracle,
submitting ciphertexts and obtaining their decryp-
tions. Note that ACCA’s interaction with the decryp-
tion oracle can be adaptive.
Challenge: ACCA chooses a pair of equal-length plain-
texts (m0,m1) and gives it to the encryption oracle.
Then, the encryption oracle chooses β ∈ {0, 1} at ran-
dom and returns a target ciphertext c∗ = E(pk,mβ) to
ACCA.
Phase 2: ACCA interacts with the decryption ora-
cle, submitting ciphertexts and obtaining decryptions.

However, ACCA is not allowed to submit the target ci-
phertext c∗ to the decryption oracle. Note that ACCA’s
interaction with the decryption oracle can be adap-
tive.
Guess: ACCA outputs a bit β′ ∈ {0, 1}.
We define the attacker ACCA’s success probability by

SuccIND−CCA
PKE,ACCA

(k)
def
= 2Pr[β′ = β]−1

We denote by SuccIND−CCAPKE (t, qD) the maximal
success probability SuccIND−CCA

PKE,ACCA
(k) over all at-

tackers ACCA having runing time t and making at
most qD queries to the decryption oracle. The running
time t and the number of queries qD are polynomial
in the security parameter k. We say that the public
key encryption scheme PKE is secure in the sense of
IND-CCA if SuccIND−CCAPKE (t, qD) is negligible in k.

2.3 The Gap Diffie–Hellman problem

We review the GDH problem, which was originally pro-
posed by Okamoto and Pointcheval at PKC 2001 [7].
Let G be a group of order q ≥ 2k generated by g ∈ G,

where q is a prime and k is a security parameter. LetAGDH

denote an attacker assumed to be a probabilistic Turing
machine taking the security parameter k as input.
Assume that AGDH is given a set of parameters (G,

q, g, ga, gb), where a and b are uniformly chosen at ran-
dom from Z∗q . Suppose that A

GDH has access to the DDH
oracle ODDHg (·, ·, ·), which on input of AGDH’s query
(gu, gv, gw) for u, v, w ∈ Z∗q works as follows:

– ODDHg (gu, gv, gw) = 1 if w = uv. (That is, the oracle
outputs 1 if (g, gu, gv, gw) is a Diffie–Hellman tuple.)
– ODDHg (gu, gv, gw) = 0 otherwise.

The aim of the attacker AGDH is to compute the Diffie–
Hellman key gab of ga and gb with the help of the above
DDH oracle.
We define the attacker AGDH’s success probability by

SuccGDHG,AGDH(k)
def
= Pr[AGDH(G, q, g, ga, gb) = gab]

We denote by SuccGDHG (t, qDDH) the maximal success
probability SuccGDHG,AGDH(k) over all attackers A

GDH having
running time t and making to the DDH oracle at most
qDDH queries. The run time t and the number of queries
qDDH are polynomial in the security parameter k. We say
that the GDH problem is intractable in the group G if
SuccGDHG (t, qDDH) is negligible in k.

3 Description of the modified Zheng–Seberry
scheme

Recall that in the Zheng–Seberry scheme [12], a plaintext
messagem is encrypted by creating a ciphertext

c= (gr, G(yr)⊕ (m||H(m))
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where G, H are hash functions and y is a public key such
that y = gx for a private key x ∈ Z∗q . Throughout this pa-
per, “||” denotes a concatenation.
The structure of the modified Zheng–Seberry scheme

described in [6] is basically the same as the original one
described above. The only difference is that in the modi-
fied scheme, the Diffie–Hellman key yr as well as the
message m is provided as input to the hash function H.
Intuitively, this seems to prevent the known plaintext at-
tack presented by Lim and Lee. Indeed, we show in a later
section that this intuition is correct.
Now we describe the modified Zheng–Seberry scheme,

which we denote by MZS. Below, we assume that
a plaintextmessagem is drawn from the space {0, 1}k0 for
k0 ∈ N.

– A randomized common parameter generation algo-
rithm GC(k)

– Choose a group G of prime order q ≥ 2k.
– Choose a generator g of G.
– Find a real constant λ≥ 1 such that λk is an elem-
ent of N.

• Let k1 = λk.
– Pick a hash function H : {0, 1}k0×G → {0, 1}k1

modeled as a random oracle.
– Pick a hash function G : G → {0, 1}k0+k1 modelled
as a random oracle.
– Output a common parameter cp= (G, g, q, G, H,
k, k0, k1).

– A randomized key generation algorithm GK(cp)

– Pick x uniformly at random from Z∗q .
– Compute y = gx.
– Output a public key pk = (cp, y) and a private key
sk = (cp, x).

– A randomized encryption algorithm E(pk,m)

– Pick r uniformly at random from Z∗q .
– Compute u= gr and κ= yr.
– Compute µ=G(κ) and σ =H(m||κ).
– Compute v = µ⊕ (m||σ).
– Output a ciphertext c= (u, v).

– A deterministic decryption algorithm D(sk, c)

– Parse c as (u, v).
– Compute κ= ux and µ=G(κ).
– Compute t= v⊕µ.

• Let [t]k0 be the first k0 bits of t, starting with
the first bit.

• Let [t]k1 be the remaining k1 bits of t, starting
with the (k0+1)-th bit.

– Compute σ =H([t]k0 ||κ).
– If [t]k1 = σ, do the following:

• Definem as [t]k0 and outputm.
– Else output “Reject”.

4 Security analysis

In this section, we analyze the security of the MZS
scheme. For careful analysis, we use the proof methodol-
ogy introduced by Shoup [9].
In the proof, we start with the real attack game where

the attacker ACCA tries to defeat the security of the
Zheng–Seberry scheme in the sense of IND-CCA defined
in Sect. 2.2. Then, we modify this game by changing its
rules and obtain a new game. Note here that the rules of
each game are to describe how variables in the view of
ACCA are computed. We repeat the modification until we
simulate the view of ACCA completely and obtain a game
related to the ability of the attacker AGDH to solve the
GDH problem defined in Sect. 2.3.
When a new game is derived from a previous one,

a difference of the views of the attacker in each game
might occur. This difference is measured by the technique
presented in the following lemma.

Lemma 1. Let A1, A2, B1 and B2 be events defined over
some probability space.
If Pr[A1 ∧¬B1] = Pr[A2∧¬B2] and Pr[B1] = Pr[B2] =

ε, then we have |Pr[A1]−Pr[A2]| ≤ ε.

The proof is a straightforward calculation and can be
found in [9]. Now we state and prove our main theorem.

Theorem 1. The modified Zheng–Seberry schemeMZS
is secure in the sense of IND-CCA in the random or-
acle model, assuming the GDH problem in group G is
intractable. More precisely, we have

1

2
SuccIND−CCAMZS (t,qG, qH , qD)

≤ SuccGDHG (t′, qDDH)+
qD

2k1−1

where t′ = t+ qG+ qH + qD(qG+ qH)(TDDH +O(1)) and
qDDH ≤ qG+ qH+ qD(qG+ qH).
Here qG, qH , and qD denote the number of queries made

by IND-CCA attackers having running time t to the ran-
dom oracles G and H and the decryption oracle, respec-
tively. Also, qDDH denotes the number of queries made by
GDH attackers having running time t′ to the DDH oracle
ODDHg (·, ·, ·)whose run time is denoted by TDDH.

Proof. LetACCA be an IND-CCA attackerwhose running
time is polynomial in a security parameter k. Also, let
AGDH be an attacker trying to solve the GDH problem,
given (G, q, g, ga, gb).
As mentioned earlier, we start with the following

game, which is equivalent to the real attack game.

– Game G0: This game is actually the same as the real
attack game described in Sect. 2.2.
First, we run the common parameter generation algo-
rithm of the schemeMZS, taking the security param-
eter k as input, and obtain a common parameter cp.
Then, we run the key generation algorithm on input
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cp and obtain a private key (cp, x) and a public key

(cp, y), where y = gx. The public key pk
def
= (cp, y) is

given to ACCA. After ACCA submits a pair of plaintexts
(m0,m1), we create a target ciphertext c

∗ = (u∗, v∗) as
follows:

u∗ = gr
∗
; v∗ =G(κ∗)⊕ (mβ||σ

∗)

where

κ∗ = yr
∗
;σ∗ =H(mβ ||κ

∗)

for r∗ and β picked uniformly at random from Z∗q
and {0, 1}, respectively. On input c∗, ACCA outputs
β′ ∈ {0, 1}. We denote by S0 the event β′ = β and use
a similar notation Si for all Gi.
Since this game is the same as the real attack game, we
have

Pr[S0] =
1

2
+
1

2
SuccIND−CCA

MZS,ACCA
(k)

– Game G1: In this game, we modify the encryption or-
acle (creation of a target ciphertext) presented in the
previous game. Our modification obeys the following
rules:

R1-1 First, we choose κ+ ∈ G, u+ ∈ G, µ+ ∈
{0, 1}k0+k1 , and σ+ ∈ {0, 1}k1 uniformly at ran-
dom. Then, we replace u∗, κ∗, G(κ∗), and
H(mβ||κ∗) in the target ciphertext c∗ by u+, κ+,
µ+, and σ+, respectively. Accordingly, we replace
v∗ in c∗ by v+ = µ+⊕ (mβ ||σ+). A new target ci-
phertext is (u+, v+) and is denoted by c∗+.
R1-2Whenever the random oracleG is queried at
κ+, we respond to it with µ+.
R1-3 Whenever the random oracle H is queried
at (m||κ+) for some m ∈ {0, 1}k0, we respond to it
with σ+.

The attacker ACCA’s view has the same distribution in
both Game G0 and Game G1 since we have replaced
one set of random variables by another set of random
variables that is different yet has the same distribu-
tion.
In this game, we assume that the decryption oracle
is perfect. That is, receiving ACCA’s decryption query,
c = (u, v), which is different from the target cipher-
text, we decrypt it in the same way as we do in the real
attack game. We refer to this rule as “R1-4”.
Accordingly, we have

Pr[S1] = Pr[S0]

– Game G2: In this game, we retain the rules R1-1 and
R1-4, renaming them as “R2-1” and “R2-4”, respec-
tively. However, we drop the rules R1-2 and R1-3.
That is, µ+ and σ+ are used only in the encryption
oracle for producing the target ciphertext c∗+, while
in other cases when the decryption oracle queries to

the random oracles G and H or ACCA directly queries
to them, answers from G or H are taken. We refer to
these rules regarding the random oracles G and H as
“R2-2” and “R2-3”, respectively.
Since we have dropped the rule R1-2, the input to
ACCA follows a distribution that does not depend on β.
Hence we get Pr[S2] = 1/2.
Also, note that Game G1 and Game G2 may differ
if G is queried at κ+ or H is queried at (m||κ+) for
somem ∈ {0, 1}k0. Let AskG2∨AskH2 denote an event
in which, in Game G2, G is queried at κ+ or H is
queried at (m||κ+). For notational convenience, let
AskKey2 = AskG2∨AskH2. We will use an identical no-
tation AskKeyi for all the remaining games.
Now we have

|Pr[S2]−Pr[S1]| ≤ Pr[AskKey2]

– Game G3: In this game, we again modify the target
ciphertext c∗+ = (u

+, v+), where v+ = µ+⊕ (mβ||σ+)
and µ+ =G(κ+), produced by the ruleR2-1 in Game
G2. We replace this rule by the following new rule
R3-1.

R3-1 First, we replace y the public key element
given to ACCA by gb and u+ by ga, where (ga, gb)
are the parameters given to the attacker AGDH.
Now we define κ+ as ya, µ+ as G(ya), and σ+

as H(mβ ||ya). That is, we use the same v+ in c∗+
for the second element of a new target ciphertext
c∗DH but we rename the values in it. Therefore,
the resulting target ciphertext denoted by c∗DH is

(ga, v+), where v+
def
= G(ya)⊕ (mβ||H(mβ ||ya)).

However, we retain the rules R2-2, R2-3, and R2-4
in Game G2, renaming them as “R3-2”, “R3-3”, and
“R3-4”, respectively.
Thanks to the randomness of the oracleG and the uni-
formity of ga in the group G, ACCA’s view has the same
distribution in both Game G2 and Game G3. Hence we
have

Pr[AskKey3] = Pr[AskKey2]

From now on, we deal with the decryption oracle that
has been regarded as perfect up to this game.
– Game G4: We retain all the rules R3-1, R3-2, and
R3-3, renaming them as “R4-1”, “R4-2”, and “R4-
3”, respectively. But we modify the rule R3-4 and
obtain a new rule “R4-4” described in the following.
We make the decryption oracle reject all ciphertexts
c= (u, v) such that the corresponding value (m||κ) has
not been queried to the random oracleH by ACCA. If c
is a valid ciphertext and G(κ) has been queried, then
the rule of this game causes a difference: if c is valid,
then we have [t]k1 = [v⊕G(κ)]k1 =H(m||κ). But we
have assumed thatH(m||κ) had not been queried and
hence the event [v⊕G(κ)]k1 =H(m||κ) happens with
probability 1/2k1 since the output of the random ora-
cleH is uniformly distributed in {0, 1}k1.



J. Baek and Y. Zheng: Zheng and Seberry’s public key encryption scheme revisited 41

Summing up all the decryption queries, we have

|Pr[AskKey4]−Pr[AskKey3]| ≤
qD

2k1

– Game G5: We retain all the rules R4-1, R4-2, and
R4-3, renaming them as “R5-1”, “R5-2”, and
“R5-3”, respectively. But we add the following rule to
R4-4 and obtain a new rule “R5-4”.
We make the decryption oracle reject all ciphertexts
c= (u, v) such that the corresponding value κ has not
been queried to the random oracle G by ACCA. If c is
a valid ciphertext andH(m||κ) has been queried, then
the rule of this game causes a difference: if c is valid, we
have [t]k1 = [v⊕G(κ)]k1 =H(m||κ). But we have as-
sumed that G(κ) had not been queried and hence the
event [v⊕G(κ)]k1 =H(m||κ) happens with probabil-
ity 1/2k1 , assuming that ACCA correctly guesses the
last k1 bits of the output of the random oracleG.
Summing up all decryption queries, we have

|Pr[AskKey5]−Pr[AskKey4]| ≤
qD

2k1

– Game G6: Note that the cases when H(m||κ) or G(κ)
has not been queried are excluded in this game since
these cases were already dealt with in the previous
game. That is, we assume thatH(m||κ) andG(κ) have
been queried at some point.
We retain all the rules R5-1, R5-2, and R5-3, re-
naming them as “R6-1”, “R6-2”, and “R6-3”, re-
spectively. But we add the following rule to R5-4 and
obtain a new rule “R6-4”.
We replace the decryption oracle by a decryption ora-
cle simulator, which can decrypt a submitted decryp-
tion query c= (u, v) without knowing the private key.
Before presenting the simulator, we define some con-
ventions. We denote by GList1 a list that consists of
simple “query-answer” entries for the random oracle
G of the form 〈κ, µ〉, where µ=G(κ). We also denote
by GList2 a list that consists of the special “query-
answer” entries for the random oracle G, which are of
the form c||(?, µ). The symbol µ implicitly represents
the query-answer relation µ=G(κ), although the in-
put κ is not explicitly stored and hence is denoted by
“?”. Note that new entries in the list GList2 are added
by the decryption oracle simulator. Similarly, we de-
note a list of all “query-answer” pairs for the random
oracle H by HList. More specifically, HList consists of
the pairs 〈(m||κ), σ)〉, where σ=H(m||κ). Notice that
all these lists are growing as ACCA’s attack proceeds.
Now we describe a complete specification of the
decryption oracle simulator. Note in the following
that the decryption oracle simulator can be con-
structed using AGDH’s DDH oracle ODDHg (·, ·, ·) to
check whether (u, y, κ) is a Diffie–Hellman tuple,
where g is a generator of group G, u is from the sub-
mitted ciphertext c = (u, v), and y is the public key
element replaced by gb in Game G3.

– If there exists 〈κ, µ〉 ∈ GList1 such that
ODDHg (u, y, κ) = 1

• Compute t= v⊕µ.
• If there exists 〈(m||κ), σ〉 ∈HList such thatm=
[t]k0 and σ= [t]k1 , then outputm, otherwise re-
ject c.

– Else if there exists c||(?, µ) ∈ GList2

• Compute t= v⊕µ.
• If there exists 〈(m||κ), σ〉 ∈HList such thatm=
[t]k0 and σ= [t]k1 , then outputm, otherwise re-
ject c.

– Else generate µ uniformly at random from
{0, 1}k0+k1

• Compute t= v⊕µ.
• Put c||(?, µ) into GList2.
• If there exists 〈(m||κ), σ〉 ∈ HList such that
ODDHg (u, y, κ) = 1 and m= [t]k0 and σ = [t]k1 ,
then outputm, otherwise reject c.

Note that the above decryption oracle simulator
perfectly simulates the real decryption oracle since
H(m||κ) andG(κ) had been previously queried before
the current game started. Thus, we get

Pr[AskKey6] = Pr[AskKey5]

As defined in Game G3, AskKey6 denotes the event
that the Diffie–Hellman key ya(= gab) has been queried
to the random oracle G or H. At this stage, we can check
which one of the queries to the random oracles G and H
is a Diffie–Hellman key of gab using AGDH’s DDH oracle
ODDHg (·, ·, ·). Also, note that we have used the DDH or-
acle to simulate the decryption oracle. That is, we have
now reached the stage where we can solve the GDH prob-
lem and hence we have

Pr[AskKey6]≤ Succ
GDH
G,AGDH(k)

Now, putting all the bounds we have obtained in each
game together, we have

1

2
SuccIND−CCA

MZS,ACCA
(k) = |Pr[S0]−Pr[S2]|

≤
qD

2k1
+
qD

2k1
+Pr[AskKey6]

≤
qD

2k1−1
+SuccGDHG,AGDH(k)

Note that since k1 = λk ∈ N for some real constant
λ≥ 1 as defined in the description of MZS, the term
qD
2k1−1

is negligible in k.
Finally, we work out the number of the calls to the

DDH oracleODDHg (·, ·, ·) and ACCA’s running time. In the
worst case, all of the queries to the random oracles G and
H should be checked using the oracleODDHg (·, ·, ·) to find
the correct Diffie–Hellman key of ga and gb. The num-
ber of these queries are bounded by qG+ qH . Also, up to
qG+ qH queries are made to the oracle ODDHg (·, ·, ·) per
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Fig. 1. Summary of the proof of Theorem 1

each decryption query in the decryption oracle simulator.
Therefore, the total number of calls to the DDH oracle
ODDHg (·, ·, ·) is bounded by

qDDH ≤ qG+ qH+ qD(qG+ qH)

The total running time of AGDH is bounded by

t′ = t+ qG+ qH+ qD(qG+ qH)(TDDH +O(1))

where t and TDDH denote the run time of ACCA and the
DDH oracle, respectively.
Readers are referred to Fig. 1 for the outline of the

proof of Theorem 1. Note that in the table, “&&” denotes
the conditional operator “and”.

5 Implementation issues

One important aspect of implementing theMZS scheme
is how to choose a suitable group G. The choice is
quite flexible. A prime-order subgroup of the multi-
plicative group Z∗p where p is prime would be a pos-
sible one. Also, one can choose a group of points on
suitable elliptic curves instead. As is widely known,

properly chosen elliptic curves can provide a highly se-
cure public key cryptosystem with relatively small block
size.
The other important issue is the implementation of

the hash functionsG andH, which are assumed to be ran-
dom oracles [3].
Recall that the inputs of the hash function H are of

the form (m||κ), where m is a bit string of length k0 and
κ is an element of the group G, represented as an integer.
Since applications usually work with data represented as
octet (byte) strings rather than bit strings, we need to
convert any bit strings or integers used as variables in the
scheme into octet strings. According to the IEEE P1363
standard [5], we can use the BS2OSP function to con-
vert a bit string to an octet string. Also, using the I2OSP
function, we can convert an integer to an octet string.
Therefore, (m||κ) in the scheme is actually implemented
as (BS2OSP (m)||I2OSP (κ)).
Construction of the hash function H as a random or-

acle can be quite flexible, but we recommend the Key
Derivation Function 1 (KDF1) defined in the IEEEP1363
standard.
Using the KDF1, H can be implemented as follows.

H(M) = hash(M ||I2OSP (0))|| · · · ||hash(M ||I2OSP (l−
1)), where hash is a conventional hash function such as
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SHA-1 [4] with output length hLen,M
def
= (BS2OSP (m)||

I2OSP (κ)) and l = 
k1/hLen�.
The hash function G can be implemented in a simi-

lar manner except for using a different conventional hash
algorithm for hash, such as MD5.

6 Discussions on security analysis given in [10]

As mentioned in a previous section, Soldera et al. [10] pro-
posed the following slightly different modification of the
Zheng–Seberry scheme called “Secure ElGamal (SEG)”.
Let pk = (G, g, q, y), where y = gx and sk = (G, g, q, x).

Now a plaintext messagem is encrypted by creating a ci-
phertext

c= (u, v) = (gr, yr · (m||H(m||yr))2)

where r is randomly chosen from Z∗q and H is a hash
function modeled as a random oracle. Decryption of c is
similar to theMZS scheme, so we omit it here.
First, we point out that the description of the SEG

scheme given in [10] contains an error. As readers are
aware, “(m||H(m||yr))” in the above scheme is not an
element of the group G, hence how m is mapped to an
element of G should have been described. In practice, this
could be done using the BS2IP or OS2IP function rec-
ommended in the IEEE P1363 standard [5], which con-
verts a bit string (or an octet string, respectively) to an
integer.
We now look into the proof of the SEG scheme. Ac-

cording to [10], the SEG scheme described above is prov-
ably secure in the sense of IND-CCA in the random oracle
model assuming the DDH problem is intractable. How-
ever, we show that the proof is incorrect.
Recall that in the DDH problem, given a tuple (ga, gb,

gc) and a generator g, the attacker is to decide whether
c = ab. In the security proof of the SEG scheme, a vari-
ant of the DDH is used. In this variation, the attacker
is to distinguish the distribution of random quadruples
D = (g1, g2, u1, u2) ∈ G×G×G×G from the distribution
of quadruples R = (g1, g2, u1, u2) ∈ G×G×G×G, where
g1 and g2 are random and u1 = g

r
1 and u2 = g

r
2 for random

r ∈ Z∗q . If we let g1 = g and g2 = g
s, then the distribution

D becomes (g, gs, gr, gsr), and hence the above “distin-
guishingD from R” problem becomes the standard DDH
problem.
To show that the SEG scheme is secure in the sense

of IND-CCA assuming that the DDH problem is hard, we
should simulate the view of the IND-CCA attacker up to
the point where we get the ability of the attacker solving
the DDH problem to achieve its goal.
In [10], the encryption oracle of the SEG scheme is

simulated as follows. We choose a private key xR ran-
domly from Z∗q and compute ysim = g

xR. Then we give
(G, g, q, ysim) as a public key to the IND-CCA attacker.
On receiving a plaintext pair (m0,m1) from the IND-
CCA attacker, we select β ∈ {0, 1} at random and output

a target ciphertext (c1, c2, c3), where c1 = u1, c2 = u2, and
c3 = c

xR
1 · c2 · (mβ ||H(mβ ||c

xR
1 ))

2. Notice that u1 and u2
are from the distributionD or R.
Obviously, there is a serious problem in the above

simulation of the encryption oracle. Note in the above
simulation that the simulated target ciphertext has an ex-
tra component c2. Since c2 is an element of the group G,
the length of the simulated target ciphertext (c1, c2, c3) is
always 1.5 times longer than that of the target ciphertext
in the real attack. Hence, with nonnegligible probability,
the IND-CCA attacker can distinguish the target cipher-
text in the simulation from that in the real attack by
telling which one is longer.
To make the above simulation correct, we should con-

vert (c1, c2, c3) to one that has the same length of the
target ciphertext in the real attack. But how this is done
is not precisely mentioned anywhere in the proof except
the very vague statement that “the transformation back
is obvious”: actually, throughout the entire proof they use
the lengthened target ciphertext (c1, c2, c3) as if it were
a correctly simulated one.
There is another problem. It is claimed in the proof

that “c
xR
1 c2 is equivalent to the output of the actual en-

cryption oracle”. However, we show in the following that
this is not the case.
In the real attack, the target ciphertext is of the form

(u, v) = (gr, yr · (m||H(m||yr))2), where y = gx; hence the
component yr yields a correct Diffie–Hellman key of u=
gr and y = gx since yr = gxr. On the other hand, in the
simulation, even if u1 and u2 are from the distributionD,
c
xR
1 c2 does not yield a Diffie–Hellman key of any combi-
nation of ysim, c1 and c2: suppose that g1 = g and g2 = g

s

for random s ∈ Z∗q . Since u1 = g
r
1 and u2 = g

r
2, we have

u1 = g
r and u2 = g

sr. Now we obtain

c
xR
1 c2 = u

xR
1 u2 = g

rxRgsr = grxR+sr

Thus the distribution (ysim, c1, c2, c
xR
1 c2) is equivalent to

(gxR , gr, gsr, grxR+sr). However, any three components of
this distribution do not yield a Diffie–Hellman tuple.
The implication of the above problem is even more

serious. Since the combination (gr, gsr, grxR+sr) is not
a Diffie–Hellman tuple, we cannot hope to solve the prob-
lem of distinguishing D from R, that is, the DDH prob-
lem, using the ability of the IND-CCA attacker.

7 Conclusion

In this paper, we have shown that the hardness of the
GDH problem implies the chosen ciphertext security of
the slightly modified version of Zheng and Seberry’s pub-
lic key encryption scheme. We have also discussed the
current security analysis of the modified Zheng–Seberry
scheme and concluded that the security proof given in [10]
is incorrect.
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