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been made to explicitly address the testing of databasécafiphs which requires a large amount
of representative data available. As testing over live potidn databases is often infeasible in many
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data, in this paper we investigate the problem of generaymghetic databases based on a-priori
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various characteristics (e.g., constraints, statistides) extracted from a production database and
then generate synthetic data using model learned. Theaiedetata is valid and similar to real data
in terms of statistical distribution, hence it can be usedidioctional and performance testing. As
characteristics extracted may contain information whicyre used by attackers to derive some
confidential information about individuals, we present digclosure analysis method which applies
cell suppression technique for identity disclosure andupkation for value disclosure analysis.
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1. Introduction

Database application software testing is by far the mostilgogctivity currently used by developers or
vendors to ensure high software quality. A significant igawatabase testing consists in the availability
of representative data. Although application developsrsally have some local development data for
local functional testing, however, this small amount ofade&n not fulfill the requirements of some
testing phases such as performance testing where a largesnaofadata is needed. On the other hand,
testing over live production databases is often infeadiblenany situations due to the high risks of
disclosure of confidential information or incorrect updgtof real data. Hence, synthetic data generation
becomes an appealing alternative.

Recently, the authors in [23] have proposed a general framiefor privacy preserving database
application testing and investigated the method of geimgraiynthetic database based on a-priori knowl-
edge (e.g., constraints, statistics, rules, etc.) abautdinrent production database. In testing the func-
tions of database applications, the generated data neatidfy sl the constraints (e.g., no-Null, unique-
ness, referential integrity constraints, domain constsaiand semantic constraints) and business rules
underlying the live data. In testing the performance of lbase applications, it will be imperative that
the data is resembling real data in terms of statisticatidigion since the statistical nature of the data
determines query performance. In addition to valid (in ®whconstraints and rules) and resembling
real data (in terms of statistical distribution), the da¢aigrated need to preserve privacy, i.e., the gener-
ated data should not disclose any confidential informatiah database owners would not want to reveal.
Since the synthetic database is generated from a-priowleulge about the live database, it is important
to preclude confidential information from a-priori knowtgd

In this paper, we investigate how to use tfeneral location moddb model an existing production
database and how to use the model learned to generate atgydttabase. We examine in detail how
to extract statistics and rules to estimate parameterseofémeral location model and how to resolve
the potential disclosure of confidential information inalgeneration using model learned. This issue is
related to, but not identical to, the widely recognized peabof privacy preserving data mining (e.g.,
[3]). In the situation we present, our disclosure analysmonducted at model level instead of tuple level.

The contribution of this work is twofold. First, the contamtthis paper is how to build the general
location model from characteristics extracted from thedpaion databases. As the model learned is
the only means to generate data for release, all confidenf@mation which attackers can derive is
guaranteed to be contained in those parameters. Seconcawene how to resolve the potential dis-
closure (both identity disclosure and value disclosurejooifidential information entailed in the general
location model. As the search space of parameters is mucliesitia@n the space of perturbed data,
this approach is more effective and efficient. Furthermae extend the concept of a uni-variate con-
fidence interval to a multi-variate confidence region to meagrivacy and confidentiality for multiple
confidential attributes simultaneously.

The remainder of the paper is structured as follows. In sec®, we revisit the general location
model and present some known results about density contonulti-variate normal distribution from
statistics, which will be used in value disclosure analysi¥e describe our privacy preserving data
generation system in section 3 and present how to fit the geloeation model in section 4. In section
5, we present in detail how to conduct identity disclosurd easue disclosure in terms of the general
location model. We review the related work in section 6. Ictis& 7, we draw conclusions and describe
directions for future work.
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2. Preliminaries

2.1. The General Location Model Revisited

Let A = {4;,A,,---,A,} denote a set of categorical attributes afid= {Z;,Z,,--- ,Z,} a set

of numerical ones in a table with entries. Supposel; takes possible domain valués2, --- ,d;,

the categorical dat®V can be summarized by a contingency table with total numbeelié equal to

D = H?:ldj' lety = {yqs : d = 1,2,--- , D} denote the number of entries in each cell. Clearly

Zle yq = n. The general location model [20] is defined in terms of thegimat distribution of A and
the conditional distribution of given.A. The former is described by a multinomial distribution oge th

cell countsy,
!
y | T~ M(?’L,TF) = Lﬂ-lyl "'7TDyD
vl yp!
wherer = {ny : d = 1,2,--- , D} is an array of cell probabilities correspondingxo For each cell
d, whered = 1,2,--- , D, defined by the categorical attributgls the numerical attributeg are then

modeled as a conditionally multi-variate normal as:

1 'sv -1
f(z]d) = = o Y2Az—pa) Ba (z—pa)
(Zw)p/2| Yy |1/2
wherep-dimensional vectoyq4 represents the expected value of the random vector cell d, and the
p X p matrix X4 is its variance-covariance matrix. The parameters of timeigdion location model can
be written a®) = (, i, ¥). The maximum likelihood estimates éfis as follows:

N L4
T — —

n
fa=1g" Y 2
1€By
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1€By

whereB,; = {i : u; = E4} is the set of all tuples belonging to céll

An lllustrating Example Table 1 shows a data example of Mortgage dataset of custosiidrs:
tuples. Let us assume SSN and Name are confidential infamatid should be marked out. The
remaining attributes are grouped into two parts: categbatiributes and numerical attributes. Each
categorical attribute has its own domains, e.g., Genddr tmib domain value§Male, Femalé¢. The
categorical part can be summarized by a 4-dimensional rggeticy table with total number of cells
equal toD =| Zip | x | Race | x | Age | x | Gender |, where|| denote the size of domain values.
We usexry, d = 1,2,--- , D to denote the number of tuples in each cell. In general, sugbatained in
one given table is a subset of the cartesian product of someids. In other words, some cells may not
contain any tuple due to either integrity constraints orlitmged sample size. In this paper, we assume
the domains for each categorical attribute are fixed whievillume of data is changing.

The general location model assumes the numerical attabfui, Balance, Income, InterestPaid)
of tuples in each cell follow a multivariate normal distritmin. For example, the Balance, Income and
InterestPaid of customers in the céli8223, Asian, 20, Male} follow a 3-variate normal distribution
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Table 1. An Example of Mortgage Dataset

Categorical Numerical
SSN | Name Zip Race | Age | Gender | Balance | Income | InterestPaid
1 28223 | Asian 20 Male 10k 85k 2k
2 28223 | Asian 30 | Female 15k 70k 18k
3 28262 | Black 20 Male 50k 120k 35k
n 28223 | Black 25 Male 80k 110k 15k

with parametey, 1, whereu, is a 3-vector means ari; is a3 x 3 covariance matrix while those in
the cell {28223, Asian, 20, Female} may follow a 3-variate normal distribution with differenteains
and covariance matrix.

Here we would emphasize that it is feasible to model variaia dsing the general location model
although a group of data may follow some other distributi@@ng., Zipf, Poison, Gamma etc.) in practice
[20]. As we can see we define multi-variate normal distritnutior data at the finest level and data at
higher levels can be taken as a mixture of multi-variate rabwiistributions, hence we can theoretically
use a mixture of multi-variate normal distributions to micaiey other distributions.

It is straightforward to see we can easily generate a datdsst the parameters of general location
model are given. Generally, it involves two steps. First,asgmate the number of tuples in each ckll
and generate; tuples. Allx, tuples from this cell have the same categorical attributeeginherited
from the cell location of contingency table. Second, weneate the mean and covariance matrix for
those tuples in this cell and generate numerical attribatees based on the multi-variate normal model.
In general, some columns’ distribution may be functionaipendent on those of other columns, hence
we would like to derive an approximate joint distributiontbbse independent columns which is used to
generate synthetic data for performance testing.

2.2. Density Contour of Multi-variate Normal Distribution

In this section we present some known results about dersitipar of multi-variate normal distribution
from statistics. These results will be used to conduct velselosure of the general location model.

Result 1. (Constant probability density contour)

([13], page 134) Letz be distributed asV,(u,>) with | X [> 0. Then, theN,(u, %) distribution
assigned probability — « to the solid ellipsoid{z : (z — p) £-1(z — p) < Xa()}, wherex?(a)
denotes the uppet {0a-th) percentile of th%% distribution withp degrees of freedom. The ellipsoid is
centered at and have axes-c\/\;e;, wherec? = X]%(a) andXe; = \je;,i=1,---,p.

The multi-variate normal density is constant on surfacesrerthe squared distante— u)/E‘l(z—
) is constant?. The chi-square distribution determines the variabilityhe sample variance. Proba-
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bilities are represented by volumes under the surface egeoms defined by intervals of the values.
The axes of each ellipsoid of constant density are in thectiine of the eigenvectors &' and their
lengths are proportional to the the square roots of the eaees {;) of 3.

Result 2 shows the general result concerning the projeaifoan ellipsoid onto a line in a p-
dimensional space.

Result 2. (Projection of Ellipsoid)
([13], page 203) For a given vectbe 0, andz belonging to the ellipsoidz : Z A7z < c*} determined

by a positive definitg x p matrix A, the projection (shadow) diz A~'z < ¢?} on/ is ¢ ¥ g,/eMé which

extends fromD along? with lengthc elﬁf. When/ is a unit vector, the shadow exteneé?¢’ A¢ units,
so| z'/ |< eVl AL

3. System Overview
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Figure 1. Architecture of data generation system
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Figure 1 shows the architecture of synthetic database ggmersystem. The system is intended to
generate a synthetic database using various characterestiracted from the production database for
testing database applications, instead of generatinghloegu for use in the performance evaluation of
DBMS. We assume databases are based on the relational maniel paper. A relational database is a
set of relation schemas together with a set of integrity tamgs which restrict the possible values of
the database states.

We would like automate the data generation process as mumtsaible. We use the same approach
as in [4] to extract various constraint information from ectes which are defined by Data Definition
Language (DDL). Itis desirable that the generated datarithgyic databases also satisfy the constraints.
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A major advantage is that our system can extract more congplasacteristics (e.g., statistics and rules)
in addition to constraints from data catalog and data wherutiderlying production database is avail-
able. As we discussed in introduction, even if one synttadiabase satisfies all constraints, it does not
mean it can fulfill users’ testing requirement as it may hatfer@nt data distribution than the production
database. Hence our approach extracts characteristics ggtistics, rules) from the production data-
base, fits the general location model using characteristtteicted, and generates a synthetic database
using model learned. As shown in Figure 1, the charactesisti production databases can be extracted
from three parts: DDL, Data Dictionary, and Data. In ordeetsure that the data is close looking or
statistically similar to real data, or at least from the paihview of application testing, we need to have
the statistical descriptions§, and non-deterministic rulegy'R, of real data in production databases.
These two sets describe the statistical distributions tlepes of underlying data and may affect the size
of relations derived as a result of the evaluations of gaethe application will need to execute. Our
intuition is that, for database applications, if two datdsare approximately the same from a statistical
viewpoint, then the performance of the application on the databases should also be approximately the
same!. Furthermore, our system includes one disclosure anatgsigoonent which helps users remove
those characteristics which may be used by attackers teedavnfidential information in the production
database. As all information used to generate syntheter idabur system are contained in character-
istics extracted, our disclosure analysis component calyze and preclude the potential disclosure of
confidential information at the characteristics (i.e.tist&s and rules) level instead of data level.

4. Database Modeling via the General Location Model

4.1. Extracting characteristics from data dictionary

Data dictionary consists of read-only base tables thaé stdormation about the database. When users
execute an SQL command (e.g., CREATE TABLE, CREATE INDEXGREATE SEQUENCE) to
create an object, all of the information about column namekjmn size, default values, constraints,
index names, sequence starting values, and other inf@mate stored in the form of metadata to the
data dictionary. Most commercial DBMSs also collect stitié information regarding the distribution
of values in a column to be created. This statistical infdromacan be used by the query processor to
determine the optimal strategy for evaluating a query. &siéita in a column changes, index and column
statistics can become out-of-dated and cause the quemiaptito make less-than-optimal decisions on
how to process a query. SQL server automatically updatestaiistical information periodically as the
data in the tables changes. In our system, we have one comtpehieh simply accesses tables in data
dictionary and fetch characteristics related.

4.2. Extracting characteristics from data

The statistics information about columns extracted diyeitom data dictionary is usually with high
granularity which may be insufficient to derive relativetycarate model. In practice it is usually true that
users can collect more statistics at low granularity froiginal data or a sample of real data themselves.

"Here we assume that file organizations, sorted fields, arekistiuctures of the production databasare not private infor-
mation and the synthetic data generator use these inf@mttibuild the synthetic database in the same way that ptiaduc
database has been built.
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SELECT Zip, Race, Age, Gender, COUNT(*),
AVG(Balance), AVG(Income), AVG(InterestPaid),
VAR _POP(Balance), VARPOP(Income), VARPOP(InterestPaid),
COVAR_POP(Balance,Income), COVAROP(Balance,InterestPaid),
COVAR_POP(Income,InterestPaid)

FROM Mortgage

GROUP BY Zip, Race, Age, Gender

HAVING COUNT(*) >5

Figure 2. Example of extracting statistics using SQL

Q1: SELECT AVG(Income), AVG(InterestPaid) FROM MortgagdM&RE Zip = z AND Race =r
Q2: SELECT AVG(Income) FROM Mortgage WHERE Age =a AND Zip =z

Figure 3. Workload example of Mortgage database

Figure 2 presents one SQL command to extract statisticsedirtast granularity level. It returns
all information needed to derive parameters of the genecation model. For example, the value from
aggregate function COUNT (*) is the estimaig, of the number of tuples in each cell while the values
from aggregate functions (i.e., AVG, VAROP, COVARPOP) are the estimates of mean vectors and
covariance matrices respectively of the multi-variatermardistribution of each cell. It is worth pointing
out that all aggregate functions can be used with GROUP Biyselavith CUBE or ROLLUP option if
we want to extract statistics at all possible granularity.

In practice, it may be infeasible to extract statistics atfihest level because statistics at the finest
level may contain too much information and may be exploitgatiackers to derive some confidential
information about production databases. As our goal istegge synthetic data for database application
testing, we may extract statistics which are only relateglieries in workload of database software. For
the workload which contains two queries shown in Figure i3,dear that the distribution of underlying

Statistics 1: SELECT  Zip, Race, COUNT(*), AVG(Balance), @{nterestPaid)
FROM Mortgage
GROUP BY Zip, Race
HAVING COUNT(*) >5

Statistics 2: SELECT  Zip, Age, COUNT(*), AVG(Income)
FROM Mortgage
GROUP BY Zip, Age
HAVING COUNT(*) >5

Figure 4. SQLs of extracting statistics for workload
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Rule 1: IF Zip = 28223, Race = Asian, and Age in (25, 40) THENaBaE is in (20k,30K)
with support s = 900 and confidence c= 90 %.

Rule 2: IF Zip = 28262 THEN Race = White with support s = 5000 eoxfidence ¢ = 80 %

Figure 5. Example of non-deterministic rules for Mortgagtadet

data at some high level (instead of at the finest level) is@efft to capture the relation with the execution
time of queries in workload. For example, the approximasggritiution onZip, Race would satisfy the
performance requirements of Q1 in workload. In this casemag only extract statistics necessary for
query performance of queries. Figure 4 presents two SQL comdsito extract statistics for two queries
shown in Figure 3.

4.3. Extracting characteristics from rule sets

To derive the deterministic rule sgt, we take advantage of the database schema, which destrigs-t
mains, the relations, and the constraints the databasgneesias explicitly specified. Some information
(function dependencies, correlations, hierarchies etm)be derived from database integrity constraints
such as foreign keys, check conditions, assertions, aggkis. Furthermore, users may apply some data
mining tools to extract non-deterministic rul&R from the production database. The non-deterministic
rule set\'R helps describe the statistical distributions or pattefnsderlying data and may affect the
size of relations derived as a result of the evaluations efiga the application will need to execute.
Formally, each rule irR and V'R can be represented as a declarative rule and is generalig &tm:

IF <premise>- THEN <conclusion- [with supports and confidence].

The rules may include exact, strong, and probabilisticsrilased on the support and confidence.
We note here that complex predicates and external funcéterences may be contained in both the
condition and action parts of the rule. Anyone with subjeetter expertise will be able to understand
the business logic of the data and can develop the apprepriatditions and actions, which will then
form the rule set.

Figure 5 shows two examples of non-deterministic rulesierMortgage database. We can interpret
Rule 1 as there are 1000 customers with Zip = 28223, Race =nAaral Age in (25, 40) and 90 % of
them with Balance in the range of (20k, 30Kk). It is straightfard to see that these rules can be mapped
to statistics of the general location model at some graityldfor example, the number of data entries
in cell (28223, Asian, 25-40, All) is 1000 and we can deriverage balance of data entries in this cell
from the clause Balance in (20k,30k) with confidence c= 90 %.

4.4. Fitting model using characteristics

It is easy to see all characteristics (i.8,,R, N'R) extracted from production database can be mapped
to constraints of parameters of the general location mddakedinest level. Given those constraints, we
can apply linear programming techniques to derive parasefehe general location model at the finest
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level. However, it is infeasible to apply linear programmiechniques directly in practice due to high
complexity (the number of variables is linear of the numbiecadls D while the number of constraints
is large). As we know, the problem of estimating the cell iestiat the finest granularity subject to
some linear constraints is known to be NP-hard. In our systeencombine some heuristics to derive
parameters from high level constraints. For example, frarke R, we can initialize the number of tuples
in those 30 cells (28223, Asian, Age, Gender) where Age i25¥0) and Gender ifMale, Femal¢ as
30 (:222) when we assume the tuples are uniformly distributed amoge @d Gender in cell (28223,

\15%2
Asian, Age, Gender).

5. Disclosure Analysis

Disclosures which can occur as a result of inferences bglagta include two classes: identity disclosure
and value disclosure. Identity disclosure relates to telosure of the identity of an individual in the
database while value disclosure relates to the discloduhewalue of a certain confidential attribute of
that individual.

Given characteristic®B = {S UR UNR} and a set of confidential informatiddB = {S U R U
N R}, our initial problem is to find @B such that 1)DB C DB and 2) no confidential information
in DB can be entailed fror® within a given bound. We can see this initial problem is vesynplex
as rules and statistics have different formats. In our systee use the general location model, which
is built from rules and statistics, to generate the final d&a all the information are contained in the
parameters of the general location model, e (7, 1, ) .

From section 2.1, we know Ty is only used for multinomial distribution and can be estiegatising
g = 74, wherez, is the number of entries in ceft and 2)., ¥ is only used for multi-variate normal
distribution of numerical attributes for those entries igivien celld. As 74 is only related to categorical
attributes andu, > are only related to numerical attributes, we can analyzenteeparately. In the
remainder of this subsection, we discuss in detail how takchéetherr, incurs identity disclosure and
whethery, X incurs value disclosure.

5.1. Identity Disclosure

During the data generation process, data have been ddfiietity suppressing SSN and Name so not
to disclose the identities of the individuals to whom theadigfer. However, values of other released
attributes, such as Zip, Race, and Age can also appear in spiamal table (e.g., voter list) jointly
with the individuals’ identities, and can therefore alldvemn to be tracked. Several microdata disclosure
protection techniques have been developed in the contestati$tical databases [1]. Recently, Samarati
[19] introduced the definition of quasi-identifiers as &tites that can be exploited for linking and of
k-anonymity as characterizing the degree of data proteetith respect to inference by linking.

In order to preserve the confidentiality of individuals, weitally will not release any rule which
involves few records. However, attackers may still be ableldérive or estimate the values of some
confidential cells by analyzing some cells from the releasetacteristics. In our scenario, confidential
information may even exist at aggregate levels. For exampthe table which records the number of pa-
tients visiting physicians to receive treatments, therimf@ion on Patient-Doctor and Doctor-Treatment
are not sensitive and are publicly accessible. HoweverP#igent-Treatment information is sensitive,
and so, confidential. This problem is referred as deterrginpper and lower bounds on the cells of the
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cross-classification given a set of margins [7, 6]. Upperlaner bounds induced by some fixed set of
marginal on the cell entries of a contingency table are o&tgireportance in measuring the disclosure
risk associated with the release of these marginal tothteelinduced upper and lower bounds are too
tight or too close to the actual sensitive value in a confidénell entry, the information associated with
that cell may be disclosed.

In our system, from characteristi®B = {S U R UNR}, we extract a set of cell€’, and the
number of entries in each celle C°. From a list of private rules and statisti®3 = {S U R U NR},
we similarly extract a list of confidential cell§!. For each confidential cetlc C!, a confidential range
[zL, 2] which contains the true value of the number of entrigs,is derived. [z, %] here denotes the
confidential range which database owner does not want attaté predict. It is clear that predicting
confidential value within a smaller confidential range citatgs compromise. Now our identity disclo-
sure problem is to find a set of cel3?, which can be released for data generation, such th@t €) C!
and 2) no confidential information, (c € C') can be predicted in rande’, z%] from the information
contained inC2. As this problem is NP-hard, in our system we apply similaurfstics as presented in
[9] to remove confidential information contained @4 one by one. Basically, it identifies those cells
contained irC® which need to be suppressed in order to hide the specific emmid information inC!.
We present the details in Appendix A.

5.2. Value Disclosure

From Result 1, we know the ellipsoifz : (z — M)IE—l(z —n) < Xg(a)}, which is yielded by the
paths ofz values, contains a fixed percentage{«)100% of customers. Although snoopers may use
various techniques to estimate and predict the confidevdiaks of individual customers, however, all
confidential information which snoopers can learn is thenloof ellipsoid in our scenario.

In [3], privacy is measured in terms of confidence intervatssfach single numerical attribute. Given
confidencec%, for each randomized valug an interval[z — w;, z + wy] is defined such that for all
nonrandomized values,

Pez—wi <z<z+ws|z=z+y,y~F]>c%

The shortest widthv = w; + wy for a confidence interval is used as the amount of privacy’at
confidence level. In the-dimensional space, af¥, confidence region will be an ellipsoidal region given
by its probability density contour. This region consistsvalues ofx (i.e., a vector over all numerical
attributes) that may be accepted at the ¢% level of significance.

Assume¢ is the ellipsoid from the original dataat one given confidence level— o andé is the
ellipsoid from the modified distribution (or generated dakguation 2 defines the measure of disclosure
of z whenz is given.

_Jwol(ENé) |
| vol(EUE) |

Here compromise is said to occur whéxz, z) is greater tham, specified by the database owner.
The greater thé(z, z), the closer the estimates are to the true distribution, badchigher the chance
of disclosure. In other words, if the ellipsoid learned byp@pers is close enough to that specified by
database owners, we say partial disclosure occurs. To dentipelvolume of density contour, we have
the following results as shown in Proposition 5.1.

D(z,2 (2)
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Proposition 5.1. (Volume of density cpntour)
The volume of an ellipsoidz : (z — 1) X7 (z — ) < x2(c)} is given byvol (€) = 1(,/x2)

or vol(€) = n(w/xg)p P_ VAi, wheren is the volume of the unit ball ilR?, and )\; is the i-th
eigenvalue of matrix:.

Tixiz

Proof. From [11], we know the volume of an ellipsdfd : (z — M)IA—l(z — p) < 1} determined by
one positive definitey x p matrix A is given byvol(£) = 5| A'/2 |, wheren, is the volume of the unit
. . -1 p
ball in R?. We replaceA with % then we gebol(€) = n(y/x2) | Y2 .
From spectral decompositidB = >>7 | \eje; = PAP ,weget| = |=|P || A || P |=| P ||
P'||A|=| PP ||A|. AsPP’' =1, thenwehavéX |=| A |. Dueto| £1/2 |= | A [V =[T2_, v\

=1 2l
hence we haveol (£) = n(4 /Xg)p PV

Hy

Figure 6. A constant density contour for a bi-variate nordistribution

Figure 6 shows one constant density contour containing 96¥%eoprobability under the ellipse

surface for one bi-variate = | , which follows a bi-variate normal distributiotV (u, ) with
22
A : . ,
"= F1 ) ands = | 7% 712 ) = ') is the eigenvalues of covariance matkxand
2 021 022 A2

two axes have length efy/A; andcy/)\; respectively, here = 2.45 as/x3(0.05) = v/5.99 = 2.45.
We can see the major axis of ellipse is associated with tigesaeigenvalue)(). The size of this ellipse
is given by5.99v/ A1 x Az, asx3(0.05) = 5.99.

However, to evaluate the measure of disclosupéz | z), as shown in Equation 2, we need to
compute the volume of the intersection (or union) of twapsiiids. This problem is shown as NP-hard
and some approximation techniques were surveyed in [12]e i@muristic we apply here is to use a
hyper-rectangle (e.g., Bonferroni’'s rectangle or Roystargle [13]) to approximate the ellipsoid. As
we know, computing the intersection (or union) of two hypestangle in high dimensional space is
straightforward.

Although we can easily derive the ellipsdidor £) from the original (modified) data or distribution,
it may be hard for database owners to specify privacy reméres using the ellipsoid.

[zl, 241N [él, zY]
ENTINIERD 3)
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Equation 3 defines the measure of disclosure for one coniidiexitribute. Here the confidence
interval 2!, 2¥] is specified by the database owner for each confidentiabatéri. In this case, we
can conduct disclosure analysis by comparing the best esdadinterval[z!, 2], derived by snoopers
with the confidence intervalz!, 2], specified by the database owner. To compute the projectionen
ellipsoid on each axis, we have the following results as shiowProposition 5.2.

Proposition 5.2. (Simultaneous Confidence Intervals) /
Let Z be distributed asV, (11, ) with | = |> 0. The projection of this ellipsoidz : (z — u) X7 (z —
1) < x3(a)} on axisz; = (0, ,1,--- ,0)" (only the i-th element is 1, all other elements are 0) has

bound:
(i — /X3 (@), pi +\/xp(a)oi]

Proof. From Result 2, we know the projection of an ellipsfid: Z A 1z < ¢} on a given unit vector
¢ has lengthien = cv¢' Al. We replaceA with

11 012 . . - O1p

g12 092 . . - 02p
Y =

Oi1 042 Oi5 Oip

Op1 Op2 - . - Opp

, replacef asz; = (0,--- ,1,--- ,O)', and replace as, /x2(«), then we get the length of projection as
len = X]%(a)a,-i. Considering the center of this ellipsoid, we have the basid,; — X,%(Oé)ffn', it

\/Xa(@)aii].

It is easy to see from Proposition 5.2 that the confidencevaléor each attribute (by projecting on
each axis) is only dependent pp o;; while it is independent with covariance valugs, wherei # j.

To check whether a given distribution @may incur value disclosure for one attributeve can sim-
ply compare the disclosure measdse, z) with 7, specified by the database owner. If disclosure occurs,
we need to modify parametefs X. As we know from Proposition 5.2, the mean veciodetermines
the center of ellipsoid or the center of projection intemwalle the covariance matri¥ determines the
size of ellipsoid or the length of projection interval. Agtbhange of: will significantly affect the data
distribution (it will affect the accuracy of analysis or ririg subsequently), in the remainder of this pa-
per we focus only on how to change variance makito satisfy user’s security requirement. From the

bound[u; — y/x2(a)0ii, i+ 4/x2(a)oi], we can easily derive;; to satisfy privacy requirements on
the confidential attribute.

Please note that both the ellipsdicand the confidence intervéd’, z%] from discussions above are
specified for a group of customers which are modeled by ondi-wariate normal distribution with
the same parameters. Hence bétland [2!, 2] are privacy specifications at the aggregate level. In
practice, each customg¢may specify his own privacy interv@ifj), zZ‘j)] which contains his confidential
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value z(;. In this scenario, the database owner is required to presremgpers to derive or estimate
the confidential value falling into its privacy interval. Wse[z;, z,,] to denote the numerical attribute
z's confidence interval learned by snoopers through projgdie ellipsoid on its axis. If the derived
confidence intervalz;, Z,] by snoopers is close to the customér privacy interval[zéj), z&.)], we say
individual value disclosureccurs for customej. Currently we are working on how to evaluate this
individual value disclosure in database modeling.

6. Related Work

Testing of database applications is of great importanceesimdetected faults in these applications may
result in incorrect modification or accidental removal afigal data. Although various studies have
been conducted to investigate testing techniques for datallesign, relatively few efforts have been
made to explicitly address the testing of database applitat The problem of database application
testing can be categorized into three parts: databasea@merinput test cases preparation and test
outcomes verification. In this paper, we focus on databagerggon.

There have been some prior investigations into data geoergtor example, Transaction Process-
ing Performance Council has released a dozen of TPC Benkkraad many researchers have evaluated
those Benchmarks (e.g., [10, 14, 16]). There are also sohex data generation tools (e.g., [17, 15])
available. However, both TPC Benchmarks and other datargtom tools are built for assessing the
performance of database management systems, rather thi@stfog complex real world database ap-
plications. They lack the required flexibility to produce rmaoealistic data needed for application testing,
i.e., the generated data also need to satisfy all the camtstiend business rules underlying the live data.

To generate realistic data for database applications,uth®es in [4, 5] investigate how to populate
the database with meaningful data that satisfy databasstraoris. They present a tool which inputs a
database schema definition, along with some additionatnmdtion from the user, and outputs a valid
database state. The tool can handle not-NULL, uniquenegsential integrity constraints, and some
domain constraints and semantic constraints. Most cantgrare included in data schemas which are
expressed by SQL data definition language (DDL). The todgmthe schema definition for the database
underlying the application to be tested using PostgreS@p:(fwww.postgresql.org), then collects rel-
evant information about tables, attributes, and condsdinom the parse tree. The generation technique
was motivated by the category-partition testing technique

The inherent challenge of generating data for databaséapphs is the tradeoff between similarity
and privacy preservation. If the data is too synthetic (€gnpletely uniform distributions), it runs the
risk of being rejected for not capturing he interesting grais of a real data set. Conversely, if it employs
data from the real world directly, it risks the violation afyacy issues. In terms of performance testing,
using a large amount eésemblingdata is necessary to guarantee its satisfied performancesefte/are
is deployed. The generated data need to resemble real datanis of statistical distribution in order to
fulfill requirements of applications testing. The author§21] points out the importance of providing
meaningful, representative data with realistic skew, Spaand data distributions for benchmarking
database system performance. Zheng et al. in [25] show thAtial data sets have very different
characteristics from the real-world data sets and henge tha great need to use real-world data sets
as benchmarks for association rule mining. The authors2hémpirically evaluate the effect of data
distribution on workload performance using TPC-C and TP8ddchmarks and show the importance
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of generating statistically similar synthetic data forfpamance testing.

As many databases maintain data on sensitive or confidémidamation such as income and assets
for real customers, it is imperative to guarantee the dat@mged can not disclose any private or con-
fidential information. The field of statistical databasesdJLlhas developed various methods to prevent
the disclosure of confidential individual data while safiis§j requests for aggregate information. The
proposed technigues can be broadly classified into quetnjotéan and data perturbation [3]. As our aim
here it to release data for application testing, queryicgin techniques are not feasible in our scenario.

There are various approaches to assessing risk of ideritjodure and most of them relate to the
inadvertent release of small counts in the full k-way ta@ed]. We should point out that the privacy
consideration in the current literature for statisticabdhi@se is not enough for many general environments
which contain both categorical and numerical attributes. miost statistical database literatures, the
privacy concerned is about the re-identification of somei§ipeentries in the database.

The objective of randomized based privacy-preserving dateng [2, 3, 18] is to prevent the dis-
closure of confidential individual values while preservipgneral patterns and rules. The idea of these
randomization based approaches is that the distorted togither with the distribution of the random
data used to distort the data, can be used to generate arxiapgtion to the original data values while
the distorted data does not reveal private information, tand issafeto use for mining. One major
challenge for current approaches is how to evaluate priaegiches effectively as the perturbed data
space which is used for disclosure analysis is almost iefinit

7. Conclusion and Future Work

In this paper we investigated how to generate synthetidodats using the general location model which
is built using various characteristics extracted from pigihn databases. We also investigated how
to conduct disclosure analysis on the general location imgtieh is used to generate synthetic data.
Our synthetic database generated has similar distritaitiorpatterns as the production database while
preserving privacy, hence it can be used for database applictesting. There are some aspects of
this work that merit further research. Among them, we armgryo figure out how to better screen out
confidential information from released characteristispegially when linear combinations exist among
numerical attributes. We will also conduct a complete stadyhow different data distributions affect
workload performance using various datasets. Another farefature work is centered on refining the
architecture of the data generator itself. This could idelohanges to allow further use of real world data
sources (e.g., historical data) for increased realism am@ mapid adjustment to emerging data trends or
perturbation.
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A. Cell Suppression

Several cell suppression problem formulations have begmngn [9]. It is not directly applicable to our
questions since some values in the original contingendg e unknown in our case. In the following,
we modify these formulations so that they could be used ircase.

Let a = {a;}}', be a contingency table. Some of these valugsnay be undefined. I&; is
undefined, then we write; = x. Let H be anm by n matrix describing the linear constraints on the
feasible contingency table. That is, a feasible contingealoley should satisfy

Hy =
y = 0.

Let P = {i1,...,ip} C {1,...,n} be the original specified suppressions. For egck P, there is

a lower bound requiremeii and an upper bound requirement. The interpretation of these bounds
is as follows. For eacly, € P, the dataset owner does not want the public to infer from tidighed
data that the value of, lies in (a;, — l;,,a;, + u;, ). In order to achieve this goal, some other cells of
the contingency table may need to be suppressed also. Téasgnthof the suppression is to find a set
C ={,...,jc} thatis as “small” as possible and that, for edck- 1,...,p, there are two feasible
contingency tableg andz with the following properties:

1. Yiy, 2 aik + Us,,
2' Zik g aik - liky

3. yi:zi:aiforigéPUC.

In some cases, only the boung is given. Then we do not need to meet the requirement for tiseegice
of z.

A.1. Exact Solution

We use a binary variable array= (z1,--- , x,) to represent whether each cell is suppressed. That is,

1 ifie PUC
T; = )
0 otherwise

Let ¢ be an array of subjective weight on cells ayfd z* be variables representing the potential feasible
contingency tables for the conditiap € P. Then the suppression problem could be formulated as the
following questions.

minimize ¢’ x (4)
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subject to

a; — a;z; < yf < a; + z;T for a; # *
a; — a;x; < zlk’ < a; + x;T for a; # *
yfk > a;, +u,,k=1,...,p
szgaik—l,»k,kzl,...,p (5)
Hyt =0;Hz*=0,k=1,...,p

r;=1fori e P

re{0,1}"9y* >0,z >0k=1,...,p

whereT is a large enough integer. The above mixed integer prograpn(MIP) could be split into small
MIPs. That is, for eacly, € P, one can construct an MIP and solve it.

A.2. Heuristic methods

When the number of variables increase, it may be infeasibolve the MIPs in the previous section.
Fagan [9] recommended several heuristic mehtods. In thnfislg, we describe one that is useful for
our problem.

Let y and z be n-ary variables, and be the subject value such that it takis on known parts of
P UC. We hope that: + y — 2 will be the feasible contingency table witnessing the faat the public
cannot infer the upper bound of, within an error ofu;, if we suppress these celiswith y; # z;. That
is, we want to have;, +;, — z;, = a;, +u;, and keep the nonzero entriesjin- z as small as possible
according to the subjective weight. The heuristic formalais as follows:

minimizec! (y + 2) (6)
subject to
z; < a; for a; # *
Hy—2) =0
yik - Z’ik Z uik
y=>0,22>0
For the lower bound, we have the similar linear programmarghiilations as follows.

()

minimizec! (y + 2) (8)

subject to
z<a
Hy—2) =0
Zip = Yip, > i,
y=>0,22>0
Remark. In some cases, it may be possible that the boupdandw;, are not given directly. That
is, instead of giving;, andu;,, only L;, = a;, — l;, andU;, = a;, + u;, are given. When, is given,
then one can easily compute andu;, directly. If a;, iis unknown, then one may estimate the values of
l;, andu;, roughly as

9)

U, - L

2
ko 2



