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Abstract. This paper investigates public key encryption that has a de-
sirable feature of allowing the sender of a ciphertext to recover the origi-
nal plaintext from the ciphertext without relying on a recipient’s private
decryption key (PKE-SR). We propose two efficient methods for convert-
ing KEM/DEM to PKE-SR. The first method, called pre-KEM seeding,
can be applied to a large class of KEM/DEM constructions including
those based on the discrete logarithm problem. The second method,
called post-KEM converging, is more powerful and can be employed to
convert any secure KEM/DEM into a secure PKE-SR. Post-KEM con-
verging takes advantages of an interesting property, called collision acces-
sibility, of sibling intractable hashing. For both methods, added costs in
ciphertext length and computation are minimal, making them a partic-
ularly attractive “drop-in” replacement in applications where plaintexts
need to be recovered efficiently by the sender alone.

Keywords: public key encryption, backward recovery, recovery by sender,
KEM, DEM.

1 Introduction

Public key encryption admitting message recovery by sender enjoys a useful fea-
ture by which the originator of a ciphertext can retrieve the “forgotten” plain-
text from the ciphertext, without relying on the private decryption key of the
intended recipient. This notion was first introduced by Wei, Zheng and Wang
in [12] and called public key encryption with backward recovery in that paper.
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In this paper we continue this line of research. As backward recovery is implied
by decryption by sender, in this paper we will instead use the term of public key
encryption with sender recovery, or PKE-SR for short.

One can think of many practical applications of PKE-SR, thanks to its prop-
erty of allowing the sender to decrypt a ciphertext by herself alone without the
need to use a recipient’s private decryption key. One example of such applica-
tions is secure email communication. Consider a situation where Alice the sender
encrypts a message m under the public key of Bob the receiver and passes the
resultant ciphertext c to Bob while keeping an identical copy of the ciphertext in
a “Sent” folder on Alice’s email server which may physically reside in an insecure
computing “cloud”. We note that other than the ciphertext, Alice may not keep
an additional copy of the original message m. At a later time, Alice realizes that
she needs to access m which lies in the “Sent” folder albeit in an encrypted form.
By the virtue of traditional public key encryption, the only way to get m back is
for Alice to ask Bob to decrypt the ciphertext with Bob’s decryption key, which
may be impractical or undesirable from either Alice or Bob’s point of view. This
dilemma is readily avoided if Alice and Bob employ PKE-SR or a public key
encryption technique that admits of decryption by sender.

In [12], Wei et al. define a security model for PKE-SR and present two methods
of constructing PKE-SR from the framework of key-encapsulation mechanism
(KEM) and data encapsulation mechanism (DEM) [5]. The first method in [12]
is a general one using the “encrypt then sign” paradigm, whereas the second
method is more efficient, being based on a concrete public key encryption scheme
by Hofheinz and Kiltz [8]. A common thread underlying both methods is the use
of an ephemeral key, which is the symmetric key for DEM and encapsulated not
only by a receiver’s public key but also by a sender’s. These two methods are not
quite practical due to the fact that at least one additional group element needs
to be added to a ciphertext. The inefficiency of the two earlier constructions
stems also from an explicit but somewhat excessive requirement of ciphertext
authenticity, which allows the sender to check whether the ciphertext is generated
by herself. In this paper we remove this requirement for ciphertext authenticity.

A further difference between this paper and [12] lies in the fact that solutions
in [12] are more akin to multi-recipient encryption in which the sender is included
as one of the recipients. In this paper we address a more challenging problem,
namely to search for a solution that is not only efficient but also imposes no
requirement for the sender to possess a public/secret key pair.

Our Contributions. Since confidentiality is the basic requirement of any pub-
lic key encryption, we focus on the confidentiality and the recovery property
of public key encryption with sender recovery, which leads us to a simplified
security model that does not require ciphertext authenticity. We provide two
general methods for translating KEM/DEM to PKE-SR so that the efficiency
of a resultant PKE-SR is comparable to that of the original KEM/DEM. With
both methods, while the receiver of a message is obviously required to have a
public/secret key pair, the sender is required to possess a secret recovery key
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only. In practice, the sender may have to memorize a password only which can
be used to derive the secret recovery key.

The first method is based on the idea of seeding random numbers used in many
public key encryption techniques with pseudo-random numbers being derived
from the sender’s recovery key. In comparison, the second method focuses on
the output of a KEM mechanism. It purposefully causes a collision between
the sender’s recovery key and a key generated by a KEM mechanism, whereby a
second decryption path is created so that the sender alone can recover the original
message. Neither method requires additional encryption (or encapsulation) of an
ephemeral key for the sender.

2 Preliminaries

Notation. If X is a set then x
R← X denotes that x is chosen uniformly at

random from X . x||y denotes the concatenation of x and y. 1λ denotes the
string consisting of λ consecutive “1” bits. In this paper λ acts as a security
parameter. A function in the security parameter λ is said to be negligible if it
becomes smaller than the inverse of any polynomial in λ as λ becomes large. We
use ⊥ as a special symbol for an algorithm to indicate its failure in operations.

Pseudorandom Function. A pseudorandom function (PRF) [7] is an efficiently
computable function F : KPRF × X → Y such that no efficient adversary can
distinguish the function from a truly random function f : X → Y, where X is
the domain, Y is the range of the functions, KPRF is a key space defined by the
security parameter λ and elements of KPRF act as indices for instances of F .
The security of PRF is defined by the following experiment between a challenger
and an adversary [7] (see also [3]).

1. The challenger picks a random bit b
R← {0, 1}. If b = 0, the challenger chooses

a random key k ∈ KPRF and sets f(·) = F (k, ·). Otherwise, the challenger
chooses a random function f : X → Y.

2. The adversary can adaptively sends queries x1, ..., xq ∈ X to the challenger
and the challenger responds with f(x1), ..., f(xq).

3. Finally, the adversary outputs b′ ∈ {0, 1}.

Let ExpPRF = 1(ExpRand = 1) denote the event that the adversary outputs
1 when b = 0 (b = 1). We say that F is εPRF -secure if for any probabilistic
polynomial time (PPT) adversary, we have |Pr[ExpPRF = 1]− Pr[ExpRand =
1]| ≤ εPRF for a negligible function εPRF of the security parameter λ.

Message Authentication Code (MAC). In this paper, a MAC is a function
that maps a key and a message (of arbitrary length) to a tag. Formally it is
a function MAC : KMAC × {0, 1}∗ → T , whose key space KMAC is defined
by the security parameter λ. The security of MAC can also be defined as a
game between a challenger and an adversary. The challenger chooses a random

key kMAC
R← KMAC . The adversary can adaptively make polynomially many
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queries m1,m2, ... to the challenger. The latter returns t1 = MAC(kMAC ,m1),
t2 = MAC(kMAC ,m2), ... Finally, the adversary outputs a pair (m∗, t∗). We say
that the adversary wins the game if MAC(kMAC ,m

∗) = t∗ and t∗ was never
returned by the challenger in response to query m∗. MAC is said to be εMAC -
unforgeable if for any PPT adversary, we have Pr[The adversary wins] ≤ εMAC

for a negligible function εMAC of λ.

IND-CCA2 Security of KEM. A key encapsulation mechanism, denoted by
KEM = (KEM.Gen,KEM.Enc, KEM.Dec), consists of three algorithms.

– a key generation algorithm, KEM.Gen, which takes as input a security
parameter 1λ, outputs a public/secret key pair (pk, sk).

– an encapsulation algorithm, KEM.Enc, which takes as input a public key
pk, outputs a ciphertext c and an ephemeral key k.

– a decapsulation algorithm, KEM.Dec, which takes as input a secret key sk
and a ciphertext c, outputs the ephemeral key k or a special failure symbol
“⊥”.

Indistinguishability security against adaptive chosen ciphertext attack, or IND-
CCA2 security for short, for KEM is defined once again by a two party game
played between a challenger and an adversary. During the game, the adversary
is granted access to an oracle Osk, which upon a decapsulation query c returns
KEM.Dec(sk, c).

1. The challenger runs KEM.Gen(1λ) to generate a public/secret key pair
(pk, sk) of KEM . It then sends pk to the adversary.

2. The challenger computes (c∗, k∗0) = KEM.Enc(pk), generates a random

symmetric key k∗1
R← {0, 1}λk and sends (c∗, k∗b ) to the adversary, where

b
R← {0, 1}. We assume that the KEM’s key space is a collection of bitstrings

of length λk with λk being a polynomial in λ.
3. The adversary can query the oracle Osk with any ciphertext c provided that

c �= c∗. Finally, the adversary terminates by outputting a bit b′.

We say that the adversary wins the game if b = b′, and that KEM is εKEM -
IND-CCA2 secure if, for any PPT adversary, |Pr[b = b′] − 1/2| ≤ εKEM for a
negligible function εKEM of the security parameter λ.

One-Time Symmetric-Key Encryption against Passive Attack. (IND-
OPA). Let DEM = (DEM.Enc,DEM.Dec) denote an one-time symmetric-key
encryption. The encryption algorithmDEM.Enc takes as input a symmetric key
k and a plaintext m and outputs a ciphertext c, where k is a bit string of length
λEnc which is a polynomial in λ. The decryption algorithm DEM.Dec takes as
input a symmetric key k and a ciphertext c and outputs m. The security of DEM
against passive attack is defined by the following game [6].

1. An adversary chooses a pair of plaintexts (m0,m1), where m0 and m1 are
of the same length, and gives them to an encryption oracle Ok. Ok gen-

erates a random key k and a random bit b
R← {0, 1}, and returns c∗ =

DEM.Enc(k,mb).
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2. The adversary terminates by outputting a bit b′.

We say that the adversary wins the game if b = b′. The one-time symmetric-key
encryption DEM is εDEM -IND-OPA secure if for any PPT adversary, |Pr[b =
b′]− 1/2| ≤ εDEM for any negligible function εDEM .

As shown in [6], it is easy to build a symmetric key encryption scheme that
achieves IND-OPA security using standard symmetric-key techniques. For ex-
ample, one can expand an encryption key k using a pseudorandom bit generator
to obtain an one-time pad k′ of length |m| and compute c = m ⊕ k′ as a ci-
phertext. Following the Encrypt-then-MAC paradigm, an IND-OPA DEM can
be converted into an (one-time-) IND-CCA secure DEM. [6] also shows that, an
IND-CCA secure KEM combined with an (one-time-) IND-CCA secure DEM
yields a IND-CCA secure PKE.

The following lemma [11] is simple but useful in the security proof of this
paper.

Lemma 1. Let A1, A2, B be events defined over a probability space such that
Pr[A1

⋂
B] = Pr[A2

⋂
B]. Then we have |Pr[A1]− Pr[A2]| ≤ Pr[B].

3 Public Key Encryption Admitting Sender Recovery
(PKE-SR)

We recall the definition of PKE-SR first introduced in [12] (where it was called
public key encryption with backward recovery). PKE-SR consists of four algo-
rithms:

– A probabilistic key generation algorithm GenSR, which consists of two sub-
algorithms GenSR.S and GenSR.R. GenSR.S takes as input the security
parameter 1λ and outputs a sender’s secret recovery key skrcv. GenSR.R
takes as input 1λ and outputs a receiver’s public/secret key pair (pkR, skR).

– An encryption algorithm EncSR, which takes as input the sender’s secret
recovery key skrcv, the receiver’s public key pkR and a plaintext m, outputs
a ciphertext cSR.

– A decryption algorithm DecSR, which takes as input the receiver’s secret
key skR and the ciphertext cSR, outputs the corresponding plaintext m or
the error symbol “⊥”.

– A recovery algorithm RecSR, which takes as input the sender’s secret key
skrcv, the receiver’s public key pkR and the ciphertext cSR, outputs the
corresponding plaintext m or the error symbol “⊥”.

The security definition for PKE-SR originally introduced in [12] covered both
confidentiality and authenticity. We feel that since the primary goal of public
key encryption is about confidentiality, leaving authenticity out of the picture
would simplify the construction and analysis of public key encryption with mes-
sage recovery by sender. With that in mind, we describe a simplified definition
for the IND-CCA2 security of PKE-SR following the standard two-party game
approach.
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IND-CCA2 Security of PKE-SR. The IND-CCA2 game for PKE-SR is
played between an adversary A and a challenger. During the game, the ad-
versary A has access to three types of oracles: (1) an encryption oracle OEnc,
which upon an encryption query qEnc = (pk′,m) returns a ciphertext cSR =
EncSR(skrcv, pk

′,m). (2) a decryption oracle ODec, which upon a decryption
query qDec = cSR returns DecSR(skR, cSR). (3) a recovery oracle ORec, which
upon a recovery query qRec = (pk′, cSR) returns RecSR(skrcv, pk

′, cSR).
The IND-CCA2 game proceeds as follows.

1. The challenger runs GenSR(1
λ) to generate a target sender’s secret recovery

key skrcv and a target receiver’s public/secret key pair (pkR, skR).
2. The adversary generates a pair of plaintexts (m0,m1) such that |m0| =
|m1|, and sends (m0,m1) to the challenger. The challenger returns a target

ciphertext c∗SR = Enc(skrcv, pkR,mb), where b
R← {0, 1}.

3. The adversary A can query all the three oracles OEnc, ODec and ORec with
any input, provided that qDec �= c∗SR and qRec �= (pkR, c

∗
SR). Finally, A

terminates by returning a guess b′.

We say that A wins the above game if b′ = b. The advantage of A is defined as
AdvCCA2

SR (A) = |Pr[A wins] − 1/2|. PKE-SR is said to be ε-IND-CCA2 secure
if, for any PPT adversary A, AdvCCA2

SR (A) ≤ ε for a negligible ε.

4 PKE-SR Using Pre-KEM Seeding

Randomness plays an important role in the construction of secure public key
encryption. It is known that IND-CPA and IND-CCA security of public key
encryption rests on sufficiently good randomness. Leakage of randomness may
lead to the disclosure of a plaintext from the ciphertext. For instance, consider a
ciphertext of the ElGamal encryption scheme c = (gr, yrm), where g denotes the
generator of a cyclic group, r a random seed used during the encryption phase,
y a receiver’s public key and m a plaintext. Clearly, anyone who knows r and y
can efficiently recover m from c without using the receiver’s decryption key.

The above observation leads us to an efficient construction of public key en-
cryption with message recovery by sender. First we formalize the notion of a
retraceable KEM which forms the basis for the construction method for PKE-
SR. A KEM (KEM.Gen,KEM.Enc,KEM.Dec) is retraceable if it satisfies the
following properties.

– The encapsulation algorithm, KEM.Enc, takes as input a random number
r and a public key pk, outputs a ciphertext c and an ephemeral key k. Here,
KEM.Enc acts as a deterministic polynomial time algorithm in such a way
that for each (pk, c) there is a unique r.

– There exists a deterministic polynomial time algorithm KEM.Rec which
takes as input (r,pk,c) and outputs the ephemeral key k.

A large class of KEM schemes satisfy the above retraceable properties, including
those in [4][1][2][10][9][8]. Many PKE schemes such as those in [4][1][2] can be
used as KEM by encrypting a random element as an ephemeral key, and these
resultant KEM schemes too satisfy the retraceable properties.
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4.1 Construction of PKE-SR Using Pre-KEM Seeding

Let F denote a PRF which maps {0, 1}λ1 × X to Y, where X denotes the set
of pk||τ , pk a receiver’s public key, τ ∈ {0, 1}λ0, and Y the set of random
seeds r used in KEM.Enc. Let MAC denote a message authentication code
that maps {0, 1}λ2 × {0, 1}∗ to T . Note that λ0, λ1 and λ2 are polynomial
functions of the security parameter λ. Let (KEM.Gen,KEM.Enc,KEM.Dec)
denote a retraceable KEM scheme and (DEM.Enc,DEM.Dec) denote a one-
time symmetric key encryption scheme. The basic idea of pre-KEM seeding is

Table 1. PKE-SR from pre-KEM seeding

– Key generation GenSR(1
λ).

• The receiver runs KEM.Gen(1λ) to generate his public/secret key pair
(pk, sk).

• The sender picks a random skrcv ∈ {0, 1}λ1 as her secret recovery key.
– Encryption EncSR(skrcv, pk,m) by sender.

• Choose τ
R← {0, 1}λ0 and compute r = F (skrcv, pk||τ ).

• Compute (cKEM , kEnc||kMAC ) = KEM.Enc(r, pk) and cDEM =
DEM.Enc(kEnc,m). Denote c = (cKEM , cDEM).

• Compute tag = MAC(kMAC , pk||τ ||c).
• Output cSR = (τ, c, tag).

– Decryption DecSR(sk, cSR) by receiver.
• Compute kEnc||kMAC = KEM.Dec(sk, cKEM ). If kEnc||kMAC = ⊥, output
⊥ and halt.

• If tag �= MAC(kMAC , pk||τ ||c), output ⊥ and halt; Otherwise, output m′ =
DEM.Dec(kEnc, cDEM).

– Recovery RecSR(skrcv, pk, cSR) by sender.
• Compute r = F (skrcv, pk||τ ) and kEnc||kMAC = KEM.Rec(r, pk, cKEM ).
• If tag �= MAC(kMAC , pk||τ ||c), output ⊥ and halt; Otherwise, output m′ =

DEM.Dec(kEnc, cDEM).

to let the sender choose a random τ ∈ {0, 1}λ0 and generate r = F (skrcv, pk||τ),
which will be used as the random seed of KEM to create a symmetric key for
DEM. τ is included as part of the ciphertext so that the sender can recreate r
by computing F (skrcv, pk||τ). As the KEM has the retraceable properties, the
sender can then obtain the ephemeral key using KEM.Rec(r, pk, cKEM). To
prevent an adversary from getting help through a recovery query (pk′, cSR), we
need a MAC to provide validity check for the whole ciphertext. The resulting
PKE-SR scheme is described in detail in Table 1 and Figure 1. Note that if the
underlying KEM outputs a key whose length is not long enough for it to be split
into two keys kEnc and kMAC , a secure pseudorandom number generator can be
applied to extend it into a desired length prior to splitting.
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Fig. 1. PKE-SR from pre-KEM seeding

4.2 IND-CCA2 Security of PKE-SR from Pre-KEM Seeding

Theorem 1. PKE-SR from pre-KEM seeding is ε-IND-CCA2 secure if KEM is
retraceable and εKEM -IND-CCA2 secure, DEM is εDEM -IND-OPA secure, F is
εPRF -secure and MAC is εMAC-unforgeable, where

ε ≤ εPRF + εKEM + (NDec +NRec)εMAC + εDEM ,

NDec and NRec denote upper bounds on the numbers of decryption queries and
recovery queries, respectively.

Proof. We prove the theorem using the game hopping technique. We show that
any PPT adversary can win the IND-CCA2 game, denoted by Game 0, with only
a negligible advantage. To that end, we construct a sequence of three games
Games 1, 2 and 3, and prove, consecutively, the indistinguishability between
Games 0, 1, 2 and 3. More details are as follows.

– Game 0. This game is the standard IND-CCA2 game of PKE-SR. In the
challenge phase, the adversary sends m0 and m1 to the challenger. The chal-

lenger randomly chooses τ∗ R← {0, 1}λ0 and computes r∗ = F (skrcv, pk||τ∗),
(c∗KEM , k∗Enc||k∗MAC) = KEM.Enc(r∗, pk), c∗DEM = DEM.Enc(k∗Enc,mb)
and tag∗ = MAC(k∗MAC , pk||τ∗||c∗), where c∗ = (c∗KEM , c∗DEM ). The target
ciphertext is c∗SR = (τ∗, c∗, tag∗).

– Game 1. Game 1 is similar to Game 0, except that the pseudorandom func-
tion F is replaced with a uniformly selected function φ : X → Y.

– Game 2. Game 2 is similar to Game 1, except that at the begin-

ning of Game 2, the challenger randomly chooses τ∗ R← {0, 1}λ0,

r∗∗ R← Y, defines φ(pk||τ∗) = r∗∗ and computes (c∗∗KEM , k∗∗Enc||k∗∗MAC) =
KEM.Enc(r∗∗, pk). In the challenge phase the challenger computes c∗∗DEM =
DEM.Enc(k∗∗Enc,mb) and tag∗∗ = MAC(k∗∗MAC , pk||τ∗||c∗∗), where c∗∗ =
(c∗∗KEM , c∗∗DEM ). The target ciphertext is c∗∗SR = (τ∗, c∗∗, tag∗∗).

– Game 3. Game 3 is similar to Game 2, except that at the beginning of

Game 3 the challenger randomly chooses k+Enc||k
+
MAC

R← {0, 1}λk and defines
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KEM.Enc(r∗∗, pk) = (c∗∗KEM , k+Enc||k
+
MAC) and KEM.Dec(sk, c∗∗KEM ) =

k+Enc||k
+
MAC . In the challenge phase, the challenger computes c+DEM =

DEM. Enc(k+Enc,mb) and tag+ = MAC(k+MAC , pk||τ∗||c+), where c+ =
(c∗∗KEM , c+DEM ). The target ciphertext is c+SR = (τ∗, c+, tag+).

Let Game i=1 denotes an event where the adversary wins in Game i. We have
the following claims.

Claim 1. |Pr[Game 0 = 1]− Pr[Game 1 = 1]| ≤ εPRF if F is εPRF -secure.

The proof of Claim 1 is straightforward and omitted.

Claim 2. Pr[Game 1 = 1] = Pr[Game 2 = 1].

Proof. We note that the only difference between Game 1 and Game 2 is the fact
that the output of φ(pk||τ∗) is set to r∗∗. Since φ is a real random function and
r∗∗ is randomly chosen, Game 1 and Game 2 are identical. 	


Claim 3. |Pr[Game 2 = 1]− Pr[Game 3 = 1]| ≤ εKEM if the underlying KEM
is εKEM -IND-CCA2 secure.

Proof. Denote by A23 the adversary in the IND-CCA2 game. If |Pr[Game 2 =
1] − Pr[Game 3 = 1]| is non-negligible, we can construct an efficient algorithm
MKEM to breach the security of the underlying KEM. More details follow.

The IND-CCA2 game of the underlying KEM is played between the chal-
lenger and MKEM . Let (pk, sk) denote the public/secret key pair of the under-
lying KEM. pk is given to MKEM . In the challenge phase the challenger sends

the target ciphertext c∗∗KEM and k∗∗+Enc b||k
∗∗+
MAC b to MKEM , where b

R← {0, 1}.
Suppose the random seed used in generating c∗∗KEM is r∗∗, which is unknown
to MKEM . Then MKEM simulates the IND-CCA2 game for A23. Let pk be the

public key of PKE-SR from pre-KEM seeding. MKEM chooses τ∗ R← {0, 1}λ0

and φ, and defines KEM.Enc(φ(pk||τ∗), pk) = (c∗∗KEM , k∗∗+Enc b||k
∗∗+
MAC b) and

KEM.Dec(sk, c∗∗KEM) = k∗∗+Enc b||k
∗∗+
MAC b. Note that sk and φ(pk||τ∗), which is

set to r∗∗, are unknown to MKEM . A23 can make three types of queries below:

– Encryption query with qEnc = (pk′,m). MKEM randomly chooses τ and
sets r = φ(pk′||τ), (cKEM , kEnc||kMAC) = KEM.Enc(r, pk′), cDEM =
DEM.Enc (kEnc,m) and tag = MAC(kMAC , pk′||τ ||c). MKEM returns
cSR = (τ, c, tag). Note that if τ = τ∗ and pk′ = pk, MKEM does not know
φ(pk||τ∗). In this case, MKEM sets cKEM = c∗∗KEM and computes cDEM and
tag using k∗∗+Enc b||k

∗∗+
MAC b as in Game 3.

– Decryption query with qDec = cSR = (τ, c, tag), where c = (cKEM , cDEM ).
MKEM makes decapsulation query cKEM to the challenger and gets the
corresponding ephemeral key kEnc||kMAC . Using kEnc||kMAC , MKEM can

decrypt cDEM and check whether tag
?
= MAC(kMAC , pk||τ ||c). If tag =
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MAC(kMAC , pk||τ ||c), MKEM responds with DEM.Dec(kEnc, cDEM ). Oth-
erwise, ⊥. Note that if cKEM = c∗∗KEM , MKEM decrypts cDEM and checks
the validity of tag using k∗∗+Enc b||k

∗∗+
MAC b.

– Recovery query with qRec = (pk′, cSR) = (pk′, τ, c, tag). If pk′ = pk
and τ = τ∗, MKEM checks the validity of tag and decrypts cDEM using
k∗∗+Enc b||k

∗∗+
MAC b; Otherwise, MKEM computes r = φ(pk′||τ), kEnc||kMAC =

KEM.Rec(r, pk, cKEM ), and checks the validity of tag and decrypts cDEM

using kEnc||kMAC .

When receiving (m0,m1) from A23, MKEM sets c∗∗+DEM = DEM.Enc(k∗∗+Enc b,
mb̃) and tag∗∗+ = MAC(k∗∗+MAC b, pk||τ∗||c∗∗+), where c∗∗+ = (c∗∗KEM , c∗∗+DEM ),

b̃
R← {0, 1}. Hence, c∗∗+SR = (τ∗, c∗∗+, tag∗∗+). After the challenge phase, MKEM

can answer queries as described above, provided that qDec �= c∗∗+SR and qRec �=
(pk, c∗∗+SR ). Finally, A23 outputs b′. If b′ = b̃, MKEM output 0; Otherwise, 1.

If b = 0, the above experiment is Game 2. If b = 1, the above experiment is
Game 3. If |Pr[Game 2 = 1]− Pr[Game 3 = 1]| is non-negligible, then MKEM

can efficiently break the IND-CCA2 security of the underlying KEM, from which
it follows that |Pr[Game 2 = 1]− Pr[Game 3 = 1]| ≤ εKEM . 	


Claim 4. |Pr[Game 3 = 1]−1/2| ≤ (NDec+NRec)εMAC+εDEM if the underlying
DEM is εDEM -IND-OPA secure and MAC is εMAC -unforgeable.

Proof. If there exists a PPT adversary A3 which can win Game 3 with a non-
negligible advantage, we can construct an algorithm MDEM to break the IND-
OPA security of the underlying DEM. The description of MDEM is given below.

The IND-OPA game of the underlying DEM is played between the challenger
and MDEM . MDEM sets the parameters of PKE-SR from pre-KEM seeding in
the same manner as in Game 3 and simulates Game 3 for A3 as follows.

– A3 can query MDEM with qEnc, qDec, qRec in the same manner as in Game 3,
except that when qDec = (τ ′, (c∗∗KEM , c′DEM ), tag′) or qRec = (pk, τ ′, (c∗∗KEM ,
c′DEM ), tag′), MDEM responds with “⊥”. However, if qDec = (τ ′, (c∗∗KEM ,
c′DEM ), tag′) or qRec = (pk, τ ′, (c∗∗KEM , c′DEM ), tag′) are valid, MDEM gives
wrong answers. Denote such an event by Bad3.

– In the challenge phase of IND-OPA game, MDEM sends (m0,m1) which are
chosen by A3 to the challenger. The challenger responds with c+DEM . MDEM

sets the target ciphertext to (τ∗, c+, tag+) = (τ∗, (c∗∗KEM , c+DEM ), tag+),
where c∗∗KEM is computed as in Game 3, tag+ = MAC(k+MAC , pk||τ∗||c+)
and k+MAC is randomly chosen by MDEM .

Finally, the adversary outputs a guess for b, which is the output of MDEM .
If Bad3 does not happen, MDEM perfectly simulates Game 3 for A3 and the

success probability of MDEM is the same as that of A3. Since Pr[Game 3 =
1 ∩Bad3] = Pr[MDEM wins ∩Bad3] and |Pr[MDEM wins] − 1/2| ≤ εDEM , we
have
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∣
∣
∣
∣Pr[Game 3 = 1]− 1

2

∣
∣
∣
∣

≤ |Pr[Game 3 = 1]− Pr[MDEM wins]|+
∣
∣
∣
∣Pr[MDEM wins]− 1

2

∣
∣
∣
∣

≤ Pr[Bad3] + εDEM ,

where the last inequality follows from Lemma 1.
It remains to show that Pr[Bad3] is negligible. To that end, we construct

a forging algorithm MMAC as follows. MMAC randomly chooses an index j ∈
{1, ..., NDec + NRec}. Next, MMAC simulates Game 3 for the adversary A. If
the j-th decryption/recovery query, which may be qDec−j = (τ(j), c(j), tag(j))
or qRec−j = (pk′, τ(j), c(j), tag(j)), occurs before the challenge phase, MMAC

outputs (pk′||τ(j)||c(j), tag(j)) and halts, where pk′ = pk if the j-th decapsu-
lation/recovery query is qDec−j . Otherwise, in the challenge phase, A sends
(m0,m1) to MMAC . MMAC computes (τ∗, c+) as in Game 3 where c+ = (c∗∗KEM ,
c+DEM ), and sends pk||τ∗||c+ to the challenger of the MAC, which returns tag+.
Then, MMAC gives (τ∗, c+, tag+) to A and continues running A until A makes
the j-th decapsulation/recovery query.MMAC outputs (pk′||τ(j)||c(j), tag(j)) and
halts. Hence, the probability that MMAC outputs a valid forgery is at least
Pr[Bad3]/(NDec +NRec). If the underlying MAC is εMAC -unforgeable, we have
Pr[Bad3]/(NDec +NRec) ≤ εMAC . That is, Pr[Bad3] ≤ (NDec +NRec)εMAC .

Therefore,
∣
∣Pr[Game 3 = 1]− 1

2

∣
∣ ≤ (NDec+NRec)εMAC + εDEM , which com-

pletes the proof of Claim 4. 	


From Claims 1, 2, 3 and 4, we have

∣
∣
∣
∣Pr[Game 0 = 1]− 1

2

∣
∣
∣
∣

≤ |Pr[Game 0 = 1]− Pr[Game 1 = 1]|+ |Pr[Game 1 = 1]− Pr[Game 2 = 1]|+

|Pr[Game 2 = 1]− Pr[Game 3 = 1]|+
∣
∣
∣
∣Pr[Game 3 = 1]− 1

2

∣
∣
∣
∣

≤ εPRF + εKEM + (NDec +NRec)εMAC + εDEM .

which completes the proof of Theorem 1. 	


4.3 Instantiations

The underlying KEM of PKE-SR from pre-KEM seeding can be instantiated
by many KEM schemes such as those in [6][9][8], and the underlying DEM can
be instantiated by AES, which is assumed to be IND-OPA secure. Note that
τ is an unpredictable nonce. It is part of a ciphertext and used to generated a
fresh random seed r for the underlying KEM. In practice, τ could be used in
conjunction with a public label L (e.g., the receiver’s e-mail address, or any piece
of information agreed upon between two communicating parties.)
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PKE-SR Using PKE. As discussed before, some public key encryption (PKE)
schemes are retraceable and can be used as KEM, e.g., [4][2], although it might
be somewhat an “overkill”, especially when the PKE is constructed out of
KEM/DEM. Nevertheless for practical purposes, a PKE can be used to replace
the underlying KEM in PKE-SR from pre-KEM seeding. A further example is
based on DHIES [1]. It turns out that with DHIES, a somewhat more efficient
PKE-SR can be built that requires only one additional element τ added to a
ciphertext and one additional computation for PRF. Although the KEM part
of DHIES is not IND-CCA2, we can still prove the IND-CCA2 security of the
resultant PKE-SR under the oracle Diffie-Hellman assumption. Due to a lack of
space, examples of instantiations based on [1][2][9] are deferred to the full paper.

5 PKE-SR Using Post-KEM Converging

In this section, we present a method of constructing PKE-SR, called post-KEM
converging. The basic idea is from the sibling intractable function families with
the collision accessibility property [13]. We first explore related properties of
universal hash functions with collision accessibility in Section 5.1, then we show
the details of the post-KEM converging method in Section 5.2

5.1 Universal Hash Function Families with Collision Accessibility
Property

Loosely speaking, a universal hash function family with collision accessibility is
one that has the property that, given a set of initial strings, the hash values of
them can be made to collide with one another. A formal definition of k-collision
accessibility follows.

Definition 1. [13] Let H =
⋃
Hλ be a family of functions that is polynomial

time computable, samplable and maps l(λ)-bit input into m(λ)-bit output strings.
H has the k-collision accessibility property if for all λ and for all 1 ≤ i ≤ k,
given a set X = {x1, x2, ..., xi} of i initial strings in {0, 1}l(λ), it is possible in
probabilistic polynomial time to select randomly and uniformly functions in HX

λ ,
where HX

λ ⊂ Hλ is the set of all functions in Hλ that map x1, x2, ..., xi to the
same strings in {0, 1}l(λ).

As an example, we show how to construct a universal hash function family with
2-collision accessibility.

Given (s1, s2) ∈ {0, 1}λ1×{0, 1}λ1, randomly choose (w1, w2, kCA) ∈ {0, 1}λ3×
{0, 1}λ3 × {0, 1}λ4, where λ1 = λ3 + λ4. Note that operations in equations be-
low are carried out over the finite field GF (2λ1). Solve the equations (1)(2) for
(a1, a2) ∈ {0, 1}λ1 × {0, 1}λ1,

w1||kCA = a1 + a2s1 (1)

w2||kCA = a1 + a2s2 (2)
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which can be also written as follows,

(
w1||kCA

w2||kCA

)

=

(
1 s1
1 s2

)(
a1
a2

)

. (3)

Let UHCA(x) denote the resulting universal hash function, which takes x ∈
{0, 1}λ1 as input and outputs the least significant λ4 bits of a1 + a2x. Hence, we
have UHCA(s1) = UHCA(s2) = kCA. (a1, a2) is called the description of UHCA.

Note that a tuple (w1, w2, kCA, s1, s2) such that s1 �= s2 ensures that Equa-
tion (3) has a unique solution. We say that such (w1, w2, kCA, s1, s2) is a valid
tuple. An important observation is that when a valid tuple (w1, w2, kCA, s1, s2)
is randomly chosen from ∈ {0, 1}λ3 ×{0, 1}λ3×{0, 1}λ4×{0, 1}λ1×{0, 1}λ1, we
have the following claim on the distribution of (a1, a2).

Claim 5. If (a1, a2) is obtained from a random and valid tuple (w1, w2, kCA, s1, s2)
∈ {0, 1}λ3 ×{0, 1}λ3 ×{0, 1}λ4×{0, 1}λ1 ×{0, 1}λ1, the statistical difference be-
tween (a1, a2) and a random pair in {0, 1}λ1 × {0, 1}λ1 is less than 1

2λ3−1 .

The proof for Claim 5 is omitted due to a limitation in space. A consequence of
Claim 5 is the following Claim 6.

Claim 6. Consider the following ensemble,

Wβ = {(a(1)1 , a
(1)
2 , s

(1)
1 ), (a

(2)
1 , a

(2)
2 , s

(2)
1 ), ..., (a

(N−1)
1 , a

(N−1)
2 , s

(N−1)
1 ), (a∗1, a

∗
2, s

∗
1)},

where (a
(i)
1 , a

(i)
2 , s

(i)
1 ), 1 ≤ i ≤ N − 1, are generated by UHCA using random and

valid tuples and β
R← {0, 1}. If β = 0, then (a∗1, a

∗
2, s

∗
1) is generated by UHCA

using a random and valid tuple (w∗
1 , w

∗
2 , k

∗
CA, s

∗
1, s

∗
2). Otherwise, (a∗1, a∗2, s∗1) is

chosen uniformly at random from {0, 1}λ1 ×{0, 1}λ1 ×{0, 1}λ1. Then the statis-
tical difference between W0 and W1 is at most 1

2λ3−1 .

5.2 Construction of PKE-SR Using Post-KEM Converging

The core idea of post-KEM converging is to force an ephemeral key kKEM from
KEM and the sender’s secret recovery key skrcv to collide by the use of UHCA, by
which we convert KEM/DEM into PKE-SR. To construct a full-fledged PKE-
SR scheme, we need two one-way hash functions H1 : {0, 1}∗ → {0, 1}λ1+λ3 ,
H2 : {0, 1}∗ → {0, 1}2λ1 and a key derivation function HKDF : {0, 1}2λ1+λ4 →
{0, 1}λk . More details about the scheme are given in Table 2 and Fig 2.

5.3 IND-CCA2 Security of PKE-SR from Post-KEM Converging

Theorem 2. PKE-SR from post-KEM converging is ε-IND-CCA2 secure in the
random oracle model if KEM is εKEM -IND-CCA2 secure, DEM is εDEM -IND-
OPA secure and MAC is εMAC-unforgeable where

ε ≤ εKEM+
NRO2

2λ1−1
+(

1

2λ1−2
+

1

2λ3−1
)NRec+

1

2λ3−1
+(NDec+NRec)εMAC+εDEM ,



50 P. Wei and Y. Zheng

Table 2. PKE-SR from post-KEM converging

– Key generation GenSR(1
λ).

• The receiver runs KEM.Gen(1λ) of the underlying KEM and generates his
public/secret key pair (pk, sk).

• The sender randomly chooses skrcv ∈ {0, 1}λ1 as her secret key.
– Encryption EncSR(skrcv, pk,m) by sender.

• Randomly choose τ
R← {0, 1}λ0 . Compute (cKEM , kKEM ) = KEM.Enc(pk).

Here, KEM.Enc(·) denotes a PPT algorithm.
• Compute w1||s1 = H1(kKEM ||τ ) and w2||s2||kCA = H2(skrcv||τ ), where

(w1, w2, kCA, s1, s2) ∈ {0, 1}λ3 × {0, 1}λ3 × {0, 1}λ4 × {0, 1}λ1 × {0, 1}λ1 .
If s1 = s2, run the first two steps of EncSR(skrcv, pk,m) again until s1 �= s2.
Solve the equations below for (a1, a2).

w1||kCA = a1 + a2s1 (4)

w2||kCA = a1 + a2s2 (5)

• Compute kEnc||kMAC = HKDF (kCA||(a1, a2)) and cDEM =
DEM.Enc(kEnc,m). Denote c = (cKEM , cDEM). Compute tag =
MAC(kMAC , pk||τ ||(a1, a2)||c).

• Output cSR = (τ, (a1, a2), c, tag).
– Decryption DecSR(sk, cSR) by receiver.
• Compute kKEM = KEM.Dec(sk, cKEM ). If kKEM = ⊥, output ⊥ and halt.

Compute w1||s1 = H1(kKEM ||τ ) and w′
1||kCA = a1 + a2s1. If w′

1 �= w1,
output ⊥ and halt. Compute kEnc||kMAC = HKDF (kCA||(a1, a2)).

• If tag �= MAC(kMAC , pk||τ ||(a1, a2)||c), output ⊥ and halt; Otherwise, out-
put m′ = DEM.Dec(kEnc, cDEM).

– Recovery RecSR(skrcv, pk, cSR) by sender.
• Compute w2||s2||kCA = H2(skrcv||τ ) and w′

2||k′
CA = a1 + a2s2. If w

′
2||k′

CA �=
w2||kCA, output ⊥ and halt. Compute kEnc||kMAC = HKDF (kCA||(a1, a2)).

• If tag �= MAC(kMAC , pk||τ ||(a1, a2)||c), output ⊥ and halt; Otherwise, out-
put m′ = DEM.Dec(kEnc, cDEM).

Remark. In practice, KEM can be implemented in a multiplicative group whose el-
ements are of 1024 bits or 2048 bits in length. We can set λ0 = λ1 = 256 and
λ3 = λ4 = 128. Considering MAC is often applied to construct an IND-CCA2
KEM/DEM, the length of additional information for turning KEM/DEM into PKE-SR
is 768-bit, which is shorter than that of a group element.

NRO2, NDec and NRec denote upper bounds on the numbers of random oracle
queries for H2, decryption queries and recovery queries, respectively.

Due to space limitations, more details of the proof of Theorem 2 are deferred to
the full paper.
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Fig. 2. PKE-SR from post-KEM converging. GenUH denotes the procedure that takes
skrcv, τ and kKEM as input and outputs a description (a1, a2) and kCA is part of the
hash value of a nonce and the sender’s recovery key.

6 Conclusion

In this paper, we demonstrate two efficient methods for constructing secure pub-
lic key encryption that admits decryption by sender, namely pre-KEM seeding
and post-KEM converging. The pre-KEM seeding method can be applied to all
KEMs with retraceable properties, whereas the post-KEM converging method
makes use of universal hash function families with collision accessibility and can
be applied to the entire class of KEM/DEM. Both constructions can achieve
IND-CCA2 security.

Our final note is about the naive technique for constructing PKE-SR by en-
crypting an ephemeral key for KEM/DEM using a symmetric cipher under the
sender’s secret recovery key and then including the encrypted ephemeral key
as part of the ciphertext. We find that this naive approach does not afford a
rigorous security proof. More importantly, it does not scale well when there are
a multiple number of receivers which will be the focus of our forthcoming paper.
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