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Abstract. Testing of database applications is of great importance. Although various studies have
been conducted to investigate testing techniques for database design, relatively few efforts have
been made to explicitly address the testing of database applications which requires a large amount
of representative data available. As testing over live production databases is often infeasible in many
situations due to the high risks of disclosure of confidential information or incorrect updating of real
data, in this paper we investigate the problem of generatingsynthetic databases based on a-priori
knowledge about production databases. Our approach is to fitthe general location model using
various characteristics (e.g., constraints, statistics,rules) extracted from a production database and
then generate synthetic data using model learned. The generated data is valid and similar to real data
in terms of statistical distribution, hence it can be used for functional and performance testing. As
characteristics extracted may contain information which may be used by attackers to derive some
confidential information about individuals, we present ourdisclosure analysis method which applies
cell suppression technique for identity disclosure and perturbation for value disclosure analysis.
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1. Introduction

Database application software testing is by far the most popular activity currently used by developers or
vendors to ensure high software quality. A significant issuein database testing consists in the availability
of representative data. Although application developers usually have some local development data for
local functional testing, however, this small amount of data can not fulfill the requirements of some
testing phases such as performance testing where a large amount of data is needed. On the other hand,
testing over live production databases is often infeasiblein many situations due to the high risks of
disclosure of confidential information or incorrect updating of real data. Hence, synthetic data generation
becomes an appealing alternative.

Recently, the authors in [23] have proposed a general framework for privacy preserving database
application testing and investigated the method of generating synthetic database based on a-priori knowl-
edge (e.g., constraints, statistics, rules, etc.) about the current production database. In testing the func-
tions of database applications, the generated data need to satisfy all the constraints (e.g., no-Null, unique-
ness, referential integrity constraints, domain constraints, and semantic constraints) and business rules
underlying the live data. In testing the performance of database applications, it will be imperative that
the data is resembling real data in terms of statistical distribution since the statistical nature of the data
determines query performance. In addition to valid (in terms of constraints and rules) and resembling
real data (in terms of statistical distribution), the data generated need to preserve privacy, i.e., the gener-
ated data should not disclose any confidential information that database owners would not want to reveal.
Since the synthetic database is generated from a-priori knowledge about the live database, it is important
to preclude confidential information from a-priori knowledge.

In this paper, we investigate how to use thegeneral location modelto model an existing production
database and how to use the model learned to generate a synthetic database. We examine in detail how
to extract statistics and rules to estimate parameters of the general location model and how to resolve
the potential disclosure of confidential information in data generation using model learned. This issue is
related to, but not identical to, the widely recognized problem of privacy preserving data mining (e.g.,
[3]). In the situation we present, our disclosure analysis is conducted at model level instead of tuple level.

The contribution of this work is twofold. First, the contextin this paper is how to build the general
location model from characteristics extracted from the production databases. As the model learned is
the only means to generate data for release, all confidentialinformation which attackers can derive is
guaranteed to be contained in those parameters. Second, we examine how to resolve the potential dis-
closure (both identity disclosure and value disclosure) ofconfidential information entailed in the general
location model. As the search space of parameters is much smaller than the space of perturbed data,
this approach is more effective and efficient. Furthermore,we extend the concept of a uni-variate con-
fidence interval to a multi-variate confidence region to measure privacy and confidentiality for multiple
confidential attributes simultaneously.

The remainder of the paper is structured as follows. In section 2, we revisit the general location
model and present some known results about density contour of multi-variate normal distribution from
statistics, which will be used in value disclosure analysis. We describe our privacy preserving data
generation system in section 3 and present how to fit the general location model in section 4. In section
5, we present in detail how to conduct identity disclosure and value disclosure in terms of the general
location model. We review the related work in section 6. In section 7, we draw conclusions and describe
directions for future work.
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2. Preliminaries

2.1. The General Location Model Revisited

Let A = {A1, A2, · · · , Aq} denote a set of categorical attributes andZ = {Z1, Z2, · · · , Zp} a set
of numerical ones in a table withn entries. SupposeAj takes possible domain values1, 2, · · · , dj ,
the categorical dataW can be summarized by a contingency table with total number ofcells equal to
D =

∏q
j=1 dj . let y = {yd : d = 1, 2, · · · ,D} denote the number of entries in each cell. Clearly

∑D
d=1 yd = n. The general location model [20] is defined in terms of the marginal distribution ofA and

the conditional distribution ofZ givenA. The former is described by a multinomial distribution on the
cell countsy,

y | π ∼ M(n, π) =
n!

y1! · · · yD!
π1

y1 · · · πD
yD

whereπ = {πd : d = 1, 2, · · · ,D} is an array of cell probabilities corresponding tox. For each cell
d, whered = 1, 2, · · · ,D, defined by the categorical attributesA, the numerical attributesZ are then
modeled as a conditionally multi-variate normal as:

f(z|d) =
1

(2π)p/2| Σd |1/2
e−1/2(z−µd)

′

Σd
−1(z−µd)

wherep-dimensional vectorµd represents the expected value of the random vectorz for cell d, and the
p × p matrixΣd is its variance-covariance matrix. The parameters of the generation location model can
be written asθ = (π, µ,Σ). The maximum likelihood estimates ofθ is as follows:

π̂d =
xd

n

µ̂
′

d = x−1
d

∑

i∈Bd

z
′

i

Σ̂ = x−1
d

∑

i∈Bd

(zi − µ̂d)(zi − µ̂d)
′

(1)

whereBd = {i : µi = Ed} is the set of all tuples belonging to celld.
An Illustrating Example Table 1 shows a data example of Mortgage dataset of customerswith n

tuples. Let us assume SSN and Name are confidential information and should be marked out. The
remaining attributes are grouped into two parts: categorical attributes and numerical attributes. Each
categorical attribute has its own domains, e.g., Gender with two domain values{Male, Female}. The
categorical part can be summarized by a 4-dimensional contingency table with total number of cells
equal toD =| Zip | × | Race | × | Age | × | Gender |, where|| denote the size of domain values.
We usexd, d = 1, 2, · · · ,D to denote the number of tuples in each cell. In general, tuples contained in
one given table is a subset of the cartesian product of some domains. In other words, some cells may not
contain any tuple due to either integrity constraints or thelimited sample size. In this paper, we assume
the domains for each categorical attribute are fixed while the volume of data is changing.

The general location model assumes the numerical attributes (i.e., Balance, Income, InterestPaid)
of tuples in each cell follow a multivariate normal distribution. For example, the Balance, Income and
InterestPaid of customers in the cell{28223, Asian, 20, Male} follow a 3-variate normal distribution
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Table 1. An Example of Mortgage Dataset

Categorical Numerical

SSN Name Zip Race Age Gender Balance Income InterestPaid

1 28223 Asian 20 Male 10k 85k 2k

2 28223 Asian 30 Female 15k 70k 18k

3 28262 Black 20 Male 50k 120k 35k

. . . . . . . .

n 28223 Black 25 Male 80k 110k 15k

with parameterµ1,Σ1, whereµ1 is a 3-vector means andΣ1 is a3 × 3 covariance matrix while those in
the cell{28223, Asian, 20, Female} may follow a 3-variate normal distribution with different means
and covariance matrix.

Here we would emphasize that it is feasible to model various data using the general location model
although a group of data may follow some other distributions(e.g., Zipf, Poison, Gamma etc.) in practice
[20]. As we can see we define multi-variate normal distribution for data at the finest level and data at
higher levels can be taken as a mixture of multi-variate normal distributions, hence we can theoretically
use a mixture of multi-variate normal distributions to model any other distributions.

It is straightforward to see we can easily generate a datasetwhen the parameters of general location
model are given. Generally, it involves two steps. First, weestimate the number of tuples in each celld
and generatexd tuples. Allxd tuples from this cell have the same categorical attribute values inherited
from the cell location of contingency table. Second, we estimate the mean and covariance matrix for
those tuples in this cell and generate numerical attribute values based on the multi-variate normal model.
In general, some columns’ distribution may be functionallydependent on those of other columns, hence
we would like to derive an approximate joint distribution ofthose independent columns which is used to
generate synthetic data for performance testing.

2.2. Density Contour of Multi-variate Normal Distribution

In this section we present some known results about density contour of multi-variate normal distribution
from statistics. These results will be used to conduct valuedisclosure of the general location model.

Result 1. (Constant probability density contour)
([13], page 134) LetZ be distributed asNp(µ,Σ) with | Σ |> 0. Then, theNp(µ,Σ) distribution

assigned probability1 − α to the solid ellipsoid{z : (z − µ)
′

Σ−1(z − µ) ≤ χ2
p(α)}, whereχ2

p(α)
denotes the upper (100α-th) percentile of theχ2

p distribution withp degrees of freedom. The ellipsoid is
centered atµ and have axes±c

√
λiei, wherec2 = χ2

p(α) andΣei = λiei, i = 1, · · · , p.

The multi-variate normal density is constant on surfaces where the squared distance(z − µ)
′

Σ−1(z−
µ) is constantc2. The chi-square distribution determines the variability of the sample variance. Proba-
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bilities are represented by volumes under the surface over regions defined by intervals of thezi values.
The axes of each ellipsoid of constant density are in the direction of the eigenvectors ofΣ−1 and their
lengths are proportional to the the square roots of the eigenvalues (λi) of Σ.

Result 2 shows the general result concerning the projectionof an ellipsoid onto a line in a p-
dimensional space.

Result 2. (Projection of Ellipsoid)
([13], page 203) For a given vectorℓ 6= 0, andz belonging to the ellipsoid{z : z

′

A−1z ≤ c2} determined

by a positive definitep× p matrixA, the projection (shadow) of{z′

A−1z ≤ c2} onℓ is c

√
ℓ
′
Aℓ

ℓ′ℓ
ℓ which

extends from0 alongℓ with lengthc
√

ℓ′Aℓ
ℓ′ℓ

. Whenℓ is a unit vector, the shadow extendsc
√

ℓ′Aℓ units,

so| z′

ℓ |≤ c
√

ℓ′Aℓ.

3. System Overview
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Figure 1. Architecture of data generation system

Figure 1 shows the architecture of synthetic database generation system. The system is intended to
generate a synthetic database using various characteristics extracted from the production database for
testing database applications, instead of generating benchmark for use in the performance evaluation of
DBMS. We assume databases are based on the relational model in our paper. A relational database is a
set of relation schemas together with a set of integrity constraints which restrict the possible values of
the database states.

We would like automate the data generation process as much aspossible. We use the same approach
as in [4] to extract various constraint information from schemes which are defined by Data Definition
Language (DDL). It is desirable that the generated data in synthetic databases also satisfy the constraints.
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A major advantage is that our system can extract more complexcharacteristics (e.g., statistics and rules)
in addition to constraints from data catalog and data when the underlying production database is avail-
able. As we discussed in introduction, even if one syntheticdatabase satisfies all constraints, it does not
mean it can fulfill users’ testing requirement as it may have different data distribution than the production
database. Hence our approach extracts characteristics (e.g., statistics, rules) from the production data-
base, fits the general location model using characteristicsextracted, and generates a synthetic database
using model learned. As shown in Figure 1, the characteristics of production databases can be extracted
from three parts: DDL, Data Dictionary, and Data. In order toensure that the data is close looking or
statistically similar to real data, or at least from the point of view of application testing, we need to have
the statistical descriptions,S, and non-deterministic rules,NR, of real data in production databases.
These two sets describe the statistical distributions or patterns of underlying data and may affect the size
of relations derived as a result of the evaluations of queries the application will need to execute. Our
intuition is that, for database applications, if two databases are approximately the same from a statistical
viewpoint, then the performance of the application on the two databases should also be approximately the
same1. Furthermore, our system includes one disclosure analysiscomponent which helps users remove
those characteristics which may be used by attackers to derive confidential information in the production
database. As all information used to generate synthetic data in our system are contained in character-
istics extracted, our disclosure analysis component can analyze and preclude the potential disclosure of
confidential information at the characteristics (i.e., statistics and rules) level instead of data level.

4. Database Modeling via the General Location Model

4.1. Extracting characteristics from data dictionary

Data dictionary consists of read-only base tables that store information about the database. When users
execute an SQL command (e.g., CREATE TABLE, CREATE INDEX, orCREATE SEQUENCE) to
create an object, all of the information about column names,column size, default values, constraints,
index names, sequence starting values, and other information are stored in the form of metadata to the
data dictionary. Most commercial DBMSs also collect statistical information regarding the distribution
of values in a column to be created. This statistical information can be used by the query processor to
determine the optimal strategy for evaluating a query. As the data in a column changes, index and column
statistics can become out-of-dated and cause the query optimizer to make less-than-optimal decisions on
how to process a query. SQL server automatically updates this statistical information periodically as the
data in the tables changes. In our system, we have one component which simply accesses tables in data
dictionary and fetch characteristics related.

4.2. Extracting characteristics from data

The statistics information about columns extracted directly from data dictionary is usually with high
granularity which may be insufficient to derive relatively accurate model. In practice it is usually true that
users can collect more statistics at low granularity from original data or a sample of real data themselves.

1Here we assume that file organizations, sorted fields, and index structures of the production databasex are not private infor-
mation and the synthetic data generator use these information to build the synthetic database in the same way that production
database has been built.
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SELECT Zip, Race, Age, Gender, COUNT(*),
AVG(Balance), AVG(Income), AVG(InterestPaid),
VAR POP(Balance), VARPOP(Income), VARPOP(InterestPaid),
COVAR POP(Balance,Income), COVARPOP(Balance,InterestPaid),
COVAR POP(Income,InterestPaid)

FROM Mortgage
GROUP BY Zip, Race, Age, Gender
HAVING COUNT(*) > 5

Figure 2. Example of extracting statistics using SQL

Q1: SELECT AVG(Income), AVG(InterestPaid) FROM Mortgage WHERE Zip = z AND Race = r
Q2: SELECT AVG(Income) FROM Mortgage WHERE Age = a AND Zip = z

Figure 3. Workload example of Mortgage database

Figure 2 presents one SQL command to extract statistics at the finest granularity level. It returns
all information needed to derive parameters of the general location model. For example, the value from
aggregate function COUNT(*) is the estimate,xd, of the number of tuples in each cell while the values
from aggregate functions (i.e., AVG, VARPOP, COVARPOP) are the estimates of mean vectors and
covariance matrices respectively of the multi-variate normal distribution of each cell. It is worth pointing
out that all aggregate functions can be used with GROUP BY clause with CUBE or ROLLUP option if
we want to extract statistics at all possible granularity.

In practice, it may be infeasible to extract statistics at the finest level because statistics at the finest
level may contain too much information and may be exploited by attackers to derive some confidential
information about production databases. As our goal is to generate synthetic data for database application
testing, we may extract statistics which are only related toqueries in workload of database software. For
the workload which contains two queries shown in Figure 3, itis clear that the distribution of underlying

Statistics 1: SELECT Zip, Race, COUNT(*), AVG(Balance), AVG(InterestPaid)
FROM Mortgage
GROUP BY Zip, Race
HAVING COUNT(*) > 5

Statistics 2: SELECT Zip, Age, COUNT(*), AVG(Income)
FROM Mortgage
GROUP BY Zip, Age
HAVING COUNT(*) > 5

Figure 4. SQLs of extracting statistics for workload
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Rule 1: IF Zip = 28223, Race = Asian, and Age in (25, 40) THEN Balance is in (20k,30k)
with support s = 900 and confidence c= 90 %.

Rule 2: IF Zip = 28262 THEN Race = White with support s = 5000 andconfidence c = 80 %

Figure 5. Example of non-deterministic rules for Mortgage dataset

data at some high level (instead of at the finest level) is sufficient to capture the relation with the execution
time of queries in workload. For example, the approximate distribution onZip,Race would satisfy the
performance requirements of Q1 in workload. In this case, wemay only extract statistics necessary for
query performance of queries. Figure 4 presents two SQL commands to extract statistics for two queries
shown in Figure 3.

4.3. Extracting characteristics from rule sets

To derive the deterministic rule setR, we take advantage of the database schema, which describes the do-
mains, the relations, and the constraints the database designer has explicitly specified. Some information
(function dependencies, correlations, hierarchies etc.)can be derived from database integrity constraints
such as foreign keys, check conditions, assertions, and triggers. Furthermore, users may apply some data
mining tools to extract non-deterministic rulesNR from the production database. The non-deterministic
rule setNR helps describe the statistical distributions or patterns of underlying data and may affect the
size of relations derived as a result of the evaluations of queries the application will need to execute.
Formally, each rule inR andNR can be represented as a declarative rule and is generally of the form:

IF <premise> THEN <conclusion> [with supports and confidencec].

The rules may include exact, strong, and probabilistic rules based on the support and confidence.
We note here that complex predicates and external function references may be contained in both the
condition and action parts of the rule. Anyone with subject matter expertise will be able to understand
the business logic of the data and can develop the appropriate conditions and actions, which will then
form the rule set.

Figure 5 shows two examples of non-deterministic rules for the Mortgage database. We can interpret
Rule 1 as there are 1000 customers with Zip = 28223, Race = Asian, and Age in (25, 40) and 90 % of
them with Balance in the range of (20k, 30k). It is straightforward to see that these rules can be mapped
to statistics of the general location model at some granularity. For example, the number of data entries
in cell (28223, Asian, 25-40, All) is 1000 and we can derive average balance of data entries in this cell
from the clause Balance in (20k,30k) with confidence c= 90 %.

4.4. Fitting model using characteristics

It is easy to see all characteristics (i.e.,S, R, NR) extracted from production database can be mapped
to constraints of parameters of the general location model at the finest level. Given those constraints, we
can apply linear programming techniques to derive parameters of the general location model at the finest
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level. However, it is infeasible to apply linear programming techniques directly in practice due to high
complexity (the number of variables is linear of the number of cells D while the number of constraints
is large). As we know, the problem of estimating the cell entries at the finest granularity subject to
some linear constraints is known to be NP-hard. In our system, we combine some heuristics to derive
parameters from high level constraints. For example, from Rule 1, we can initialize the number of tuples
in those 30 cells (28223, Asian, Age, Gender) where Age is in (25,40) and Gender in{Male, Female} as
30 ( 900

15×2 ) when we assume the tuples are uniformly distributed among Age and Gender in cell (28223,
Asian, Age, Gender).

5. Disclosure Analysis

Disclosures which can occur as a result of inferences by attackers include two classes: identity disclosure
and value disclosure. Identity disclosure relates to the disclosure of the identity of an individual in the
database while value disclosure relates to the disclosure of the value of a certain confidential attribute of
that individual.

Given characteristicsDB = {S ∪ R ∪ NR} and a set of confidential information̄DB = {S̄ ∪ R̄ ∪
N̄R}, our initial problem is to find aD̂B such that 1)D̂B ⊆ DB and 2) no confidential information
in D̄B can be entailed fromD̂B within a given bound. We can see this initial problem is very complex
as rules and statistics have different formats. In our system, we use the general location model, which
is built from rules and statistics, to generate the final data. So all the information are contained in the
parameters of the general location model, i.e.,θ = (π, µ,Σ) .

From section 2.1, we know 1)π is only used for multinomial distribution and can be estimated using
π̂d = xd

n , wherexd is the number of entries in celld; and 2)µ,Σ is only used for multi-variate normal
distribution of numerical attributes for those entries in agiven celld. As πd is only related to categorical
attributes andµ,Σ are only related to numerical attributes, we can analyze them separately. In the
remainder of this subsection, we discuss in detail how to check whetherπd incurs identity disclosure and
whetherµ,Σ incurs value disclosure.

5.1. Identity Disclosure

During the data generation process, data have been de-identified by suppressing SSN and Name so not
to disclose the identities of the individuals to whom the data refer. However, values of other released
attributes, such as Zip, Race, and Age can also appear in someexternal table (e.g., voter list) jointly
with the individuals’ identities, and can therefore allow them to be tracked. Several microdata disclosure
protection techniques have been developed in the context ofstatistical databases [1]. Recently, Samarati
[19] introduced the definition of quasi-identifiers as attributes that can be exploited for linking and of
k-anonymity as characterizing the degree of data protection with respect to inference by linking.

In order to preserve the confidentiality of individuals, we typically will not release any rule which
involves few records. However, attackers may still be able to derive or estimate the values of some
confidential cells by analyzing some cells from the releasedcharacteristics. In our scenario, confidential
information may even exist at aggregate levels. For example, in the table which records the number of pa-
tients visiting physicians to receive treatments, the information on Patient-Doctor and Doctor-Treatment
are not sensitive and are publicly accessible. However, thePatient-Treatment information is sensitive,
and so, confidential. This problem is referred as determining upper and lower bounds on the cells of the
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cross-classification given a set of margins [7, 6]. Upper andlower bounds induced by some fixed set of
marginal on the cell entries of a contingency table are of great importance in measuring the disclosure
risk associated with the release of these marginal totals. If the induced upper and lower bounds are too
tight or too close to the actual sensitive value in a confidential cell entry, the information associated with
that cell may be disclosed.

In our system, from characteristicsDB = {S ∪ R ∪ NR}, we extract a set of cells,C0, and the
number of entries in each cellc ∈ C0. From a list of private rules and statistics,̄DB = {S̄ ∪ R̄ ∪ N̄R},
we similarly extract a list of confidential cells,C1. For each confidential cellc ∈ C1, a confidential range
[xl

c, x
u
c ] which contains the true value of the number of entries,xc, is derived.[xl

c, x
u
c ] here denotes the

confidential range which database owner does not want attackers to predict. It is clear that predicting
confidential value within a smaller confidential range constitutes compromise. Now our identity disclo-
sure problem is to find a set of cells,C2, which can be released for data generation, such that 1)C2 ⊆ C1

and 2) no confidential informationxc (c ∈ C1) can be predicted in range[xl
c, x

u
c ] from the information

contained inC2. As this problem is NP-hard, in our system we apply similar heuristics as presented in
[9] to remove confidential information contained inC1 one by one. Basically, it identifies those cells
contained inC0 which need to be suppressed in order to hide the specific confidential information inC1.
We present the details in Appendix A.

5.2. Value Disclosure

From Result 1, we know the ellipsoid{z : (z − µ)
′

Σ−1(z − µ) ≤ χ2
p(α)}, which is yielded by the

paths ofz values, contains a fixed percentage, (1 − α)100% of customers. Although snoopers may use
various techniques to estimate and predict the confidentialvalues of individual customers, however, all
confidential information which snoopers can learn is the bound of ellipsoid in our scenario.

In [3], privacy is measured in terms of confidence intervals for each single numerical attribute. Given
confidencec%, for each randomized valuez, an interval[z − w1, z + w2] is defined such that for all
nonrandomized valuesx,

P [z − w1 ≤ x ≤ z + w2 | z = x + y, y ∼ Fy] ≥ c%

The shortest widthw = w1 + w2 for a confidence interval is used as the amount of privacy atc%
confidence level. In thep-dimensional space, anc% confidence region will be an ellipsoidal region given
by its probability density contour. This region consists ofvalues ofx (i.e., a vector over all numerical
attributes) that may be accepted at the1 − c% level of significance.

AssumeE is the ellipsoid from the original dataz at one given confidence level1 − α andÊ is the
ellipsoid from the modified distribution (or generated data). Equation 2 defines the measure of disclosure
of z whenẑ is given.

D(z, ẑ) =
| vol(E ∩ Ê) |
| vol(E ∪ Ê) |

(2)

Here compromise is said to occur whenD(z, ẑ) is greater thanτ , specified by the database owner.
The greater theD(z, ẑ), the closer the estimates are to the true distribution, and the higher the chance
of disclosure. In other words, if the ellipsoid learned by snoopers is close enough to that specified by
database owners, we say partial disclosure occurs. To compute the volume of density contour, we have
the following results as shown in Proposition 5.1.
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Proposition 5.1. (Volume of density contour)
The volume of an ellipsoid{z : (z − µ)

′

Σ−1(z − µ) ≤ χ2
p(α)} is given byvol(E) = η(

√

χ2
p)

p
| Σ1/2 |

or vol(E) = η(
√

χ2
p)

p
∏p

i=1

√
λi, whereη is the volume of the unit ball inRp, and λi is the i-th

eigenvalue of matrixΣ.

Proof. From [11], we know the volume of an ellipsoid{z : (z − µ)
′

A−1(z − µ) ≤ 1} determined by
one positive definitep × p matrix A is given byvol(E) = η| A1/2 |, whereη is the volume of the unit

ball in Rp. We replaceA with Σ−1

χ2
p(α)

, then we getvol(E) = η(
√

χ2
p)

p
| Σ1/2 |.

From spectral decompositionΣ =
∑p

i=1 λieiei

′

= PΛP
′

, we get| Σ |=| P || Λ || P
′ |=| P ||

P
′ || Λ |=| PP

′ || Λ |. AsPP′ = I, then we have| Σ |=| Λ |. Due to| Σ1/2 |= | Λ |1/2 =
∏p

i=1

√
λi,

hence we havevol(E) = η(
√

χ2
p)

p
∏p

i=1

√
λi.

Figure 6. A constant density contour for a bi-variate normaldistribution

Figure 6 shows one constant density contour containing 95% of the probability under the ellipse

surface for one bi-variatez =

(

z1

z2

)

, which follows a bi-variate normal distributionN(µ,Σ) with

µ =

(

µ1

µ2

)

andΣ =

(

σ11 σ12

σ21 σ22

)

. λ =

(

λ1

λ2

)

is the eigenvalues of covariance matrixΣ and

two axes have length ofc
√

λ1 andc
√

λ2 respectively, herec = 2.45 as
√

χ2
2(0.05) =

√
5.99 = 2.45.

We can see the major axis of ellipse is associated with the largest eigenvalue (λ1). The size of this ellipse
is given by5.99

√
λ1 × λ2, asχ2

2(0.05) = 5.99.
However, to evaluate the measure of disclosure,D(z | ẑ), as shown in Equation 2, we need to

compute the volume of the intersection (or union) of two ellipsoids. This problem is shown as NP-hard
and some approximation techniques were surveyed in [12]. One heuristic we apply here is to use a
hyper-rectangle (e.g., Bonferroni’s rectangle or Roy’s rectangle [13]) to approximate the ellipsoid. As
we know, computing the intersection (or union) of two hyper-rectangle in high dimensional space is
straightforward.

Although we can easily derive the ellipsoidE (or Ê) from the original (modified) data or distribution,
it may be hard for database owners to specify privacy requirements using the ellipsoid.

d(z, ẑ) =
[zl, zu] ∩ [ẑl, ẑu]

[zl, zu] ∪ [ẑl, ẑu]
(3)
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Equation 3 defines the measure of disclosure for one confidential attribute. Here the confidence
interval [zl, zu] is specified by the database owner for each confidential attribute z. In this case, we
can conduct disclosure analysis by comparing the best confidence interval,[ẑl, ẑu], derived by snoopers
with the confidence interval,[zl, zu], specified by the database owner. To compute the projection of one
ellipsoid on each axis, we have the following results as shown in Proposition 5.2.

Proposition 5.2. (Simultaneous Confidence Intervals)
Let Z be distributed asNp(µ,Σ) with | Σ |> 0. The projection of this ellipsoid{z : (z − µ)

′

Σ−1(z −
µ) ≤ χ2

p(α)} on axiszi = (0, · · · , 1, · · · , 0)
′

(only the i-th element is 1, all other elements are 0) has
bound:

[µi −
√

χ2
p(α)σii, µi +

√

χ2
p(α)σii]

Proof. From Result 2, we know the projection of an ellipsoid{z : z
′

A−1z ≤ c2} on a given unit vector
ℓ has lengthlen = c

√
ℓ′Aℓ. We replaceA with

Σ =























σ11 σ12 . . . σ1p

σ12 σ22 . . . σ2p

. . . . . .

σi1 σi2 σii σip

. . . .

σp1 σp2 . . . σpp























, replaceℓ aszi = (0, · · · , 1, · · · , 0)
′

, and replacec as
√

χ2
p(α), then we get the length of projection as

len =
√

χ2
p(α)σii. Considering the center of this ellipsoid, we have the boundas[µi−

√

χ2
p(α)σii, µi+

√

χ2
p(α)σii].

It is easy to see from Proposition 5.2 that the confidence interval for each attribute (by projecting on
each axis) is only dependent onµi, σii while it is independent with covariance valuesσij , wherei 6= j.

To check whether a given distribution ofz may incur value disclosure for one attributez, we can sim-
ply compare the disclosure measured(z, ẑ) with τ , specified by the database owner. If disclosure occurs,
we need to modify parametersµ,Σ. As we know from Proposition 5.2, the mean vectorµ determines
the center of ellipsoid or the center of projection intervalwhile the covariance matrixΣ determines the
size of ellipsoid or the length of projection interval. As the change ofµ will significantly affect the data
distribution (it will affect the accuracy of analysis or mining subsequently), in the remainder of this pa-
per we focus only on how to change variance matrixΣ to satisfy user’s security requirement. From the

bound[µi −
√

χ2
p(α)σii, µi +

√

χ2
p(α)σii], we can easily deriveσii to satisfy privacy requirements on

the confidential attributez.
Please note that both the ellipsoidE and the confidence interval[zl, zu] from discussions above are

specified for a group of customers which are modeled by one multi-variate normal distribution with
the same parameters. Hence bothE and [zl, zu] are privacy specifications at the aggregate level. In
practice, each customerj may specify his own privacy interval[zl

(j), z
u
(j)] which contains his confidential
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value z(j). In this scenario, the database owner is required to preventsnoopers to derive or estimate
the confidential value falling into its privacy interval. Weuse[ẑl, ẑu] to denote the numerical attribute
z’s confidence interval learned by snoopers through projecting the ellipsoid on its axis. If the derived
confidence interval[ẑl, ẑu] by snoopers is close to the customerj’s privacy interval[zl

(j), z
u
(j)], we say

individual value disclosureoccurs for customerj. Currently we are working on how to evaluate this
individual value disclosure in database modeling.

6. Related Work

Testing of database applications is of great importance since undetected faults in these applications may
result in incorrect modification or accidental removal of crucial data. Although various studies have
been conducted to investigate testing techniques for database design, relatively few efforts have been
made to explicitly address the testing of database applications. The problem of database application
testing can be categorized into three parts: database generation, input test cases preparation and test
outcomes verification. In this paper, we focus on database generation.

There have been some prior investigations into data generation. For example, Transaction Process-
ing Performance Council has released a dozen of TPC Benchmarks and many researchers have evaluated
those Benchmarks (e.g., [10, 14, 16]). There are also some other data generation tools (e.g., [17, 15])
available. However, both TPC Benchmarks and other data generation tools are built for assessing the
performance of database management systems, rather than for testing complex real world database ap-
plications. They lack the required flexibility to produce more realistic data needed for application testing,
i.e., the generated data also need to satisfy all the constraints and business rules underlying the live data.

To generate realistic data for database applications, the authors in [4, 5] investigate how to populate
the database with meaningful data that satisfy database constraints. They present a tool which inputs a
database schema definition, along with some additional information from the user, and outputs a valid
database state. The tool can handle not-NULL, uniqueness, referential integrity constraints, and some
domain constraints and semantic constraints. Most constraints are included in data schemas which are
expressed by SQL data definition language (DDL). The tool parses the schema definition for the database
underlying the application to be tested using PostgreSQL (http://www.postgresql.org), then collects rel-
evant information about tables, attributes, and constraints from the parse tree. The generation technique
was motivated by the category-partition testing technique.

The inherent challenge of generating data for database applications is the tradeoff between similarity
and privacy preservation. If the data is too synthetic (e.g., completely uniform distributions), it runs the
risk of being rejected for not capturing he interesting patterns of a real data set. Conversely, if it employs
data from the real world directly, it risks the violation of privacy issues. In terms of performance testing,
using a large amount ofresemblingdata is necessary to guarantee its satisfied performance when software
is deployed. The generated data need to resemble real data interms of statistical distribution in order to
fulfill requirements of applications testing. The authors in [21] points out the importance of providing
meaningful, representative data with realistic skew, sparsity and data distributions for benchmarking
database system performance. Zheng et al. in [25] show that artificial data sets have very different
characteristics from the real-world data sets and hence there is a great need to use real-world data sets
as benchmarks for association rule mining. The authors in [22] empirically evaluate the effect of data
distribution on workload performance using TPC-C and TPC-Hbenchmarks and show the importance
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of generating statistically similar synthetic data for performance testing.
As many databases maintain data on sensitive or confidentialinformation such as income and assets

for real customers, it is imperative to guarantee the data generated can not disclose any private or con-
fidential information. The field of statistical databases [1, 8] has developed various methods to prevent
the disclosure of confidential individual data while satisfying requests for aggregate information. The
proposed techniques can be broadly classified into query restriction and data perturbation [3]. As our aim
here it to release data for application testing, query restriction techniques are not feasible in our scenario.

There are various approaches to assessing risk of identity disclosure and most of them relate to the
inadvertent release of small counts in the full k-way table [7, 8]. We should point out that the privacy
consideration in the current literature for statistical database is not enough for many general environments
which contain both categorical and numerical attributes. In most statistical database literatures, the
privacy concerned is about the re-identification of some specific entries in the database.

The objective of randomized based privacy-preserving datamining [2, 3, 18] is to prevent the dis-
closure of confidential individual values while preservinggeneral patterns and rules. The idea of these
randomization based approaches is that the distorted data,together with the distribution of the random
data used to distort the data, can be used to generate an approximation to the original data values while
the distorted data does not reveal private information, andthus issafeto use for mining. One major
challenge for current approaches is how to evaluate privacybreaches effectively as the perturbed data
space which is used for disclosure analysis is almost infinite.

7. Conclusion and Future Work

In this paper we investigated how to generate synthetic databases using the general location model which
is built using various characteristics extracted from production databases. We also investigated how
to conduct disclosure analysis on the general location model which is used to generate synthetic data.
Our synthetic database generated has similar distributions or patterns as the production database while
preserving privacy, hence it can be used for database application testing. There are some aspects of
this work that merit further research. Among them, we are trying to figure out how to better screen out
confidential information from released characteristics, especially when linear combinations exist among
numerical attributes. We will also conduct a complete studyon how different data distributions affect
workload performance using various datasets. Another areafor future work is centered on refining the
architecture of the data generator itself. This could include changes to allow further use of real world data
sources (e.g., historical data) for increased realism and more rapid adjustment to emerging data trends or
perturbation.
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A. Cell Suppression

Several cell suppression problem formulations have been given in [9]. It is not directly applicable to our
questions since some values in the original contingency table are unknown in our case. In the following,
we modify these formulations so that they could be used in ourcase.

Let a = {ai}n
i=1 be a contingency table. Some of these valuesai may be undefined. Ifai is

undefined, then we writeai = ∗. Let H be anm by n matrix describing the linear constraints on the
feasible contingency table. That is, a feasible contingency tabley should satisfy

Hy = 0

y ≥ 0.

Let P = {i1, . . . , ip} ⊂ {1, . . . , n} be the original specified suppressions. For eachik ∈ P , there is
a lower bound requirementlk and an upper bound requirementuk. The interpretation of these bounds
is as follows. For eachik ∈ P , the dataset owner does not want the public to infer from the published
data that the value ofcik lies in (aik − lik , aik + uik). In order to achieve this goal, some other cells of
the contingency table may need to be suppressed also. Thus the aim of the suppression is to find a set
C = {j1, . . . , jc} that is as “small” as possible and that, for eachk = 1, . . . , p, there are two feasible
contingency tablesy andz with the following properties:

1. yik ≥ aik + uik ,

2. zik ≤ aik − lik ,

3. yi = zi = ai for i /∈ P ∪ C.

In some cases, only the bounduik is given. Then we do not need to meet the requirement for the existence
of z.

A.1. Exact Solution

We use a binary variable arrayx = (x1, · · · , xn) to represent whether each cell is suppressed. That is,

xi =

{

1 if i ∈ P ∪ C

0 otherwise

Let c be an array of subjective weight on cells andyk, zk be variables representing the potential feasible
contingency tables for the conditionik ∈ P . Then the suppression problem could be formulated as the
following questions.

minimizecT x (4)
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subject to














































ai − aixi ≤ yk
i ≤ ai + xiT for ai 6= ∗

ai − aixi ≤ zk
i ≤ ai + xiT for ai 6= ∗

yk
ik

≥ aik + uik , k = 1, . . . , p

zk
ik

≤ aik − lik , k = 1, . . . , p

Hyk = 0;Hzk = 0, k = 1, . . . , p

xi = 1 for i ∈ P

x ∈ {0, 1}n; yk ≥ 0, zk ≥ 0, k = 1, . . . , p

(5)

whereT is a large enough integer. The above mixed integer programming (MIP) could be split into small
MIPs. That is, for eachik ∈ P , one can construct an MIP and solve it.

A.2. Heuristic methods

When the number of variables increase, it may be infeasible to solve the MIPs in the previous section.
Fagan [9] recommended several heuristic mehtods. In the following, we describe one that is useful for
our problem.

Let y andz ben-ary variables, andc be the subject value such that it takes0’s on known parts of
P ∪ C. We hope thata + y − z will be the feasible contingency table witnessing the fact that the public
cannot infer the upper bound ofaik within an error ofuik if we suppress these cellsj with yj 6= zj . That
is, we want to haveaik + yik − zik = aik +uik and keep the nonzero entries iny− z as small as possible
according to the subjective weight. The heuristic formulation is as follows:

minimizecT (y + z) (6)

subject to


















zi ≤ ai for ai 6= ∗
H(y − z) = 0

yik − zik ≥ uik

y ≥ 0, z ≥ 0

(7)

For the lower bound, we have the similar linear programming formulations as follows.

minimizecT (y + z) (8)

subject to


















z ≤ a

H(y − z) = 0

zik − yik ≥ lik
y ≥ 0, z ≥ 0

(9)

Remark. In some cases, it may be possible that the boundslik anduik are not given directly. That
is, instead of givinglik anduik , only Lik = aik − lik andUik = aik + uik are given. Whenaik is given,
then one can easily computelik anduik directly. If aik iis unknown, then one may estimate the values of
lik anduik roughly as

lik = uik =
Uik − Lik

2
.


