
Public Key Encryption for the Forgetful

Puwen Wei1,�, Yuliang Zheng2,��, and Xiaoyun Wang1,3,�

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

pwei@sdu.edu.cn
2 Department of Software and Information Systems,

The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
yzheng@uncc.edu

3 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
xiaoyunwang@mail.tsinghua.edu.cn

Abstract. We investigate public key encryption that allows the orig-
inator of a ciphertext to retrieve a “forgotten” plaintext from the ci-
phertext. This type of public key encryption with “backward recovery”
contrasts more widely analyzed public key encryption with “forward se-
crecy”. We advocate that together they form the two sides of a whole
coin, whereby offering complementary roles in data security, especially in
cloud computing, 3G/4G communications and other emerging comput-
ing and communication platforms. We formalize the notion of public key
encryption with backward recovery, and present two construction meth-
ods together with formal analyses of their security. The first method
embodies a generic public key encryption scheme with backward recov-
ery using the “encrypt then sign” paradigm, whereas the second method
provides a more efficient scheme that is built on Hofheinz and Kiltz’s
public key encryption in conjunction with target collision resistant hash-
ing. Security of the first method is proved in a two-user setting, whereas
the second is in a more general multi-user setting.

1 Introduction

Forward security, a notion first proposed by Günther [10] in the context of key
exchange, has been well studied during the past decade. It guarantees the se-
curity of past uses of a secret key. Notably, past ciphertexts associated with a
forward secure encryption scheme cannot be decrypted by an adversary even
if the adversary possesses the current decryption key. A corollary of forward
security is that it is infeasible even for either a receiver or a sender to recover
� Wei and Wang were supported by the National Natural Science Foundation of China

under Grant No. 60525201 and the National Basic Research Program of China under
Grant No. 2007CB807902.

�� Part of Zheng’s work was done while visiting the Institute for Advanced Study at
Tsinghua University, and Shandong University on a Changjiang Scholars program
sponsored by the Chinese Ministry of Education and Li Ka Shing Foundation in
Hong Kong.

D. Naccache (Ed.): Quisquater Festschrift, LNCS 6805, pp. 185–206, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

186 P. Wei, Y. Zheng, and X. Wang

plaintexts from past ciphertexts. A related point is that with traditional pub-
lic key encryption, a sender is in general not able to decrypt a ciphertext he
sent earlier. At a first look it might sound strange that a sender wants to de-
crypt a past ciphertext, given that it was him who created the ciphertext from
a plaintext in his possession in the first place. As will be shown below, with the
advent of new generations of computing and communication systems, users are
increasingly relying on external storage to maintain data, especially when the
amount of data exceeds the capacity of their local storage. This trend entails
the necessity of decrypting ciphertexts by the sender who has “forgotten” the
associated plaintexts.

Let us first take a look at the emerging cloud computing platform. The de-
ployment of 3G/4G and other new generations of communication systems, to-
gether with the availability of increasingly sophisticated smart phones and other
handheld devices, is altering the traditional image of how people use mobile
phones and access the Internet. Anecdotal evidence indicates that more and
more people are bypassing traditional computers, and instead using a smart
phone not only as a communication tool but also as an access point to data that
is stored in servers residing in a communication infrastructure. This type of appli-
cations for outsourcing individual’s computing needs mirrors cloud computing for
businesses.

As an example, we consider a typical email communication system where a
user relies on an email server, called a message storage and transfer agent or
MSTA, for all communications. All his incoming messages are stored in an inbox
folder on the MSTA, and an outgoing message is relayed by the MSTA to the
MSTA of the intended recipient of the message, with a copy of the message
being kept in the “Sent Mail” folder of the sender’s MSTA. Clearly, due to
its advantages in scalability and flexibility, public key encryption is a preferred
method for secure email communication. Consider a situation where a verbatim
copy of a public key encrypted message is kept on the MSTA. At a later stage
the sender finds out that he is no longer in possession of the original message
in the storage of his local or handheld device such as a netbook computer or a
smart phone, and has to rely on the MSTA for the retrieval of the message. If
the copy of the message on the MSTA is encrypted using a regular public key
encryption technique, he will now be out of luck.

The issue discussed above could be addressed if the user keeps a copy of
the original, unencrypted message on the MSTA. This, however, would require
the modification of the user’s email system, possibly deviating from current
industrial standards for email protocols. Worse still, it would introduce new
issues on the security of unencrypted messages kept on the server. Yet a further
potential problem would be the requirement of storing two copies of a message,
one encrypted and the other unencrypted, on the MSTA.

The above example highlights the need for a new type of public key encryption
that allows the sender to decrypt a ciphertext at a later stage. We are not
aware of any existing public key encryption technique that can be “tweaked”
to fulfill the requirement. A further challenge for designing such a new type of

Public Key Encryption for the Forgetful 187

public key encryption is a requirement related to the authenticity of a ciphertext.
Specifically, the originator may need to be assured at a later stage that the
ciphertext was indeed produced by himself earlier.

Our second example has do to with data centers or more generally, cloud
computing. Businesses are increasingly relying on cloud computing to outsource
data processing and storage, with the primary goal of reducing or eliminating in
house technical support, cutting costs and increasing productivity. To that end,
it is envisioned that a business would maintain no local copy of past data, rely-
ing instead on data centers in the cloud for the availability, security, integrity,
consistency and freshness of the data. Among the myriad of technical and non-
technical issues that are yet to be fully addressed, storing data in an encrypted
form is without doubt one of the techniques that should be in any toolkit for
trusted cloud computing. It is not an over-statement to say that there are nu-
merous possible ways to store encrypted data in remote servers. The simplest
of these would be for a user to encrypt data, store the ciphertext in the cloud,
and afterwards when he needs the data again, fetches the ciphertext from the
cloud and decrypts it to the original data. The user can choose to use either a
private key encryption algorithm or a public key encryption algorithm. When
a private key encryption algorithm such as AES is used, both encryption and
decryption can be done easily, even by a relatively low power device such as a
smart phone. When a public key encryption algorithm is used instead, a problem
similar to that of the mail transfer example arises. That is, the originator of a
ciphertext may neither be able to decrypt the ciphertext not check its integrity.
One might ask why one has to use public key encryption in such applications.
The answer lies in the fact that modern applications are getting ever more com-
plex, and often times encryption is applied as one of many intermediate stages
of data processing. It is conceivable that public key encryption may be applied
to provide data confidentiality in a large system for cloud computing.

These questions are a direct motivation for us to inquire into public key en-
cryption that admits the backward recovery of plaintexts by their originator
while at the same time ensuring that the originator can verify whether a cipher-
text was produced by himself earlier.

Our result. Our first contribution is to formalize the notion of public key en-
cryption with backward recovery (PKE-BR) as well as its associated security
models. We then present a generic construction of PKE-BR using the “encrypt
then sign” paradigm [2]. The basic idea underlying our construction is that an
ephemeral key is encapsulated, called a key encapsulation mechanism or KEM,
not only by a receiver’s public key but also by a sender’s, and the randomness
re-use (RR) technique discussed in [4] is applied to reduce the bandwidth and
computational cost. As for security analysis, we prove that our PKE-BR KEM is
IND-CCA2 secure and existentially unforgeable in a two-user setting if the un-
derlying two-receiver KEM is IND-CPA and the underlying signature is weakly
unforgeable.

A downside of the generic construction is that it is not quite efficient due
to the use of a signing procedure. It turns out that the “encrypt then sign”

188 P. Wei, Y. Zheng, and X. Wang

paradigm is in fact an overkill in the context of meeting the requirements of
PKE-BR. One reason is that the receiver may not be always required to check
the origin of a ciphertext. This happens in a situation where checking the origin
of a ciphertext can be accomplished using an out-of-band method. For instance,
a data center may process and store data received from legitimate users only,
who are required to login and prove their identities before being allowed to use
any service of the data center. Yet another reason is that the originator may not
be willing to have his or her identity being tied to a ciphertext explicitly which
is necessarily the case when a typical digital signature scheme is employed.

The above observations motivate us to design a more efficient PKE-BR scheme,
by converting Hofheinz and Kiltz’s public key encryption scheme [11] into a tag
based KEM. Hofheinz and Kiltz’s scheme, which is based on factoring in the
standard model, is very efficient and requires only about two exponentiations
for encryption and roughly one exponentiation for decryption. As was already
discussed by Hofheinz and Kiltz in [11], an interesting property of the scheme is
that the RSA modulus N can be shared among many users. This property al-
lows the application of our backward recovery technique in the resulting scheme.
Furthermore, we observe that a target collision resistant hash function suffices
to guarantee the integrity of a ciphertext and a message authentication code
can be applied to allow the sender to verify the origin of a ciphertext. Proving
the security of this efficient scheme, however, turns out to be more challenging.
The main difficulty of the security proof lies in the fact that the setting of the
simulated receiver’s public key is related to the adversary’s challenge tag and
relying on the factoring assumption only turns out to be inadequate. Hence the
security proof of our scheme cannot follow that of [11] directly. To overcome this
problem, we resort to the decisional Diffie-Hellman assumption in addition to
the factoring assumption, so that a simulated receiver’s public key can be proven
to be indistinguishable from a public key in a real scheme by any probabilistic
polynomial time adversary.

Related work. While backward recovery was already mentioned as “past mes-
sage recovery” in early work on signcryption [3] and such an interesting property
is still retained in some signcryption schemes, such as those in [3][14], not all
signcryption schemes have such a property, and more importantly, the concept
and formal definition of backward recovery are yet to be further studied.

A somewhat related notion is multi-receiver signcryption [8][17][16] which
can provide not only confidentiality and integrity but also authenticity and non-
repudiation for multiple receivers. In fact, a sender in our generic construction
plays the role of a receiver in a multi-receiver signcryption setting. Notice that
the roles of the two “receivers” (the sender and the receiver) in our setting
are not equal, which results in a critical difference between our second scheme
and traditional multi-receiver signcryptions. That is, the receiver has to check
the integrity of a ciphertext in its entirety, including both the sender’s part
and the receiver’s part, while the sender does not have to check the receiver’s
part. Although the receiver in our second scheme cannot verify the origin of
a ciphertext, the scheme is very much suitable for an application environment

Public Key Encryption for the Forgetful 189

where the sender’s identity can be verified easily by some out-of-band methods,
say, login authentication of a data center or subscriber authentication of a cell
phone network.

2 Preliminaries

Notations. ZN denotes the set of integers modulo N and |u| denotes the
absolute value of u, where u ∈ ZN is interpreted as a signed integer with
−(N − 1)/2 ≤ u ≤ (N − 1)/2. [N] denotes the set of integers 1, 2, ..., N . PPT
denotes probabilistic polynomial time. A real-valued function μ over integers is
said to be negligible if it approaches 0 at a rate faster than the inverse of a
polynomial over integers.

Target-collision resistant hash functions. A hash function H : {0, 1}l →
{0, 1}lH is (εHash, t)-target collision resistant if no probabilistic t-polynomial
time algorithm A can output a y such that H(y) = H(x) and y �= x for a given
x ∈ {0, 1}l with a probability at least εHash, when a security parameter (which is
typically played by lH) is sufficiently large. H is simply said to be target collision
resistant if εHash can be any inverse polynomial and t be any polynomial in the
security parameter.

Decisional Diffie-Hellman (DDH) assumption in groups with compos-
ite order. Let G be an Abelian group with composite order N = (P −1)(Q−1),
where P and Q are large primes such that |P | = |Q|. Here, |P | (or |Q|) de-
notes the binary length of P (or Q). g ∈ G is a generator of G. The decisional
Diffie-Hellman assumption states that, for any PPT algorithm A, there exists a
negligible function μ such that for all sufficiently large |Q|

|Pr[a, b
R←ZN :A(g, ga, gb, gab)=1]−Pr[a, b, c

R←ZN :A(g, ga, gb, gc)=1]| ≤ μ(|Q|)
where the probability is taken over the random choices of g, a, b, c and the
coin-tosses of A.

In this paper, we consider the DDH assumption in the quadratic residue group
QRN , where N = (2p +1)(2q + 1) is a Blum integer such that p, q, (2p + 1) and
(2q + 1) are all primes.

Blum-Blum-Shub (BBS) pseudorandom number generator[6]. Let

BBSN (u) = (LSBN (u), LSBN (u2), ..., LSBN (u2lk−1
)) ∈ {0, 1}lk

denote the BBS pseudorandom number generator, where LSBN (u) denotes the
least significant bit of u mod N . BBS is pseudorandom if factoring Blum integer
N is hard. (For details, please refer to Theorem 2 of [11].) The pseudorandomness
of BBS is defined by a pseudorandomness test described as follows.

PRNG experiment for BBS generator [11]. For an algorithm D, define the
advantage of D as

AdvBBS
D (k) =

1
2
|Pr[D(N, z, BBSN (u)) = 1]− Pr[D(N, z, U{0,1}lk) = 1]|,

190 P. Wei, Y. Zheng, and X. Wang

where N is a Blum integer, u ∈ QRN is uniformly chosen, z = u2lk , and
U{0,1}lk ∈ {0, 1}lk is independently and uniformly chosen.

The algorithm D is said to (t, ε)-break BBS if D’s running time is at most t
and AdvBBS

D (k) ≥ ε.

Weak unforgeability of digital signature. It is defined by the following game
between a challenger and an adversary.

1. The adversary sends the challenger a list of messagesM = {m1, ..., mn}.
2. The challenger generates a private/public key pair (skSig, pkSig) and signs

each mi using skSig for i = 1 to n. The corresponding signature list is
Sig = {(m1, σ1), ..., (mn, σn)}. Then pkSig and Sig are sent back to the
adversary.

3. The adversary outputs a pair (m∗, σ∗).

We say the adversary wins the game if (m∗, σ∗) �∈ Sig and σ∗ can be verified
to be a valid signature for m∗. A signature scheme is weakly unforgeable if the
probability that the adversary wins the game is negligible.

The above game captures the existential unforgeability with respect to weak
chosen-message attacks (or generic chosen message attacks [9]) against digital
signature, where the generation of the message list M does not depend on the
public key pkSig. We follow the definition of weak unforgeability in [12] except
that in [12], the adversary is said to win the game if m∗ �∈ {m1, ..., mn} and σ∗

can be verified to be a valid signature for m∗.

3 Security Requirements and Models

3.1 Security Requirements

To illustrate the security requirements of PKE-BR, we take the mail transfer as
an example and consider a communication model of three communicating par-
ties, including the message storage and transfer agent (MSTA), Alice (a sender)
and Bob (a receiver). Note that this communication model also includes the case
of a data center, where the data center plays both the role of the MSTA and
that of the receiver. The main procedure of a PKE-BR scheme can be divided
into the following phases.

1. Encryption. Alice encrypts a plaintext (or mail) m under Bob’s public key,
and passes the resultant ciphertext c over to her local MSTA.

2. Delivery. Upon receiving c, MSTA saves c in Alice’s “sent mail folder” and
delivers c to Bob. (Actually, c is delivered to Bob’s local MSTA. Bob receives
c from his local MSTA.)

3. Decryption. Upon receiving the ciphertext c, Bob can decrypt c using his
private key.

4. Recovery. When requested by Alice, her MSTA retrieves c and returns it
back to Alice. Alice can recover m from c using her own private key.

Public Key Encryption for the Forgetful 191

From the above procedure, one can see that when a weak public key encryption
scheme is applied, m may be potentially leaked and/or modified during any of
the following three phases: (1) transmission from Alice to Bob, (2) residing in
the storage device of a MSTA, and (3) transmission from the MSTA back to
Alice. This justifies the following three security requirements for PKE-BR:

– Confidentiality of the plaintext m. For the confidentiality, we adopt the no-
tion of indistinguishability under adaptive chosen ciphertext attack (IND-
CCA2) [15].

– Integrity of the ciphertext c. Bob the receiver can be assured that the ci-
phertext c is not modified during transmission from Alice to Bob.

– PKE-BR authenticity. Alice the sender can be assured that a ciphertext c′

received and a plaintext m′ recovered from c′ are both initially produced
by/originated from herself.

The first requirement is a standard security requirement for any encryption
scheme. The second one can be achieved by checking the integrity of the cipher-
text. (Note that the first requirement does not necessarily imply the second.) To
fulfill the third security requirement, a primitive which enables Alice to verify
the authenticity of a ciphertext, such as a public key signature or a message
authentication code, may be employed.

3.2 Key Encapsulation with Backward Recovery

It is known that a key encapsulation mechanism or KEM can be converted to
a hybrid encryption [1]. Similar techniques can be applied to construct a PKE-
BR scheme from a KEM-BR (KEM with backward recovery). Hence, our focus
will be on KEM-BR. In this section, we describe a public key KEM-BR, which
consists of a tuple of five algorithms.

1. Common Parameter Generation
– A probabilistic common parameter generation algorithm, Com. It takes

as input a security parameter 1k and returns the common parameter I.
2. Key Generation

– A probabilistic sender key generation algorithm KeyS. It takes as in-
put the common parameter I and outputs a private/public key pair
(skS , pkS) for the sender.

– A probabilistic receiver key generation algorithm KeyR. It takes as in-
put the common parameter I and outputs a private/public key pair
(skR, pkR) for the receiver.

3. Symmetric Key Generation and Encapsulation
– A probabilistic symmetric key generation and encapsulation algorithm,

KGE. It takes the common parameter I, the sender’s private/public key
pair (skS , pkS) and the receiver’s public key pkR as input and outputs
the symmetric key K, the state information s and the encapsulated value
CKGE . KGE consists of the following two algorithms.

192 P. Wei, Y. Zheng, and X. Wang

(a) A probabilistic symmetric key generation algorithm, Sym. It takes I
as input, and outputs a symmetric key K and some state information
denoted by s.

(b) A probabilistic key encapsulation algorithm, Encap. It takes the
state information s, the sender’s private/public key (skS , pkS) and
the receiver’s public key pkR as input, and returns an encapsulated
value CKGE. More precisely, Encap consists of two algorithms, a key
encapsulation algorithm KE and a key authentication algorithm KA
which function as follows:
• KE takes the state information s and the receiver’s public key

pkR as input and returns E1.
• KE takes the state information s and the sender’s public key

pkS as input and returns E2. Denote (E1, E2) by E.
• KA takes (E, skS , pkS) as input and returns σ = (σ1, σ2), where

σ1 provides integrity and σ2 provides authenticity, respectively.
Encap outputs CKGE = (E, σ) = (CR, CS), where CR = (E1, σ1) is
intended for the receiver and CS = (E2, σ2) for the sender.

4. Decapsulation
– A deterministic decapsulation algorithm, Decap. It takes the sender’s

public key pkS , the receiver’s private/public key pair (skR, pkR) and
CKGE as input, and returns either a symmetric key K or a unique error
symbol ⊥. Decap consists of two algorithms, an integrity check algorithm
IC and a key decapsulation algorithm KD whose functions are described
below:
• IC takes the sender’s public key pkS , the receiver’s private/public

key pair (skR, pkR) and CKGE as input, and outputs either “OK”
or ⊥.
• If IC does not return ⊥, KD takes as input the receiver’s pri-

vate/public key pair (skR, pkR) and CKGE , and outputs a symmetric
key K.

5. Backward Recovery
– A deterministic backward recovery algorithm Recov. It takes skS , pkS ,

pkR and CKGE as input and returns ⊥ or a symmetric key K. Recov
consists of two algorithms KAC and KD. The former is for checking
key authenticity and the latter for key decapsulation.
• KAC takes the sender’s private/public key pair (skS ,pkS), the re-

ceiver’s public key pkR and CKGE as input, and outputs either “OK”
or ⊥.
• If KAC does not return ⊥, KD takes as input the sender’s pri-

vate/public key pair (skS , pkS), the receiver’s public key pkR and
CKGE , and outputs a symmetric key K.

Remark. Note that the description of KEM-BR is based on the model for sign-
cryptions [5][7]. Compared with signcryptions [5][7], in our model authenticity
and integrity checks, however, are separated. That is, the receiver only has to
execute integrity check, while the sender has to execute authenticity check. A

Public Key Encryption for the Forgetful 193

further difference is that the generation of a symmetric key (ephemeral key) K
does not involve the receiver’s (or sender’s) private key in our model. Hence, the
adversary does not have to query the symmetric key generation “oracle” in the
following security models.

3.3 Security Models

IND-CCA2 security for KEM-BR in the two-user setting. The IND-
CCA2 game for KEM-BR is played by two parties, an adversary and a challenger.

1. The challenger generates a common parameter I ← Com(1k), a sender’s
private/public key pair (skS , pkS) ← KeyS(I) and a receiver’s key pair
(skR, pkR)← KeyR(I).

2. Given (I, pkS , pkR), the adversary A can make the following three kinds of
queries to the corresponding oracles.
– The encapsulation query qEncap. A forwards the public key pkR as the

encapsulation query qEncap to the encapsulation oracle OEncap. Upon
receiving qEncap,OEncap runs KGE(I, skS , pkS , pkR) and returns CKGE .

– The decapsulation query qDecap. A forwards (pkR, CKGE) as the decap-
sulation query qDecap to the decapsulation oracle ODecap. Upon receiving
qDecap, ODecap returns Decap(pkS , skR, pkR, CKGE).

– The recovery query qRecov. A forwards CKGE as the recovery query
qRecov to the recovery oracle ORecov. Upon receiving qRecov, ORecov re-
turns Recov(skS , pkS , pkR, CKGE).

3. The challenger computes (K0, s)
R← Sym(I) and the challenging encapsu-

lation C∗
KGE ← Encap (skS , pkS , pkR, s). The challenger then generates a

random symmetric key K1 in the range of Sym and a random bit b ∈ {0, 1}.
It sends (Kb, C

∗
KGE) back to A.

4. A can forward the same kinds of queries as previously, except C∗
KGE in the

decapsulation query qDecap and the recovery query qRecov.
5. A terminates by returning a guess b′ for the value of b.

We say that the adversary wins the above game if b′ = b. The advantage of
A is defined as

|Pr[A wins the game]− 1/2|.
KEM-BR is IND-CCA2 secure if, for any PPT adversary A, the advantage of A
is negligible with respect to the security parameter 1k.

BR unforgeability in the two-user setting. For the authenticity and the
integrity of KEM-BR, we require that it should be infeasible for an adversary to
forge a valid CKGE . Note that the receiver’s key pair is fixed before the adversary
issues any query in the two-user setting. The attack game of unforgeability goes
as follows.

194 P. Wei, Y. Zheng, and X. Wang

1. The challenger first generates I
R← Com(1k), (skS , pkS) R← KeyS(I) and

(skR, pkR) R← KeyR(I). It then passes (I,pkS ,skR,pkR) over to the adversary.
2. The adversary A is given access to OEncap and ORecov as defined in the

IND-CCA2 game. A terminates by outputting CKGE .

We say that the adversary wins the above game if the following conditions
hold.

– CKGE is not returned by OEncap with pkR as qEncap.
– ⊥� KAC(skS , pkS , pkR, CKGE) or ⊥� IC(pkS , skR, pkR, CKGE).

Security model in the multi-user setting. The corresponding security model
in the multi-user setting for KEM-BR is similar to that in the two-user setting,
except that the adversary can issue any public key pk as qEncap and pk may be
generated by the adversary at his will.

4 A Generic Construction

In this section, we show how to construct a secure KEM-BR in the two-user
setting from an IND-CPA KEM and a weakly unforgeable signature. The generic
construction, which is based on the “encrypt then sign” techniques [2], goes as
follows.

1. Using a randomness reusing (RR) technique, an IND-CPA KEM can be
converted to an IND-CPA two-receiver KEM1. The two “receivers” are the re-
ceiver R and the sender S. (Notice that, not all the IND-CPA KEM can be
converted to an IND-CPA two-receiver KEM using RR [4].) Let KEM2 =
(Com2, Key2, KGE2, KD2) denote the resulting two-receiver KEM and C =
(CR, CS) denote the output of KGE2(pkS ,pkR).

2. Apply a weakly unforgeable signature Sig to C and output (C, Sig(skSig,
C)), where skSig denotes the sender’s signing key. We note that Sig plays the
role of KA in the KEM-BR model.

3. For decapsulation and backward recovery, Sig(skSig, C) should be verified
first using the sender’s public key for the signature. If the signature is valid,
decapsulating C is carried out as in the two-receiver KEM. That is, the re-
ceiver runs KD2(skR, C) for decapsulation and the sender runs KD2(skS , C)
for backward recovery. As for the security of the resulting KEM-BR, we have
the following Theorems 1 and 2.

Theorem 1. KEM-BR is IND-CCA2 secure in the two-user setting if the un-
derlying two-receiver KEM is IND-CPA and the signature is weakly unforgeable.

Proof. If there exists a PPT algorithm A that breaks the IND-CCA2 security
of KEM-BR in the two-user setting, we show that one can use A to construct a

1 See Appendix A for the two-receiver KEM.

Public Key Encryption for the Forgetful 195

PPT algorithm B to break the IND-CPA security of the underlying two-receiver
KEM or the weak unforgeability of the signature.

Given the sender’s public key pkS and the receiver’s public key pkR, B
generates a set of ciphertexts List = {C1, C2, ..., Cn} using KGE2(pkS , pkR)
and stores the corresponding key list K = {K1, ..., Kn}, where n is the max-
imum number of encapsulation queries issued by A. When receiving the chal-
lenge (K∗

b , C∗) of the IND-CPA game, B sends List together with the chal-
lenge ciphertext C∗ to the challenger of the underlying signature ChallengerSig.
ChallengerSig runs the key generation algorithm of the underlying signature
scheme to get the public/secret key pair (pkSig, skSig), and returns the corre-
sponding signature list ListSig ={σ1, ..., σn} and σ∗ for the messages in List and
C∗. Upon receiving ListSig and σ∗, B sets the ciphertext list C = {(C1, σ1),...,(Cn,
σn)} and the queried list Q = {∅}, and defines the challenge of the IND-CCA
game as (K∗

b ; (C∗, σ∗)). Then B defines the sender’s public key of KEM-BR as
(pkS , pkSig) and the receiver’s public key as pkR, and simulates the environment
of an IND-CCA2 game of KEM-BR for A as follows.

In the first phase of the game, A can make the following three kinds of queries.

– The encapsulation query qEncap. When A forwards qEncap, B randomly
chooses a ciphertext (Ci, σi) ∈ C/Q, adds (Ci, σi) to Q, and sends (Ci, σi)
to A.

– The decapsulation query qDecap. On receiving qDecap = (C, σ), B checks the
validity of σ. There are two cases that we have to take into account.
• If σ is not valid, B returns ⊥.
• If σ is valid, B checks whether (C, σ) ∈ C. If (C, σ) ∈ C, B returns the

corresponding key in K. If (C, σ) �∈ C and (C, σ) �= (C∗, σ∗), B outputs
(C, σ) as a valid forgery for the underlying signature and terminates.
Otherwise, (C, σ) = (C∗, σ∗) and B terminates by outputting “failure”.

– The recovery query qRecov. B acts in the same way as what he does in the
decapsulation query.

B sends the challenge (K∗
b ; (C∗, σ∗)) to A. In the second phase, A can forward

the same kinds of queries as previously, except (C, σ) = (C∗, σ∗) in the key
decapsulation query and in the recovery query. Finally, A outputs a bit b′, which
is also the output of B.

If B does not terminates during the decapsulation query or the recovery query,
B perfectly simulates the KEM-BR scheme in the two-user setting for A. Ac-
cording to the assumption that A outputs the right b′ with a non-negligible
advantage, B outputs the right b′ in the above IND-CPA game for the under-
lying two-receiver KEM with a non-negligible advantage. If B terminates and
outputs (C, σ), σ is a valid forgery for the underlying signature. Note that the
probability that C∗ appears in the queries of the first phase is negligible, since
C∗ is independent of List and ListSig.
�

Theorem 2. KEM-BR is existentially unforgeable in the two-user setting if the
underlying signature scheme is weakly unforgeable.

196 P. Wei, Y. Zheng, and X. Wang

Proof. If there exists a PPT adversary A that can break the unforgeability of
KEM-BR, we can use A as an oracle to construct a PPT adversary B that breaks
the weak unforgeability of the underlying signature.

1. B generates the valid common parameter I and the public/secret encryption
keys (pkS , skS , pkR, skR) for both the sender and the receiver of the un-
derlying KEM. Using the underlying KEM, B computes a list of ciphertexts
List ={C1, ..., Cn}, where n denotes the maximum number of the encapsu-
lation queries made by A. Send List to the challenger as the messages that
will be signed.

2. The challenger runs the key generation algorithm of the underlying signa-
ture scheme to get private/public key pair (skSig, pkSig), and returns the
corresponding signatures list ListSig = {σ1, ..., σn} for the messages in List.

3. Upon receiving ListSig and pkSig, B defines the sender’s public key of KEM-
BR as (pkS , pkSig) and the receiver’s public key as pkR, computes the cipher-
text list C = {(C1, σ1),..., (Cn, σn)} and sets the queried list Q = {∅}. Then
B can answer the encapsulation queries from A as in the proof of Theorem 1.
Finally, A outputs a valid forgery (C∗, σ∗) with a non-negligible probability.
As a result, B can output σ∗ as the forgery for the underlying signature.
Note that the success probability of B is the same as that of A.

This completes the proof for Theorem 2.
�

PKE-BR in the multi-user setting. An intuitive method of constructing
PKE-BR scheme in the multi-user setting from KEM-BR is as follows.

1. Convert the KEM-BR scheme to a Tag-KEM using methods of [1]. More
precisely, the signature of KEM-BR is computed as Sig(skSig, C, τ), where τ
is a tag. To prove the CCA2 security of the resulting Tag-KEM, the signature
Sig is required to be existentially unforgeable against chosen message attack
instead of weakly unforgeable.

2. Replace the tag with an IND-CCA2 secure DEM secure against passive at-
tacks. The resulting scheme is a CCA2 Tag-KEM/DEM in the two-user
setting.

3. Apply a generic transformation outlined in [2] to convert the scheme for
the two-user setting to one for the multi-user setting. That is, the sender’s
public key is included in DEM as part of a plaintext and the receiver’s
public key is included in the signature, e.g., Sig(skSig, C, τ, pkR) where
τ = DEM(K, m, pkS). Notice that the underlying encryption DEM should
be IND-CCA2 secure in order to prevent the adversary from modifying
DEM(K, m, pkS) for a new related ciphertext [2], say, DEM(K, m, pk′).

We emphasize that since the above transformation is an intuitive one, rigorous
security proofs of the resulting scheme need to be further investigated when con-
crete KEM/DEM and signature schemes are used to instantiate the construction.

Public Key Encryption for the Forgetful 197

5 An Efficient Construction—Tag Based KEM-BR

To construct a more efficient KEM-BR, we slightly relax the previous security
requirements for KEM-BR: the sender only has to check the integrity and authen-
ticity of the sender’s part of a ciphertext. In other words, during the backward
recovery phase, the sender runs KAC on input (skS , pkS , pkR, CRecov), where
CRecov = CS denotes the sender’s part of CKGE . With the modified security
requirement, we can provide a concrete tag based KEM-BR (TBR) which is
provably secure in the multi-user setting. The corresponding security model of
TBR in the multi-user setting is similar to that of KEM-BR, except that the
adversary is able to forward any public key as qEncap, and the tag τ is included in
the computation of KGE. In addition, the adversary can choose any tag during
the challenge phase. More details of the security model follow.

5.1 Security Model of TBR in the Multi-user Setting

IND-CCA2. The IND-CCA2 game for TBR is played by two parties, the ad-
versary and the challenger.

1. The challenger generates a common parameter I ← Com(1k), a sender’s
private/public key pair (skS , pkS) ← KeyS(I) and a receiver’s key pair
(skR, pkR)← KeyR(I).

2. The adversary A is given (I, pkS , pkR) and can make the following three
kinds of queries.
– The encapsulation query qEncap. A forwards (pk, τ) as the encapsula-

tion query qEncap to the oracle OEncap, where the public key pk can be
generated by the adversary and τ is the tag. Upon receiving qEncap, the
oracle OEncap runs KGE(I, skS , pkS , pk, τ) and returns CKGE .

– The decapsulation query qDecap. A forwards (pk, CKGE, τ) as the decap-
sulation query qDecap to the decapsulation oracle ODecap. Upon receiving
qDecap, ODecap returns Decap(pk, skR, pkR, CKGE , τ).

– The recovery query qRecov. A forwards (CRecov ,τ) as the decapsulation
query qRecov to the recovery oracle ORecov, where CRecov is part of
CKGE . Upon receiving qRecov,ORecov returns Recov(skS , pkS , CRecov, τ).

3. A forwards τ∗ to the challenger.
4. The challenger computes (K0, s)

R← Sym(I), generates a random symmetric
key K1 in the range of Sym and a random bit b ∈ {0, 1}. Then, the challenger
computes the encapsulation C∗

KGE ← Encap (skS , pkS , pkR, s, τ∗) and sends
(Kb, C

∗
KGE) back to A.

A can make the same kinds of queries as previously, except that it cannot
make (pkR, C∗

KGE , τ∗) as a decapsulation query qDecap or (C∗
Recov, τ∗) as a

recovery query qRecov, where C∗
Recov is part of C∗

KGE .
5. A terminates by returning a guess b′ for the value of b.

We say the adversary wins the above game if b′ = b.

Unforgeability. For the TBR scheme, we only require that it should be in-
feasible for an adversary to forge a valid CRecov. The adversary can choose the

198 P. Wei, Y. Zheng, and X. Wang

receiver to which the adversary wishes to forge. The attack game of unforgeabil-
ity runs as follows.

1. The challenger generates the common parameter I
R← Com(1k) and a sender

key pair (skS , pkS) R← KeyS(I). Send I and pkS to the adversary.
2. The adversary A can forward encapsulation queries and recovery queries as

defined in the IND-CCA2 game. A terminates by outputting a fixed receiver
key pair (pkR, skR) and CRecov.

We say the adversary wins the above game if CRecov is not returned as part
of CKGE by OEncap with pkR as qEncap, and ⊥� KAC(skS , pkS , pkR, CRecov).

5.2 Tag Based KEM-BR Scheme (TBR)

Our TBR is based on the Hofheinz-Kiltz KEM [11] and a message authentication
code (MAC). In our construction, the validity of MAC can be checked by the
sender only. Furthermore, we take advantage of a target collision resistant hash
function to guarantee that the receiver can check the integrity of the whole
ciphertext. The TBR scheme is described below.

Common Parameter Generation. A security parameter 1k, a target collision
resistant hash function H with lH -bit output, and a BBS pseudorandom number
generator BBSN with lK-bit output. A MAC that is existentially unforgeable
against chosen message attack. N = (2p+1)(2q +1) is a Blum integer such that
p and q are two primes and |p| = |q| = k. g is the generator of QRN . Note that
the factorization of N is kept secret.

Key Generation. The sender’s private/public key pair is (skS , pkS) where
skS=(xS , skMAC), pkS = yS such that xS

R← [(N − 1)/4], yS = gxS·2lK+lH and
skMAC is the key of MAC. The receiver’s private/public key pair is (skR, pkR),
where skR = xR, pkR = yR such that xR

R← [(N − 1)/4], yR = gxR·2lK+lH .
Symmetric Key Generation and Encapsulation by sender. KGE(I,

skS , pkS , pkR, τ)

1. Choose at random r ∈ [(N − 1)/4] and compute U = gr·2lK+lH mod N and
K = BBSN (gr·2lH).

2. Compute V1 = |(gv1yR)r| mod N , V2 = |(gv2yS)r| mod N and τMAC =
MAC(skMAC , U, V2, τ), where v1 = H(U, V2, τ, τMAC), v2 = H(U, τ).

Output C = (U, V1, V2, τMAC).
Decapsulation by receiver. Decap(skR, C, τ)
Given C = (U, V1, V2, τMAC) and τ ,

1. Check (V 2
1)2

lK+lH ?=(U2)v1+xR2lK+lH mod N , where v1 =H(U, V2, τ, τMAC).
If the equation holds, it outputs “OK”; otherwise, it outputs ⊥ and
terminates.

Public Key Encryption for the Forgetful 199

2. Compute a, b, c ∈ Z such that 2c = gcd(v1, 2lK+lH) = av1 + b2lK+lH . Then
compute a symmetric key K = BBSN (((V 2

1)a · (U2)b−axR)2
lH−c−1

) which is
the output.

Backward Recovery by sender. Recov(skS , CRecov, τ)
Given CRecov = (U, V2, τMAC) and τ ,

1. Check MAC(skMAC , U, V2, τ) ?= τMAC . If the equation holds, Recov returns
“OK”; otherwise, it returns ⊥ and terminates.

2. Compute a, b and c such that 2c = gcd(v2, 2lK+lH) = av2 + b2lK+lH . Then
compute K = BBS(((V 2

2)a · (U2)b−axS)2
lH−c−1

) which is the output.

Correctness. Since the correctness of the computation of K in Decap and Recov

can be verified in a similar way as in [11], we only show that both (V 2
1)2

lK+lH =
(U2)v1+xR2lK+lH mod N and K = BBSN (((V 2

1)a · (U2)b−axR)2
lH−c−1

) hold for
a valid ciphertext C.

Given a valid ciphertext C = (U, V1, V2, τMAC), we have

(V 2
1)2

lK+lH = ((gv1yR)r)2·2
lK+lH

= (gv1+xR2lK+lH)r·2·2lK+lH

= (gr·2lH+lK)2·(v1+xR·2lK+lH)

= (U2)v1+xR·2lK+lH

where v1 = H(U, V2, τ, τMAC), and

(V 2
1)a · (U2)b−axR = (gv1+xR·2lK+lH)2ra · (g2lK+lH)2rb−2raxR

= g(v1+xR·2lK+lH)2ra−xR2lK+lH 2ra+2lK+lH 2rb

= g2r(av1+b2lK+lH)

= g2c+1r,

Hence BBS(((V 2
2)a ·(U2)b−axS)2

lH−c−1
) = BBS((g2c+1r)2

lH−c−1
)=BBS(gr·2lH)

= K.

5.3 IND-CCA2 Security of TBR

Theorem 3. TBR is IND-CCA2 secure if BBS is pseudorandom, MAC is exis-
tentially unforgeable against chosen message attack and DDH assumption holds
in QRN .

Proof. If there exists a PPT adversary A to break the IND-CCA2 security of
TBR, we may construct a PPT adversary D to break the security of BBS as in
[11]. However, the proof technique in [11] cannot be applied to the construction
of D directly, since the setting of the simulated receiver’s public key is related
to the adversary A’s challenge tag τ∗. That is, D cannot compute the simulated
public key without τ∗, while A forwards τ∗ only after receiving the simulated

200 P. Wei, Y. Zheng, and X. Wang

public key. To solve the above problem, we introduce a new game, called Game
2, which is similar to the standard IND-CCA2 game, except that the challenger
randomly chooses τ∗∗ and compute the challenge ciphertext using τ∗∗ instead
of τ∗. Then, we show that the adversary’s view in Game 1 and Game 2 are
indistinguishable. Therefore, to prove the security of TBR in the standard IND-
CCA2 game (Game 1), we only have to prove its security in Game 2.

Game 1. This is the same as the standard IND-CCA2 game for TBR. The
challenger picks at random r∗ ∈ [(N − 1)/4] and computes a challenge ci-
phertext (Kb; C∗) = (Kb; U∗, V ∗

1 , V ∗
2 , τ∗

MAC), where U∗ = gr∗·2lK+lH , V ∗
1 =

|(gv∗
1 · yR)r∗ |, V ∗

2 = |(gv∗
2 · yS)r∗ |, v∗1 = H(U∗, V ∗

2 , τ∗, τ∗
MAC), v∗2 = H(U∗, τ∗),

τ∗
MAC = MAC(skMAC , U∗, V ∗

2 , τ∗) and τ∗ is a challenge tag chosen by the
adversary.

Game 2. Game 2 is similar to Game 1, except that here the challenger picks at
ransom τ∗∗ and τ∗∗

MAC , and computes V ∗∗
1 = |(gv∗∗

1 ·yR)r∗ |, V ∗∗
2 = |(gv∗∗

2 ·yS)r∗ |,
where v∗∗1 = H(U∗, V ∗∗

2 , τ∗∗, τ∗∗
MAC), v∗∗2 = H(U∗, τ∗∗). The challenge cipher-

text is (Kb; C∗) = (Kb; U∗, V ∗∗
1 , V ∗∗

2 , τ∗
MAC), where τ∗

MAC = MAC(skMAC , U∗,
V ∗∗

2 , τ∗) and τ∗ is chosen by the adversary as in Game 1.

Note that the only difference between Game 1 and Game 2 is the challenge
ciphertexts. Hence, in order to prove the indistinguishability between Game
1 and Game 2, we only have to prove that (V ∗

1 ,V ∗
2 , τ∗

MAC) in Game 1 and
(V ∗∗

1 ,V ∗∗
2 ,τ∗

MAC) in Game 2 are indistinguishable. To that end, we need the
following claim.

Claim. Let g1 and g2 be the generators of QRN and fp,q(·, ·, ·, ·) be a PPT
computable function whose output is an element in QRN . (p, q) is the auxiliary
input of f . Assume DDH assumption holds in QRN , it is infeasible for any PPT
adversary A′ to distinguish between tuple T0 and tuple T1

T0 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1 , τ0)}

T1 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1 , τ1)}

where r is a random element in [(N − 1)/4], τ1 is chosen uniformly at random,
and τ0 is generated by the adversary.

Proof. In Claim 5.3, we implicitly define the following game between the chal-
lenger and the adversary A′. Given (N, g1, g2, g

r
1), the adversary A′ computes τ0

and sends τ0 to the challenger. Then the challenger returns Tb, where b
R← {0, 1}.

A′ aims to tell whether b = 0 or 1. More details are described in the following.
We construct a series of tuples to show the indistinguishability between T0

and T1.

1. Tuple 1 = {g1, g2, g
r
1, g

r
2}, where r is a random element in [|QRN |].

2. Tuple 2 = {g1, g2, g
r
1, Q}, where Q is a random element in QRN .

Let εDDH be the advantage with which A′ can solve the DDH problem.
Tuple 1 and Tuple 2 can be distinguished with advantage at most εDDH , if
DDH assumption holds. That is,

Public Key Encryption for the Forgetful 201

|Pr[A′(Tuple 1) = 1]− Pr[A′(Tuple 2) = 1]| ≤ εDDH . (1)

where εDDH is negligible.
3. Tuple 3 = {g1, g2, g

r
1, Q · fp,q(g1, g2, g

r
1 , τ0)}, where τ0 is generated by the

adversary A′ on input (N, g1, g2, g
r
1).

4. Tuple 4 = {g1, g2, g
r
1, Q · fp,q(g1, g2, g

r
1, τ1)}, where τ1 is chosen randomly in

QRN .
The distribution of Tuple 2, Tuple 3 and Tuple 4 are identical, since Q is a
random element in QRN . We have

Pr[A′(Tuple 2) = 1] = Pr[A′(Tuple 3) = 1] = Pr[A′(Tuple 4) = 1]

5. Tuple 5 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ0)}

6. Tuple 6 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ1)}

Since |Pr[A′(Tuple 1) = 1]− Pr[A′(Tuple 2) = 1]| ≤ εDDH , we have

|Pr[A′(Tuple 3) = 1]− Pr[A′(Tuple 5) = 1]| ≤ εDDH . (2)

Similarly, |Pr[A′(Tuple 4) = 1]− Pr[A′(Tuple 6) = 1]| ≤ εDDH .
Therefore, we have

|Pr[A′(Tuple 5) = 1−A′(Tuple 6) = 1]| (3)
≤ |Pr[A′(Tuple 5) = 1]− Pr[A′(Tuple 3) = 1]|+
|Pr[A′(Tuple 6) = 1]− Pr[A′(Tuple 3) = 1]|

≤ |Pr[A′(Tuple 5) = 1]− Pr[A′(Tuple 3) = 1]|+
|Pr[A′(Tuple 6) = 1]− Pr[A′(Tuple 4) = 1]|

≤ 2εDDH

Next, we consider the indistinguishability between T0 and Tuple 5. Condi-
tioned on that r ∈ [|QRN |], T0 and Tuple 5 are identically distributed. That
is,

Pr[A′(T0) = 1|r ∈ [|QRN |]] = Pr[A′(Tuple 5) = 1|r ∈ [|QRN |]] (4)

Hence,

|Pr[A′(T0) = 1]− Pr[A′(Tuple 5) = 1]| ≤ Pr[r �∈ [|QRN |]] (5)

where Pr[r �∈ [|QRN |]] denotes that r ∈ [(N − 1)/4] but r > |QRN |.
Since |QRN | = pq = (2p+1)(2q+1)/4−(2p+2q+1)/4 = (N−1)/4−(p+q)/2,
we have Pr[r �∈ [|QRN |]] = ((p + q)/2)/((N − 1)/4) ≤ 2−k+1. Likewise, we
have

|Pr[A′(T1) = 1]− Pr[A′(Tuple 6) = 1]| ≤ 2−k+1 (6)

Using 5, 6 and 3, we get |Pr[A′(T1) = 1]−Pr[A′(T0) = 1]| ≤ 2−k+2+2εDDH .

The proof of Claim 5.3 is complete.
�

202 P. Wei, Y. Zheng, and X. Wang

The following Claim 5.3 can be proven in a way analogous to the proof for
Claim 5.3.

Claim. Let g1, g2 and g3 be the generators of QRN and f ′
p,q(·, ·, ·, ·, ·, ·) be a PPT

computable function whose output is an element in QRN . (p, q) is the auxiliary
input of f ′. Assume DDH assumption holds in QRN , it is infeasible for any PPT
adversary A′ to distinguish between tuple T ′

0 and tuple T ′
1

T ′
0 = {g1, g2, g3, g

r
1, g

r
3 · f ′

p,q(g1, g2, g3, g
r
1, g

r
2, τ0)}

T ′
1 = {g1, g2, g3, g

r
1, g

r
3 · f ′

p,q(g1, g2, g3, g
r
1, g

r
2, τ1)}

where r is a random element in [(N − 1)/4], τ1 is chosen randomly, and τ0 is
generated by the adversary.

To prove this claim, we notice that if there exists a PPT algorithm A′ which can
distinguish T ′

0 and T ′
1, we can then construct from A′ a new PPT algorithm A

to distinguish T0 and T1, which contradicts Claim 5.3. Details of the proof are
similar to that for Claim 5.3 and hence are omitted.

Claim. Let g1, g2 and g3 be the generators of QRN and fp,q(·, ·, ·, ·) and
f ′

p,q(·, ·, ·, ·, ·, ·) be two PPT computable functions whose output is an element in
QRN . (p, q) is the auxiliary input of f and f ′. If

– T0 and T1 can be distinguished with advantage at most 2−k+2 + 2εDDH .
– T ′

0 and T ′
1 can be distinguished with advantage at most 2−k+2 + 2εDDH

then T ′′
0 and T ′′

1 can be distinguished with advantage at most 2−k+2 + 2εDDH ,
where

T0 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ0)},

T1 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ1)},

T ′
0 = {g1, g2, g3, g

r
1, g

r
3 · f ′

p,q(g1, g2, g3, g
r
1, g

r
2 , τ0)},

T ′
1 = {g1, g2, g3, g

r
1, g

r
3 · f ′

p,q(g1, g2, g3, g
r
1, g

r
2 , τ1)},

T ′′
0 = {g1, g2, g3, g

r
1, g

r
2 · fp,q(g1, g2, g

r
1 , τ0), gr

3 · f ′
p,q(g1, g2, g3, g

r
1 , g

r
2, τ0)},

T ′′
1 = {g1, g2, g3, g

r
1, g

r
2 · fp,q(g1, g2, g

r
1 , τ1), gr

3 · f ′
p,q(g1, g2, g3, g

r
1 , g

r
2, τ1)},

r is a random element in [(N − 1)/4], τ0 is generated by the adversary A and τ1

is chosen randomly.

To prove Claim 5.3, we note that if Claim 5.3 does not hold, we can easily
construct an efficient algorithm to distinguish T0 and T1 (or T ′

0 and T ′
1), which

contradicts Claim 5.3 (or Claim 5.3).
Claim 5.3 implies the indistinguishability between (V ∗

1 , V ∗
2) and (V ∗∗

1 , V ∗∗
2),

which also implies the indistinguishability between (V ∗
1 , V ∗

2 , τ∗
MAC) and (V ∗∗

1 ,
V ∗∗

2 , τ∗
MAC). (Otherwise, MAC will serve as an efficient distinguishing algo-

rithm.) That is, we can set g1 = g2lK+lH , g2 = yS , g3 = yR, gr
1 = U∗,

τ0 = (τ∗, τ∗
MAC), τ1 = (τ∗∗, τ∗∗

MAC) and

Public Key Encryption for the Forgetful 203

|gr
2 · fp,q(g1, g2, g

r
1, τ0)| = |yr∗

S · (gH(U∗,τ∗))r∗ | = |(gv∗
2 · yS)r∗ | = V ∗

2 ,

|gr
2 · fp,q(g1, g2, g

r
1, τ1)| = |yr∗

S · (gH(U∗,τ∗∗))r∗ | = |(gv∗∗
2 · yS)r∗ | = V ∗∗

2 ,

|gr
3 · f ′

p,q(g1, g2, g3, g
r
1 , g

r
2, τ0)| = |yr∗

R · (gH(U∗,V ∗
2 ,τ∗,τ∗

MAC))r∗ |
= |(gv∗

1 · yR)r∗ | = V ∗
1 ,

|gr
3 · f ′

p,q(g1, g2, g3, g
r
1 , g

r
2, τ1)| = |yr∗

R · (gH(U∗,V ∗∗
2 ,τ∗∗,τ∗∗

MAC))r∗ |
= |(gv∗∗

1 · yR)r∗ | = V ∗∗
1 .

Due to Claim 5.3, we have that the challenge ciphertexts of Game 1 and Game
2 can be distinguished with advantage at most 2−k+2 + 2εDDH . Hence, we have

Claim. |Pr[Game 1] − Pr[Game 2]| ≤ 2−k+2 + 2εDDH , where Pr[Game i] de-
notes the probability that the adversary wins Game i, for i = 1 and 2.

Next, we prove the IND-CCA2 security of TBR in Game 2. If there exists an
adversary A which can break the IND-CCA2 security of TBR in Game 2, we
can construct a BBS distinguisher D to break the BBS generator security. Given
(N, z, W), the aim of D is to distinguish whether W is a pseudorandom string
generated by BBSN (z2−lK) or a random string in {0, 1}lK . Actually, D can set
the receiver’s public key and the challenge ciphertext by selecting τ∗∗ and τ∗∗

MAC

randomly. More precisely, D can set U∗ = z, K = W , V ∗∗
1 = |U∗β1 |, V ∗∗

2 =
|U∗β2 |, v∗∗1 = H(U∗, V ∗∗

2 , τ∗∗, τ∗∗
MAC), v∗∗2 = H(U∗, τ∗∗), yR = gβ1·2lK+lH −v∗∗

1 ,
yS = gβ2·2lK+lH −v∗∗

2 , where β1
R← [(N − 1)/4], β2

R← [(N − 1)/4], τ∗∗ and
τ∗∗
MAC are chosen randomly by D. After receiving τ∗ from the adversary, D can

compute τ∗
MAC = MAC(skMAC , U∗, V ∗∗

2 , τ∗), where skMAC is generated by D.
Hence, the challenge ciphertext is (U∗, V ∗∗

1 , V ∗∗
2 , τ∗, τ∗

MAC). The remaining proof
is similar to that of Theorem 3 of [11], except that, for the recovery query qRecov,
we have to consider the probability that the adversary can forge a valid MAC.
According to Theorem 3 of [11] 2, we have

Claim. |Pr[Game 2]−1/2| ≤ 2−k+3+εHash+εBBS+εMAC , where εHash denotes
the probability that the target collision happens, εBBS denotes the advantage
that the BBS output can be distinguished from the random string, and εMAC

denotes the probability that the adversary can output a forgery for MAC.

Due to Claims 5.3 and 5.3, we get

|Pr[Game 1]− 1/2| ≤ 3 · 2−k+2 + 2εDDH + εHash + εBBS + εMAC

which completes the proof of Theorem 3.
�

2 Theorem 3 of [11] states that εKEM ≤ 2−k+3 + εHash + εBBS , where εKEM de-
notes the advantage that the adversary breaks the security of KEM. Notice that the
definition of the advantage is |Pr[A wins the game] − 1/2|.

204 P. Wei, Y. Zheng, and X. Wang

5.4 Unforgeability

Theorem 4. TBR is existentially unforgeable if the underlying MAC is exis-
tentially unforgeable against chosen message attack.

The theorem can be proved by contradiction, namely if there exists an efficient
algorithm A that breaks the unforgeability of TBR, we can then construct an
efficient algorithm B to break the security of the underlying MAC. Descriptions
of the proof are straightforward and hence are omitted.

5.5 Implementation

For implementation, H and HMAC can be instantiated with SHA-256 and
HMAC-SHA-256, respectively, and AES can be applied for data encryption,
where the symmetric key K is of length 128. The computational cost of the de-
capsulation (or the backward recovery) of TBR is similar to that of the decapsu-
lation of the original Hofheinz-Kiltz encryption scheme [11]. For encapsulation,
our scheme requires about one more full exponentiation than that of [11], due
to the computation of V2. However, more than 60% computation of the encap-
sulation can be processed offline. That is, P1 = gr, P2 = yr

S and U = P 2lH+lK

1

can be precomputed. On input the receiver’s public key yR and the plaintext,
compute V2 = |P v2

1 P2| and V1 = |P v1
1 yr

R|, where v1 and v2 are very small expo-
nents. More precisely, assume that one regular exponentiation with an exponent
of length l requires 1.5l modular multiplications and lN , which is the binary
length of N , is 2048. The offline computation of encapsulation requires about
3lN + lH + lK = 6528 multiplications; the online computation requires about
1.5lN + 3lH = 3840 multiplications.

Acknowledgement. We would like to thank Lynn Batten for her invaluable
comments, and David Nacacche for initiating this special volume on the occa-
sion of retirement of Jean-Jacques Quisquater, one of the few most outstanding
pioneers in the field of cryptologic research and its practical applications.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and A new analysis of kurosawa-desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

2. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

3. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
Journal of Cryptology 20(2), 203–235 (2007)

4. Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Se-
curity notions and randomness re-use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS,
vol. 2567, pp. 85–99. Springer, Heidelberg (2002)

Public Key Encryption for the Forgetful 205

5. Bjørstad, T.E., Dent, A.W.: Building better signcryption schemes with tag-kEMs.
In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 491–507. Springer, Heidelberg (2006)

6. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudorandom number
generator. SIAM Journal on Computing 15(2), 364–383 (1986)

7. Dent, A.W.: Hybrid signcryption schemes with insider security. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 253–266. Springer,
Heidelberg (2005)

8. Duan, S., Cao, Z.: Efficient and provably secure multi-receiver identity-based sign-
cryption. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 195–206. Springer, Heidelberg (2006)

9. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptively chosen message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

10. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990)

11. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

12. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

13. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer,
Heidelberg (2002)

14. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap
Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

15. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

16. Selvi, S.S.D., Vivek, S.S., Rangan, C.P.: A note on the certificateless multi-receiver
signcryption scheme, http://eprint.iacr.org/2009/308.pdf

17. Selvi, S.S.D., Vivek, S.S., Shukla, D., Rangan C. P.: Efficient and provably secure
certificateless multi-receiver signcryption. In: Baek, J., Bao, F., Chen, K., Lai, X.
(eds.) ProvSec 2008. LNCS, vol. 5324, pp. 52–67. Springer, Heidelberg (2008)

http://eprint.iacr.org/2009/308.pdf

206 P. Wei, Y. Zheng, and X. Wang

A Two-Receiver KEM

Two-receiver KEM. We briefly describe the two-receiver KEM scheme, which
is a special case of the multi-receiver encryption [13]. A two-receiver KEM con-
sists of four PPT algorithms, which are the common parameter generation algo-
rithm Com2, the key generation algorithm Key2, the symmetric key generation
and encapsulation algorithm KGE2 and the key decapsulation algorithm KD2.
Com2 on inputs security parameter 1k outputs the common parameter I. Key2

on inputs the common parameter I outputs private/public key pair (sk, pk). Sup-
pose the two receivers are UserS and UserR, who have private/public key pair
(skS , pkS) and (skR, pkR), respectively. KGE2 on inputs two receivers’ public
key (pkS , pkR) outputs ciphertext C = (CS , CR), where CS is for receiver UserS

and CR is for receiver UserR. KD2 on inputs (ski, C) outputs the ephemeral
key K or the error symbol ⊥, where i = S or R. More precisely, receiver Useri

uses a function TAKEi that on input C outputs Ci and computes K using ski

and Ci.

IND-CCA2 security of two-receiver KEM. The IND-CCA2 game of a two-
receiver KEM is played by two parties, the challenger and the adversary. The
game is described as follows.

1. The challenger generates I ← Com2(1k). It runs Key2(I) and outputs two
private/public key pair (skS , pkS) and (skR, pkR). Send (pkS , pkR) to the
adversary.

2. The adversary is given access to the decapsulation oracles OskS and OskR ,
where Oski on inputs C returns KD2(ski, C), for i = S or R.

3. The challenger computes (K∗
0 , C∗) ← KGE2(pkS , pkR), (where C∗ = (C∗

S ,
C∗

R),) generates a random symmetric key K∗
1 and sends (K∗

b , C∗) to the

adversary, where b
R← {0, 1}.

4. The adversary can make the decapsulation queries C as in Step 2, except
that C∗

i �= TAKEi(C) for i = S and R. Finally, the adversary terminates
by returning a bit b′.

The adversary wins the game if b = b′. A two-receiver KEM is IND-CCA2 secure
if, for any PPT adversary, |Pr[b = b′] − 1/2| is negligible with respect to the
security parameter 1k.

The IND-CPA security of two-receiver KEM is defined similarly except that
the adversary cannot have access to the decapsulation oracles.

	Public Key Encryption for the Forgetful
	Introduction
	Preliminaries
	Security Requirements and Models
	Security Requirements
	Key Encapsulation with Backward Recovery
	Security Models
	IND-CCA2 security for KEM-BR in the two-user setting.
	BR unforgeability in the two-user setting.

	A Generic Construction
	An Efficient Construction—Tag Based KEM-BR
	Security Model of TBR in the Multi-user Setting
	Tag Based KEM-BR Scheme (TBR)
	IND-CCA2 Security of TBR
	Unforgeability
	Implementation

	Two-Receiver KEM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

