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Abstract

Signcryption is an asymmetric cryptographic method that provides simultaneously both
message confidentiality and unforgeability at a low computational and communication overhead.
In this paper, we propose realistic security models for signcryption, which give the attacker power
to choose both messages/signcryptexts as well as recipient/sender public keys when accessing
the signcryption/unsigncryption oracles of attacked entities. We then show that Zheng’s original
signcryption scheme is secure in our confidentiality model relative to the Gap Diffie-Hellman
problem and is secure in our unforgeability model relative to a Gap version of the discrete
logarithm problem. All these results are shown in the random oracle model.

Key words: Signcryption, Flexible Signcryption/Unsigncryption Oracle Models, Gap Diffie-Hellman Prob-
lem, Gap Discrete Log Problem

1 Introduction

1.1 Motivation

Message confidentiality is one of the most important goals of cryptography, both in the symmetric
and asymmetric settings. Over the last decade, in the asymmetric setting, a number of encryp-
tion schemes meeting strong confidentiality requirements such as security against adaptive chosen
ciphertext attacks [19, 24], have emerged. Early constructions of such schemes include Zheng and
Seberry’s [38] public key encryption schemes, which are efficient but were not proven to be secure
against chosen ciphertext attacks “in the reductionist way” (namely, in such a way that presents a
reduction from attacking cryptographic schemes to solving well-known computationally-hard prob-
lems). Shortly after Zheng and Seberry’s proposals, several other schemes [7, 13, 22] were proposed,
whose security against chosen ciphertext attacks can be analyzed in the reductionist way under an
additional heuristic assumption known as the random oracle model [8]. The first practical scheme
that does not depend on the random oracle model was given by Cramer and Shoup [10] and received
great attention from the cryptographic community.

Along with message confidentiality, message authenticity is another important goal of cryp-
tography. In the asymmetric setting, this goal was realized by the advent of digital signatures.
The essential security requirement for digital signatures is the (existential) unforgeability against
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adaptive chosen message attacks [16], where an attacker is allowed to query a number of messages
of his choice to the signing oracle. Note that slight modifications of the classical ElGamal signature
[12] and the Schnorr signature [27] schemes were proved [23, 20] to be secure in this sense, that
is, (existentially) unforgeable against adaptive chosen message attack [16] (in the random oracle
model).

A natural question one can now ask is how to integrate encryption and signature schemes in an
efficient way without sacrificing each scheme’s security, in other words, how to efficiently provide
communicating messages with confidentiality and authenticity simultaneously as one cryptographic
function. In 1997, Zheng [34] gave a positive answer to the question: He proposed a cryptographic
scheme called “signcryption” which integrates the functionality of discrete log based public key
encryption and digital signature schemes in a very efficient way.

Although Zheng’s signcryption scheme has been the focus of a number of research works, no
reductionist-style security analysis of Zheng’s signcryption, as far as we know, has ever been given.
In this paper, we propose precise and realistic security models for generic signcryption schemes and
provide rigorous proofs, based on these proposed models, that Zheng’s original signcryption scheme
meets strong security requirements with respect to message confidentiality and unforgeability under
known cryptographic assumptions.

1.2 Related Work

Compared with the asymmetric setting, research on the integration of message confidentiality and
authenticity was relatively more active in the symmetric setting. A series of research works ap-
peared on using modes of block ciphers to give both message confidentiality and integrity [17, 25].
Also, security issues related to the composition of symmetric key encryption and message authen-
tication code (MAC) were considered by Bellare and Namprepre [6]. They concluded that only
“Encrypt-then-MAC (EtM)” composition is generically secure against chosen ciphertext attack
and existentially unforgeable against chosen message attack. Krawczyk [18] also considered the
same problem when building a secure channel over insecure networks. Interestingly, his conclusion
was that the “MAC-then-Encrypt (MtE)” composition is also secure, under the assumption that
encryption method is either a secure CBC mode or a stream cipher that XORs the data with a
random pad.

In the asymmetric setting, Tsiounis and Yung [33] proposed a variant of the ElGamal encryption
scheme where Schnorr’s signature is used to provide non-malleability. However, the security goal
of their scheme is to provide confidentiality, consequently the strong origin authentication is not
supported in their scheme. (Note that this scheme was analyzed again by Schnorr and Jakobsson
[28] under the generic model plus the random oracle model. Note also that the security proof of
Tsiounis and Yung’s scheme given in [33] was later found to be flawed [30]: The Schnorr signature
scheme that was used as a “proof of knowledge” in their public key encryption scheme, makes
it impossible to efficiently simulate the responses to the chosen ciphertext attacker’s decryption
queries. We refer readers to [30] for more details.)

The first attempt to provide formal security analysis of signcryption schemes was made by
Steinfeld and Zheng [31], who proposed a signcryption scheme based on the integer factorization
problem and provided a formal security model and proof for the unforgeability of the proposed
scheme. But, a formal security model and proof for the confidentiality of their scheme was not
provided. (We remark, however, that following an earlier version of this work, the analysis of
the factoring-based signcryption scheme has been extended to cover both confidentiality and un-
forgeability in the strong sense that will be presented in the following sections [26]. Interestingly,
although the result in [26] for confidentiality is analogous to ours in its reliance on a variant of the
Gap Diffie-Hellman assumption in a subgroup of ZZ∗N for N an RSA modulus, the unforgeability
result in [26], for a suitable choice of scheme parameters, does not rely on a “gap” assumption, but
only on the hardness of factoring an RSA modulus N , given a generator for the utilized subgroup
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of ZZ∗N .)
Independently of our work, security models for signcryption similar to ours were proposed by

An, Dodis and Rabin (ADR) [1], who analyzed the security of generic compositions of black-box
signature and encryption schemes. Our unforgeability notion FSO-UF-CMA, which will be defined
precisely in Section 3.3, corresponds to unforgeability in the “Multi-User Insider” setting defined
by ADR in [1], whereas our confidentiality notion FSO/FUO-IND-CCA2, which will be defined
precisely in Section 3.2, corresponds to confidentiality in the weaker “Multi-User Outsider” setting
of ADR. In Section 1.3.2, we discuss our models and their relationship to those defined by ADR in
great detail.

1.3 Differences between Our Security Model and Other Models

1.3.1 Differences between Symmetric and Asymmetric Models

To address the significant difference between security implication of the compositions of encryption
and authentication in the symmetric setting and that in the asymmetric setting, we consider con-
fidentiality of the “Encrypt-then-MAC (EtM)” and “Encrypt-and-MAC (EaM)” compositions in
the symmetric setting, and the security of the directly corresponding simple asymmetric versions
“Encrypt-then-Sign (EtS)” and “Encrypt-and-Sign (EaS)” (defined in the natural way, with the
signer’s public key appended). We point out that while the symmetric composition EtM is secure
against chosen ciphertext attack (indeed, EtM is generically secure as shown in [6]), the simple
asymmetric version EtS is completely insecure against adaptive chosen ciphertext attack, even if
the underlying encryption scheme is secure against adaptive chosen ciphertext attack. The reason
is that in the asymmetric version, a ciphertext in the composed scheme contains an additional
component (not present in the symmetric versions), namely the sender’s signature public key. The
fact that this component is easily malleable implies the insecurity of the asymmetric version EtS
under adaptive chosen ciphertext attack.

As an example, assume that a sender Alice encrypts and signs her message m using the EtS
composition. That is, she encrypts the message m using a public key encryption algorithm EpkB

(·)
and computes c = EpkB

(m). Then she signs on c using her digital signature algorithm SskA
(·)

to produce σ = SskA
(c). Now the ciphertext C is (c, σ). However, an adversary Marvin now

generates his own public and private key pair (pkM , skM ) and signs on c obtained by eavesdropping
the ciphertext C en route from Alice to Bob. Namely, he can produce C ′ = (c, SskM

(c)) where
SskM

(·) is Marvin’s digital signature algorithm. Then he hands in his public key pkM (which may
be contained in Marvin’s digital certificate) to Bob. Now notice that C ′ which is different from
C is completely verified as a valid ciphertext using Marvin’s public key pkM and Bob decrypts
it into m. Hence Marvin succeeds in his chosen ciphertext attack on the EtS scheme even if the
underlying asymmetric encryption scheme is strong, say, secure against adaptive chosen ciphertext
attack. (For completeness, we remark that a secure generic EtS variant which fixes the above
problem of the simple EtS was given by An, Dodis and Rabin [1].)

1.3.2 Discussion of Our Models in the Context of Other Asymmetric Models

The discussion in this section focuses on explaining the relationship between security models for
signcryption schemes defined by An, Dodis and Rabin (ADR) [1] and our security notions as defined
in Section 3. First, we review the classification of security models for signcryption schemes defined
by ADR [1].
Two-User vs. Multi-User Setting. The first classification of security models for signcryption schemes
depends on the assumed application setting. In the “Two-User” setting, it is assumed that there are
only two users of the scheme: a single sender Alice with key pair (skA, pkA) and a single receiver Bob
with key pair (skB, pkB). Hence in this setting, the receiver’s public key for all messages signcrypted
by Alice is fixed to Bob’s public key pkB. Similarly, the sender’s public key for all signcryptexts
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unsigncrypted by Bob is fixed to Alice’s public key pkA. In contrast, the “Multi-User” setting
assumes that there are many users of the scheme besides the attacked users Alice and Bob. Thus in
this setting, the receiver’s public key for messages signcrypted by Alice can be any receiving user’s
public key pkR (not necessarily Bob’s pkB). Similarly, the sender’s public key for signcryptexts
unsigncrypted by Bob can be any sending user’s public key pkS (not necessarily Alice’s pkA). In
particular, in this setting the attacker is given the power to choose his own reciever/sender public
keys when accessing Alice/Bob’s signcryption/unsigncryption oracles. This power does not exist
in the Two-User setting.
Insider vs. Outsider Setting. The second classification of security models for signcryption schemes
depends on the identity of the attacker. In the “Outsider” setting, the attacker is assumed to be
a third-party distinct from both the attacked users Alice and Bob. To break confidentiality in this
setting, the goal of the attacker is to recover some information on a message signcrypted by Alice
to Bob, assuming the signcryptext has not been unsigncrypted by Bob. To break unforgeability
in this setting, the goal of the attacker is to forge a signcryptext from Alice to Bob on a message
which has not been signcrypted by Alice. Note that in the outsider setting, since the attacker is a
third-party, he only knows the public keys of Alice and Bob. In contrast, in the “Insider” setting,
the attacker is assumed to be a second-party, meaning that the attacker is either Alice (attacking
Bob’s confidentiality) or Bob (attacking Alice’s unforgeability). To break Bob’s confidentiality in
this setting, Alice’s goal is to recover any partial information on a message signcrypted to Bob with
Alice’s public key as the sender’s public key, assuming the signcryptext has not been unsigncrypted
by Bob with Alice’s public key as the sender’s public key (note that in this setting, the attacker
Alice may know the sender’s private key). To break Alice’s unforgeability in this setting, Bob’s goal
is to forge a valid signcryptext from Alice to Bob on a message which has never been signcrypted
by Alice to Bob (note that in this setting, the attacker Bob may know the receiver’s private key).
Our Confidentiality Notion. The strongest confidentiality notion for signcryption schemes is ob-
tained by requiring confidentiality in the “Multi-User Insider” setting. It is easy to verify that
Zheng’s signcryption scheme is completely insecure in this setting because the Diffie-Hellman key
gxAxB (which is easily recoverable by the sender Alice) defined by Alice and Bob’s public keys gxA

and gxB suffices to unsigncrypt any signcryptext from Alice to Bob. However, we make the follow-
ing observations. First, we emphasize, as also acknowledged in [1], that this model is under normal
circumstances not of significant importance because it effectively assumes that the sender Alice
is trying to unsigncrypt a signcryptext which was sent by herself. Thus this model appears only
useful in providing “forward security” under special circumstances in which an attacker who breaks
into Alice’s system obtains her secret key in order to unsigncrypt a message previously signcrypted
by Alice to Bob. Second, as pointed out by Zheng in the full version of the original paper [35],
this insecurity can be considered a positive feature, called “Past Message Recovery”, since it allows
Alice to store signcryptexts and unsigncrypt them in the future when desired.

In view of the above discussion, we believe that for most applications it suffices for a signcryption
scheme to achieve confidentiality in the “Multi-User Outsider” setting. Our independently defined
confidentiality notion “FSO/FUO-IND-CCA2” for this setting matches the corresponding definition
by ADR [1].
Our Unforgeability Notion. The strongest unforgeability notion for signcryption schemes corre-
sponds to unforgeability in the “Multi-User Insider” setting. Our independently defined unforge-
ability notion “FSO-UF-CMA” for this setting matches the corresponding definition by ADR [1].

Like the model proposed by ADR [1], our model also does not explicitly include support for
non-repudiation, that is, the ability of a receiver of a valid signcryptext to convince a third-party
that a given sender has sent this signcryptext. However, as also pointed out in [1], unforgeability in
the sense of FSO-UF-CMA guarantees that the receiver cannot forge any valid signcryptext by the
sender, so non-repudiation can always be achieved using a protocol run between the receiver and
the third-party, which convinces the third-party of the validity of a signcryptext with respect to a
given message and sender and receiver public keys. A generic solution which does not compromise
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the receiver’s secret key to the third-party, is to use a zero-knowledge proof of signcryptext validity.
Specific protocols for Zheng’s scheme are presented by Zheng in [35].
On the Power of Attackers in the Multi-User Setting. The extra power given to the attacker in
Multi-User setting is the ability to access “flexible” signcryption/unsigncryption oracles which allow
the attacker to specify a receiver/sender’s public key in addition to a message/signcryptext. In a
practical application, such an attack might be mounted by the attacker Marvin by requesting a
new public key certificate from the Certificate Authority (CA) each time he wants to query Alice’s
signcryption oracle with a new public key of his choice. A scheme meeting our security notion must
be secure even if Marvin can get as many public key certificates issued as he wishes for arbitrary
public keys of his choice. In some applications it may be possible to place significant constraints on
the public keys that Marvin can use, for example through additional checks by the CA that users
“know” the secret key associated to their public key. However, we believe that for the sake of wide
applicability one should be conservative and avoid such assumptions if possible.

Security of signcryption in the Two-User setting does not imply security in the Multi-User
setting. Furthermore, there is no known efficient (in particular, not using encryption/signature
primitives) generic conversion of a “Two-User secure” scheme into a “Multi-User secure” scheme.
The “semi-generic” efficient conversion given by An Dodis and Rabin [1] only works for the schemes
they considered, which are built from separate signature and encryption primitives (the incorrect
claim in the conference paper [1] that the conversion is generic was subsequently corrected in an
updated version of the paper [2]).

To get a feeling for the issues involved, consider the following example (which can be used
as a counterexample to prove that the semi-generic conversion in [1, 2] is not generic). Given
a signcryption scheme secure in the Two-User setting, we construct a new signcryption scheme
which is identical except that the signcryption algorithm appends in the signcryptext one bit of the
sender’s secret key, where the secret bit position is determined as a function of the receiver’s public
key. In the Two-User setting, a forging attacker can only query the sender’s signcryption oracle
with one receiver public key fixed for the whole attack and hence in this setting the forger can only
get a single bit of the secret key. Consequently the new scheme is still unforgeable in the Two-User
setting. On the other hand, in the Multi-User setting, the attacker can quickly get all the bits of the
sender’s secret key by querying the signcryption oracle with many different receiver public keys, so
the scheme is easily forgeable in the Multi-User setting (and it remains forgeable in the Multi-User
setting, for the same reason, even after applying the semi-generic conversion in [1, 2]). This example
is not entirely artificial — indeed it is because of an interaction between the receiver’s public key
and the sender’s secret key in Zheng’s signcryption scheme that we need in this paper, for instance,
the “Gap Discrete Log” assumption to prove unforgeability in the Multi-User setting, whereas just
the weaker “Discrete Log” assumption suffices for unforgeability in the Two-User setting [3].
Other Assumptions. We point out two implicit assumptions we have made in the current work.
The first is that our Multi-User models apply to “static” attackers because the attacked public
keys are fixed at the beginning of the attack game. The second is that our scheme assumes the
standard practice that each user generates two independent private/public key-pairs for sending
and receiving, respectively. However, we remark that our security proofs for Zheng’s scheme under
the GDH assumption can be extended to the “key-reuse” setting where a single key-pair is used
for both signcryption and unsigncryption (this involves simulating the additional oracles present in
this setting in the same way as the oracle simulations performed in the current proofs).

1.4 Our Main Results

The most attractive feature of Zheng’s signcryption scheme is its efficiency. Namely, the dominant
computational cost in both signcryption and unsigncryption algorithms is approximately only a
single exponentiation in the underlying subgroup. This high efficiency is achieved by sharing
the exponentiation for both the encryption and signature “portions” of the computation, and
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is therefore at least 2 times more efficient than a generic composition (using one of the generic
compositions presented in [1]) of discrete log based signature and encryption schemes, each of
which would presumably perform (at least) one separate exponentiation.

Our results demonstrate that despite its high efficiency, Zheng’s scheme still achieves strong
security notions in the Multi-User setting with respect to known cryptographic assumptions and
the random-oracle model for the underlying hash functions. In particular, our main results can be
summarized as follows. First, we prove, in the random-oracle model, that Zheng’s scheme achieves
confidentiality in the Multi-User Outsider setting (or equivalently “FSO/FUO-IND-CCA2”, which
will formally be defined in the next section) under the Gap Diffie-Hellman (GDH) assumption [21]
in a prime-order subgroup of ZZ∗p, where p is prime, and the assumption that the underlying one-
time symmetric encryption scheme is secure. Second, we prove, in the random oracle model, that
Zheng’s scheme achieves unforgeability in the Multi-User Insider setting (or equivalently “FSO-UF-
CMA”, which will formally be defined in the next section) assuming the Gap Discrete Log (GDL)
assumption in the underlying subgroup, which is implied by, but is possibly a weaker assumption
than, the GDH assumption in the same subgroup.

We note that Zheng’s scheme relies for its security on specific number-theoretic computational
complexity assumptions, and on the random oracle model. These assumptions may be avoided, at
the cost of efficiency, by using a generic encryption/signature composition scheme and applying the
results in [1].

2 Preliminaries

2.1 Symbols and Notations

We use the notation A(·, ·) to denote an algorithm, with input arguments separated by commas (our
underlying computational model is a Turing Machine). If algorithm A makes calls to oracles, we list
the oracles separated from the algorithm inputs by the symbol “|”. For a probabilistic algorithm
A(·), we use A(x; r) to denote the output of A on input x with a randomness input r. If we do
not specify r explicitly we do so with the understanding that r is chosen statistically independent
of all other variables. We denote by {A(x)} the set of outputs of A on input x as we sweep the
randomness input for A through all possible strings.

We denote by 〈g〉 is a subgroup generated by a group element g.
We denote | · | the number of bits in the binary representation of an input.
Given a set SPsk we denote by sk

R← SPsk the assignment of a uniformly and independently
distributed random element from the set SPsk to the variable sk.

Let ZZ∗n = {x ∈ ZZn| gcd(x, n) = 1}. (Note that if q is prime, ZZ∗q = ZZq \ {0}).
For integers g and p, we let Ordp(g) denote the order of g in the multiplicative group ZZ∗p.
We say a probability function f : N→ R[0,1] is negligible in k if, for all c > 0, there exists k0 ∈ N

such that f(k) ≤ 1
kc whenever k ≥ k0. Here, R[0,1] = {x ∈ R|0 ≤ x ≤ 1}.

3 Our Security Notions for Signcryption Schemes

3.1 Description of Generic Signcryption Scheme

First, we formally define a “signcryption” scheme in a general way as follows.

Definition 1 (Generic Signcryption Scheme) A signcryption scheme SCR = (GC, GKA, GKB, SC,USC)
consists of the following algorithms:

1. A probabilistic common parameter/oracle generation algorithm GC that takes a security pa-
rameter k as input, and returns a sequence of common parameters cp containing the security
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parameter k and other system-wide parameters such as description of computational groups
and hash functions.

2. A probabilistic sender key-pair generation algorithm GKA that takes a common parameter
sequence cp as input and returns a sender’s secret/public key-pair (skA, pkA).

3. A probabilistic receiver key-pair generation algorithm GKB that takes a common parameter
sequence cp as input and returns a receiver’s secret/public key-pair (skB, pkB).

4. A probabilistic signcryption algorithm SC that takes a common parameters sequence cp, a
sender’s secret key skA, a receiver’s public key pkB, and a message m ∈ SPm as input (SPm

is the message space) as input, and returns a signcryptext C.

5. An unsigncryption algorithm USC that takes as input a common parameters sequence cp, a
receiver’s secret key skB, a sender’s public key pkA, a signcryptext C as input, and returns
either a message m or a “Rej (reject)” symbol.

3.2 Confidentiality Notion for Signcryption Schemes in the FSO/FUO Model

Following the discussions in Section 1.3, we provide an attack model for confidentiality of the generic
signcryption scheme SCR, which we call the “Flexible Signcryption Oracle/Flexible Unsigncryption
Oracle (FSO/FUO)”-model. In this model, the adversary Marvin’s goal is to break the confiden-
tiality of messages between the sender Alice and the receiver Bob. Marvin is given Alice’s public
key pk∗A and Bob’s public key pk∗B, and has access to a “flexible” signcryption oracle, as well as a
“flexible” unsigncryption oracle: On receiving (pkR, m) where pkR denotes a receiver’s public key
generated by Marvin at will (Marvin may choose the receiver’s public key as Bob’s public key pk∗B,
say, pkR = pk∗B.) and m denotes a plaintext, the flexible signcryption oracle returns a signcryptext
after performing signcryption under Alice’s private key sk∗A. We denote the flexible signcryption
oracle by SC(cp, sk∗A, ·, ·) where no specified receiver’s public key is presented as input argument.
On the other hand, the flexible unsigncryption oracle, on receiving (pkS , C) where pkS denotes a
sender’s public key generated by Marvin at will (Similarly to the flexible signcryption oracle, Mar-
vin may choose the sender’s public key as Alice’s public key pk∗A, say, pkS = pk∗A.) and C denotes a
signcryptext, returns a plaintext or a “Rej” (Reject) symbol after performing unsigncryption under
Bob’s private key sk∗B. Note that the unsigncryption oracle is denoted by USC(cp, sk∗B, ·, ·), where
no specified sender’s public key is presented as input argument.

In other words, the flexible signcryption and unsigncryption oracles are not constrained to be
executed only under pk∗B and pk∗A respectively – Bob and Alice’s public key can be replaced by
the public keys generated by Marvin. Accordingly, the FSO/FUO-model gives Marvin the full
chosen-plaintext/ciphertext power with the ability to choose the sender and receiver’s public keys,
the message as well as the signcryptext.

Using the notion of indistinguishability of encryption [5], we formalize the confidentiality of
signcryption against the above-described (adaptive) chosen ciphertext attack under the FSO/FUO-
model. We say a signcryption scheme is secure in the sense of indistinguishability (abbreviated by
“IND”), there is no polynomial-time adversary that can learn any information about the plaintext
from the signcryptext except for its length. Following the style of [5], we call this confidentiality
notion of signcryption “FSO/FUO-IND-CCA2”. Below, we formally define FSO/FUO-IND-CCA2.

Definition 2 (FSO/FUO-IND-CCA2) Let SCR = (GC, GKA, GKB, SC, USC) be a generic sign-
cryption scheme. Let ACCA be an attack algorithm (attacker) against the indistinguishability of the
scheme SCR. Consider the following attack game.

SCRINDGame(k, ACCA,SCR)
cp ← GC(k)
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(sk∗A, pk∗A) R← GKA(cp)

(sk∗B, pk∗B) R← GKB(cp)
(m0,m1) ← ACCA(k, cp, find, pk∗A, pk∗B|SC(cp, sk∗A, ·, ·), USC(cp, sk∗B, ·, ·))
β

R← {0, 1}; C∗ ← SC(cp, sk∗A, pk∗B,mβ)
β′ ← ACCA(k, cp, guess, pk∗A, pk∗B, C∗|SC(cp, sk∗A, ·, ·), USC(cp, sk∗B, ·, ·)
If β′ = β and (pk∗A, C∗) was never queried to USC(cp, sk∗B, ·, ·)
Return 1 Else Return 0

Note that two messages m0 and m1 output by the attacker satisfy |m0| = |m1|. Note also that
ACCA is allowed to query (pkS , C∗) to the unsigncryption oracle USC(cp, sk∗B, ·, ·) where unsign-
cryption is performed under the public key pkS which is arbitrarily chosen by ACCA and is different
from pk∗A.

We quantify ACCA’s success by the probability

SuccFSO/FUO−IND−CCA2

ACCA,SCR (k) def= 2Pr[SCRINDGame(k, ACCA,SCR) = 1]− 1.

We also quantify the insecurity of scheme SCR in the sense of FSO/FUO-IND-CCA2 against
arbitrary attackers with resource parameters RP = (t, qSC, qUSC)by the advantage

InSecFSO/FUO−IND−CCA2
SCR (t, qSC, qUSC) def= max

ACCA∈ASRP

{SuccFSO/FUO−IND−CCA2

ACCA,SCR (k)}.

The attacker set ASRP contains all attackers with resource parameters RP , meaning running
time+program size at most t, at most qSC and qUSC queries to the signcryption and unsigncryption
oracles respectively.

We say SCR is FSO/FUO-IND-CCA2 secure if InSecFSO/FUO−IND−CCA2
SCR (t, qSC, qUSC) is negli-

gible function in k for any polynomials t, qSC, and qUSC in k.

3.3 Unforgeability Notion for Signcryption Schemes in the FSO Model

We now present our unforgeability notion which we call “FSO-UF-CMA” meaning unforgeability
of signcryption against adaptive chosen message attack with respect to the FSO-model. Recall that
this notion corresponds to ADR’s Multi-User Insider model.

The model is as follows. The forger Marvin’s goal is to forge a valid signcryptext from Alice
to some other user. Marvin is given Alice’s (random) public key pk∗A. In addition, Marvin is given
access to Alice’s flexible signcryption oracle (FSO), namely SC(cp, sk∗A, ·, ·). Marvin can choose
any receiver public key pkR and message m and query the flexible signcryption oracle to get a
signcryptext by Alice on message m to the specified receiver’s public key pkR. At the end of the
attack, Marvin is considered successful in his forgery if he produces a forgery signcryptext C∗ and
a forgery receiver public key pk∗R such that: (1) C∗ is a valid signcryptext from Alice to the receiver
who holds a public key pk∗R (this means that USC(cp, sk∗R, pk∗A, C∗) does not reject, where sk∗R is the
private key corresponding to the forgery recipient public key pk∗R), and (2) Marvin did not query
(pk∗R,m∗) to Alice’s flexible signcryption oracle, where m∗ = USC(cp, sk∗R, pk∗A, C∗) is the forgery
message.

We remark that, because it applies to the Multi-User setting, our new unforgeability model is
stronger than those which appeared in our earlier works [31, 3] in two ways. First, earlier models
allowed Marvin only chosen message access to Alice’s signcryption oracle with a fixed receiver public
key, whereas we allow Marvin full flexibility in choosing the receiver public key pkM . Second, in
earlier models Marvin’s goal was to forge a signcryptext from Alice to a specified receiver (who
possesses a fixed receiver public key). However, in our new model, we allow Marvin full flexibility
in choosing a receiver whose receiver public key is denoted by pk∗R. Note that our new forgery
goal is very weak: we do not even require Marvin to demonstrate “knowledge” of the secret key
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sk∗R corresponding to pk∗R, and we allow either (i) Conventional forgeries, where the message m∗

is “new” (as in previous models) or (ii) “Recipient Transfer” forgery, where the forgery message
m∗ was previously queried to Alice’s signcryption oracle but it was never signcrypted under the
recipient key pk∗R. We remark that a “Recipient Transfer” forgery was called a “Double Spending”
attack in [35], due to its implication in e-commerce payment applications.

Finally, one may wonder why we do not give the attacker access to the sender’s unsigncryption
oracle. The reason is that we assume the well-established practice that users generate independent
key-pairs for sending and receiving. In this setting it is clear that the sender’s unsigncryption oracle
cannot help a forger because the forger can simulate such an oracle by himself.

We now give the precise definition of our new unforgeability notion FSO-UF-CMA.

Definition 3 (FSO-UF-CMA) Let SCR = (GC, GKA, GKB,SC, USC) be a signcryption scheme.
Let AUF be an attack algorithm (attacker) against the unforgeability of the scheme SCR. Consider
the following attack game.

SCRUFGame(k,SCR,AUF)
cp ← GC(k)
(sk∗A, pk∗A) ← GKA(cp)
(C∗, pk∗R) ← AUF(k, cp, pk∗A|SC(cp, sk∗A, ·, ·))
Find some sk∗R such that (sk∗R, pk∗R) ∈ {GKB(k, cp)}
If such sk∗R does not exist, Return 0
m∗ ← USC(cp, sk∗R, pk∗A, C∗)
If m∗ 6= Rej and (pk∗R,m∗) has not been queried by AUF to SC(cp, sk∗A, ·, ·) Return 1
Else Return 0

We quantify AUF’s success in breaking the FSO-UF-CMA security notion of scheme SCR by the
probability

SuccFSO−UF−CMA
AUF,SCR (k) def= Pr[SCRUFGame(k,SCR,AUF) = 1].

We quantify the insecurity of scheme SCR in the sense of FSO-UF-CMA against arbitrary
attackers with resource parameters RP = (t, qSC) by the advantage

InSecFSO−UF−CMA
SCR (t, qSC) def= max

AUF∈ASRP

SuccFSO−UF−CMA
AUF,SCR (k).

The attacker set ASRP contains all attackers with resource parameters RP , meaning running
time+program size at most t and at most qSC queries to the signcryption oracle.

We say SCR is FSO-UF-CMA secure if InSecFSO−UF−CMA
SCR (t, qSC) is negligible function in k

for any polynomials t and qSC in k.

4 Zheng’s Original Signcryption Scheme

In this section, we give a full description of Zheng’s original signcryption scheme [34].

4.1 One-time Symmetric Key Encryption Scheme

As a preliminary, we review the definition of the “one-time symmetric key encryption [11]” which
serves as a building block for Zheng’s original signcryption scheme. In fact, one-time symmetric
key encryption schemes are usually used to build hybrid public key encryption schemes as discussed
in [11]. The one-time symmetric key encryption scheme defined here plays the same role as the one
used in hybrid public key encryption schemes: The symmetric key is used only once to encrypt a
single message.
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Definition 4 (One-time Symmetric Key Encryption) An one-time symmetric key encryp-
tion scheme SKE consists of the following algorithms:

1. A deterministic encryption algorithm E that takes a security parameter k, a symmetric key
τ ∈ SPτ , and a message m ∈ SPm as input, and returns a ciphertext c ∈ SPc. (Note that
SPm, SPτ , and SPc denote respectively the message, key, and ciphertext spaces whose size
varies as the security parameter k).

2. A deterministic decryption algorithm D that takes a security parameter k, a symmetric key
τ ∈ SPτ , and a ciphertext c ∈ SPc as input, and returns a a message m ∈ SPm. The function
defined by D is one-to-one on SPc and onto SPm.

Note that we do not need the security against chosen plaintext attacks for the one-time symmet-
ric key encryption scheme to prove the confidentiality of Zheng’s scheme. An appropriate security
notion for the one-time symmetric key encryption scheme will be given in Section 5.2. On the other
hand, we do need in our security proof of security that this scheme is bijective meaning in particular
the decryption function is one-to-one on the ciphertext space SPc (and hence also encryption is
deterministic).

We remark that the one-time pad is a computationally efficient and unconditionally secure
bijective one-time symmetric encryption scheme suitable for our application. The key size can
be reduced by generating it from a short key using a pseudorandom generator, resulting in a
computationally secure one-time symmetric encryption scheme.

4.2 Description of Zheng’s Original Signcryption Scheme

Zheng’s signcryption scheme described in this section is based on the shorthand digital signature
scheme (SDSS1) [34] which is a variant of ElGamal based signature schemes. Another signcryption
scheme SDSS2 can be described and analyzed in a very similar manner presented in this paper so
that we only consider the SDSS1-type signcryption scheme.

To simplify the security analysis, we have slightly modified the scheme SDSS1. In particular, in
our modified scheme the “Diffie-Hellman Key” K is directly provided as input to the hash function
H without first being hashed by the other hash function G.

Definition 5 (Zheng’s Original Signcryption Scheme) Each sub-algorithm of Zheng’s origi-
nal signcryption scheme ZSCR works as follows.

Zheng’s Original Signcryption ZSCR

Common parameter/oracle generation GC(k)
Choose at random primes p and q such that
|p| = k, q > 2lq(k), and q|(p− 1)
(lq : IN → IN is a function determining the length of q)
Choose a random g ∈ ZZ∗p such that Ordp(g) = q

Choose a hash function G : {0, 1}∗ → {0, 1}lG(k)

(lG : IN → IN is a function determining the length of the output of G)
Choose a hash function H : {0, 1}∗ → ZZq

Choose a bijective one-time symmetric key encryption
scheme SKE = (E, D)
with message/key/ciphertext spaces SPm/{0, 1}lG/SPc

cp ← (k, p, q, g,G, H,SKE)
Return cp
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Zheng’s Original Signcryption ZSCR (Continued)

Sender key-pair generation GKA(cp)

xA
R← ZZ∗q ; yA ← gxA

skA ← (xA, yA); pkA ← yA

Return (skA, pkA)

Receiver key-pair generation GKB(cp)

xB
R← ZZ∗q ; yB ← gxB

skB ← (x, y); pkB ← yB

Return (skB, pkB)

Signcryption SC(cp, skA, pkB,m)
Parse skA as (xA, yA); Parse pkB as yB

If yB /∈ 〈g〉 \ {1} Return Rej

x
R← ZZ∗q ; K ← yx

B; τ ← G(K);
c ← Eτ (m); r ← H(m, yA, yB,K);
If r + xA = 0 Return Rej
Else s ← x/(r + xA)
C ← (c, r, s)
Return C

Unsigncryption USC(cp, skB, pkA, C)
Parse skB as (xB, yB); Parse pkA as yA

If yA /∈ 〈g〉 \ {1} Return Rej
Parse C as (c, r, s)
If r /∈ ZZq or s /∈ ZZ∗q or c /∈ SPc

Return Rej
Else

ω ← (yAgr)s ; K ← ωxB ; τ ← G(K)
m ← Dτ (c)
If H(m, yA, yB,K) = r Return m
Else Return Rej

Note that the hash functions G : {0, 1}∗ → {0, 1}lG(k) and H : {0, 1}∗ → ZZq are modelled as
the random oracles [8] in the security analysis. Note also that the key length of the symmetric
encryption is actually lG(k).

5 Security Analysis of Zheng’s Signcryption Scheme

In this section, we prove the confidentiality and unforgeability of Zheng’s signcryption by providing
reductions from known cryptographic assumptions. Although we provide a concrete analysis of our
reductions, our main goal is to demonstrate the security of signcryption against polynomial-time
attackers. Hence we did not attempt to optimize the insecurity bounds for our reductions.

First, we recall the definition of the Gap Diffie-Hellman problem given in [21] and define a Gap
Discrete Log problem.
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5.1 Computational Primitives

5.1.1 Gap Diffie Hellman (GDH)

At PKC 2001, Okamoto and Pointcheval [21] proposed a new computational problem called a “Gap
problem” in which an attacker tries to solve an inverting problem with the help of an oracle that
solves a related decisional problem. Namely, the Gap problem is dual of inverting and decisional
problems.

For our proof of confidentiality of Zheng’s original signcryption in the security model proposed
in this paper, we will need the “Gap Diffie- Hellman (GDH)” problem [21] in which the attacker
is given, in addition to the group element ga and gb for random a, b ∈ ZZ∗q , access to a Decisional
Diffie-Hellman (DDH) oracle ODDH that given (ḡ, ḡu, ḡv, z) ∈ 〈g〉 × 〈g〉 × 〈g〉 × 〈g〉 checks whether
z = ḡuv or not (It is possible that ḡ = g, ḡu = ga, and ḡv = gb.), tries to find the Diffie-Hellman
key K = gab corresponding to the given pair (ga, gb). The GDH assumption says that the GDH
problem is computationally intractable. A precise definition follows.

Definition 6 (GDH assumption) Let GC(k) be the common parameter generation algorithm
that outputs (g, p, q), where p and q are primes such that |p| = k, q|(p − 1), and q > 2lq(k) where
lq : IN → IN denotes a function determining the length of q; g ∈ ZZ∗p satisfies Ordp(g) = q. Let AGDH

be an attacker. Define the following game.

GDHGame(k, AGDH)
(g, p, q) ← GC(k)

a
R← ZZ∗q ; b

R← ZZ∗q
K ← AGDH((g, p, q), ga, gb|ODDH(·, ·, ·, ·))
If K = gab then Return 1 Else Return 0

Here, ODDH(·, ·, ·, ·) is a Decisional Diffie-Hellman oracle, which, on input (ḡ, ḡu, ḡv, z), outputs 1 if
z = ḡuv and 0 otherwise.

We quantify AGDH’s success in solving the GDH problem by the probability

SuccGDH
AGDH,ZZ∗p

(k) def= Pr[GDHGame(k, AGDH) = 1].

Also we quantify the insecurity of the GDH problem against arbitrary attackers with resource
parameters RP = (t, qODDH) by the probability

InSecGDH
ZZ∗p

(t, qODDH) def= max
AGDH∈ASRP

SuccGDH
AGDH,ZZ∗p

(k).

The attacker set ASRP contains all attackers with resource parameters RP , meaning running
time+program size at most t, and at most qODDH queries to oracle ODDH.

We say the GDH assumption holds if InSecGDH
ZZ∗p

(t, qODDH) is negligible function in k for any
polynomials t and qODDH in k.

5.1.2 Gap Discrete Log (GDL)

For our proof of unforgeability of Zheng’s original signcryption scheme, we will need the following
“Gap Discrete Log (GDL)” problem. The GDL problem is the discrete log analogue of the GDH
problem defined above. The GDL problem is possibly easier than the classical discrete log problem
because here the attacker is given, in addition to the group element ga whose discrete log a with
respect to a given base g is desired, access to a restricted Decisional Diffie-Hellman oracle OrDDH

that given (g, ga, ḡv, z) ∈ 〈g〉×〈g〉×〈g〉×〈g〉 checks whether z = (ḡv)a or not. Notice that compared
with the DDH oracle ODDH used in the GDH problem, the first two inputs g and ga are fixed in the
restricted DDH oracle OrDDH. The GDL assumption says that the GDL problem is computationally
intractable. A precise definition now follows.
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Definition 7 (GDL assumption) Let GC(k) be the common parameter generation algorithm
that outputs (g, p, q), where p and q are primes such that |p| = k, q|(p − 1), and q > 2lq(k) where
lq : IN → IN denotes a function determining the length of q; g ∈ ZZ∗p satisfies Ordp(g) = q. Let AGDL

be an attacker. Define the game

GDLGame(k, AGDL)
(g, p, q) ← GC(k)

a
R← ZZ∗q

a′ ← AGDL((g, p, q), ga|OrDDH(g, ga, ·, ·))
If a′ = a then Return 1 Else Return 0

Here, OrDDH(g, ga, ·, ·) is a restricted Decisional Diffie-Hellman oracle, which, on input (g, ga, ḡv, z),
outputs 1 if z = (ḡv)a and 0 otherwise.

We quantify AGDL’s success in solving the SDL problem by the probability

SuccGDL
AGDL,ZZ∗p

(k) def= Pr[GDLGame(k, AGDL) = 1].

We quantify the insecurity of GDL against arbitrary attackers with resource parameters RP =
(t, qOrDDH) by the probability

InSecGDL
ZZ∗p (t, qOrDDH) def= max

AGDL∈ASRP

SuccGDL
AGDL,ZZ∗p

(k).

The attacker set ASRP contains all attackers with resource parameters RP , meaning running
time+program size at most t, and at most qOrDDH queries to oracle OrDDH.

We say the GDL assumption holds if InSecGDL
ZZ∗p

(t, qOrDDH) is negligible function in k for any
polynomials in t and qOrDDH in k.

We remark that in the GDH problem, the attacker’s goal is weaker, namely to find the Diffie-
Hellman key K = gab (to given base g) corresponding to the given pair (ga, gb). Since the discrete
log of ga allows the attacker to easily compute the Diffie-Hellman key K = gab, it follows that if
the attacker can solve the GDL problem, then he can also solve the GDH problem. This means
that the GDH assumption implies the GDL assumption. However, the converse may not hold, and
the GDL assumption may actually be a weaker assumption than the GDH assumption.

5.2 Security Notion for One-time Symmetric Encryption

We now define a security notion for the one-time symmetric key encryption scheme SKE presented
in Section 4.1. As mentioned earlier, we do not need the security against chosen plaintext attacks
for SKE . We merely need the security against a passive attack called “passive indistinguishability
of symmetric key encryption (PI-SKE)” [11]. A formal definition follows.

Definition 8 (PI-SKE for One-time Symmetric Key Encryption) Let SKE = (E, D) be a
bijective one-time symmetric key encryption scheme. Let API be an attacker that defeats the
security of SKE in the sense of PI-SKE. Let k ∈ N be a security parameter. A specification for the
attack game is as follows.

SKECFGame(k, API,SKE)

τ
R← SPτ

(m0,m1) ← API(k, find)

β
R← {0, 1}; c ← Eτ (mβ)

β′ ← API(k, guess,m0,m1, c)
If β′ = β Return 1 Else Return 0
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We quantify API’s success by the probability

SuccPI−SKE
API,SKE (k) def= 2Pr[SKECFGame(k,API,SYM) = 1]− 1.

We quantify the insecurity of scheme SKE in the sense of PI-SKE against arbitrary attackers
with resource parameters RP = t by the advantage

InSecPI−SKE
SKE (t) def= max

API∈ASRP

{SuccPI−SKE
API,SKE (k)}.

The attacker set ASRP contains all attackers with resource parameters RP , meaning running
time+program size at most t.

We say SKE is PI-SKE secure if InSecPI−SKE
SKE (t) is negligible function in k for any polynomial

in t in k.

5.3 Confidentiality of Zheng’s Signcryption Scheme

For confidentiality proof of Zheng’s original signcryption schemeZSCR, we adopt the proof method-
ology recently appeared in the literature. (Readers are referred to the surveys on this technique
such as [29] or [9].): We start with the real attack game where the attacker ACCA tries to defeat the
security of the ZSCR scheme in the sense of FSO/FUO-IND-CCA defined in Section 3.2. We then
modify this game by changing its rules and obtain a new game. Note here that the rules of each
game are to describe how variables in the view of ACCA are computed. We repeat the modification
until we obtain games related to the ability of the attackers API and AGDH to defeat the security of
the one-time symmetric key encryption scheme SKE and to solve the GDH problem respectively.
When a new game is derived from a previous one, a difference of the views of the attacker in each
game might occur. This difference is measured by the technique presented in the following lemma.

Lemma 1 Let A1, A2, B1 and B2 be events defined over some probability space.
If Pr[A1 ∧ ¬B1] = Pr[A2 ∧ ¬B2], Pr[B1] ≤ ε and Pr[B2] ≤ ε then we have |Pr[A1]− Pr[A2]| ≤ ε.

The proof is a straightforward calculation and can be found in [29, 9]. We now state and prove
the following theorem.

Theorem 1 If the GDH assumption holds and the bijective one-time symmetric key encryption
scheme SKE is PI-SKE secure then Zheng’s original signcryption scheme ZSCR is secure in the
FSO/FUO-IND-CCA2 sense. Concretely, the following bound holds:

InSecFSO/FUO−IND−CCA2
ZSCR ( t, qSC, qUSC, qG, qH)

≤ 2InSecGDH
ZZ∗p (t′, qODDH) + InSecPI−SKE

SKE (t′′)

+ qSC

(qG + qH + qSC + qUSC + 2
2lq(k)−1

)
+

qH + 2qUSC

2lq(k)−1

where t′ = t + O((qG)2 + 1) + O((qH)2 + 1) + O(k3qSC) + O((k3 + qG + qH)qUSC) + t′′(qSC + qUSC)
and qODDH = (qSC + qUSC)(qG + qH).

Proof. Our aim is to keep modifying the real attack game SCRINDGame presented in Definition
2 until we get to the stage where we obtain SKECFGame in Definition 8 and GDHGame in
Definition 6.

We use “ACCA” to refer to the FSO/FUO-IND-CCA2 attacker and use “AGDH” to refer to the
attacker for the GDH problem. Given (k, p, q, g, ga, gb) for random a, b ∈ ZZ∗q , AGDH’s goal is to
compute the Diffie-Hellman key gab with the help of the Decisional Diffie-Hellman (DDH) oracle
OODH(·, ·, ·, ·).

We start with the following game.
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• Game G0: This game is the same as the real attack game SCRINDGame in Definition 2.

First, we run the common parameter/oracle generation algorithm GC of ZSCR on input a
security parameter k and obtain a common parameter cp = (p, q, g,G, H,SKE), where p and
q are primes such that |p| = k, q > 2lq(k), and q|(p − 1); g is an element in ZZ∗p such that
Ordp(g) = q; G : {0, 1}∗ → {0, 1}lG(k) and H : {0, 1}∗ → ZZq are hash functions modelled
as the random oracles [8]; SKE is the bijective one-time symmetric key encryption scheme
that consists of the encryption function E and the decryption function D. We then run the
sender/receiver key generation algorithms GKA and GKB respectively on input cp and k,
and obtain Alice (sender) and Bob (receiver)’s fixed private/public key pairs. Here, Alice’s
private key consists of (x∗A, y∗A) where y∗A = gx∗A , and her public key is y∗A itself. Similarly,
Bob’s private key consists of (x∗B, y∗B) where y∗B = gx∗B , and y∗B itself is his public key.

We give the public key pair (y∗A, y∗B) to ACCA. Once ACCA submits a pair of plaintexts (m0,m1)
where |m0| = |m1| at find stage, we pick β ∈ {0, 1} uniformly at random and create a target
signcryptext C∗ = (c∗, r∗, s∗) as follows.

c∗ = Eτ∗(mβ); r∗ = H(mβ, y∗A, y∗B,K∗); s∗ = x∗/(r∗ + x∗A),

where

K∗ = y∗B
x∗ ; τ∗ = G(K∗)

for x∗ picked uniformly at random from ZZ∗q . On input C∗, ACCA outputs β′ ∈ {0, 1} at guess
stage. We denote by S0 the event β′ = β and use a similar notation Si for all games Gi.

Since this game is the same as the real attack game, we have

Pr[S0] =
1
2

+
1
2
SuccFSO/FUO−IND−CCA2

ACCA,ZSCR (k).

• Game G1: In this game, we modify the target signcrytext C∗ presented in the previous game.
The modification obeys the following rules.

R1-1 First, we choose τ+ ∈ {0, 1}lG(k), r+ ∈ ZZq, and s+ ∈ ZZ∗q uniformly at random.
We then compute c+ = Eτ+(mβ) for random β ∈ {0, 1} and replace c∗, r∗, s∗, and
G(K∗) in the target signcryptext C∗ by c+, r+, s+, and τ+ respectively. A new target
signcryptext is now (c+, r+, s+) and is denoted by C∗

+.

R1-2 Whenever the random oracle G is queried at K∗ = (y∗B)s+(r++x∗A) (as defined by
r+ and s+), we respond with τ+.

R1-3 Whenever the random oracle H is queried at (mβ, y∗A, y∗B,K∗), where K∗ =
(y∗B)s+(r++x∗A), we respond with r+.

R1-4 We assume that the signcryption and unsigncryption oracles are perfect. That
is, on receiving ACCA’s signcryption query (yR,m) or unsigncryption query (yS , C) 6=
(y∗A, C∗), where yS and yR respectively denote sender and receiver’s public keys arbi-
trarily selected by ACCA, and m and C denote a message and a signcryptext respectively,
we signcrypt (yR,m) using the private key x∗A or unsigncrypt (yS ,m) using the private
key x∗B in the same way as we do in the real attack game.

Since we have replaced one set of random variables by another set of random variables which
is different, yet has the same distribution, the attacker ACCA’s view has the same distribution
in both Game G0 and Game G1 except for the event that (mβ, y∗A, y∗B,K∗) is queried to H
at find stage because we only know mβ at the end of find stage. But the error probability is
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small and is at most (qH + qSC + qUSC)/2lq(k) because K∗ is independent of the attacker’s view
in find stage.

Accordingly, we have

|Pr[S1]− Pr[S0]| ≤ qH + qSC + qUSC

2lq(k)
.

• Game G2: In this game, we retain the rules R1-1 and R1-4, renaming them as “R2-1” and
“R2-4” respectively. However, we drop the rules R1-2 and R1-3 meaning that τ+ and s+ are
used only in producing the target signcryptext C∗

+ while in other cases when the signcryption
or unsigncryption oracle queries to the random oracles G and H, or ACCA directly queries to
them, answers from G or H are taken. We refer to these rules regarding the random oracles
G and H as “R2-2” and “R2-3” respectively.

Since we have dropped the rule R1-2, τ+ is not used anywhere in game G2 except in comput-
ing c∗. Hence if β′ = β then ACCA has broken the PI-SKE security of the bijective one-time
symmetric encryption scheme. Hence, we have

Pr[S2] =
1
2

+
1
2
SuccPI−SKE

API,SKE (k).

Now, let AskKey2 denote an event that, in Game G2, G is queried at K∗ by ACCA (rather
than by the signcryption or unsigncryption oracles) or H is queried at (m, y′, y′′,K∗) for some
(m, y′, y′′) by ACCA (again, rather than by the signcryption or unsigncryption oracles). We
will use an identical notation AskKeyi for all the remaining games.

Notice that Game G1 and Game G2 may differ if G is queried at K∗, where K∗ = (y∗B)s+(r++x∗A),
or H is queried at (mβ, y∗A, y∗B,K∗). Therefore, besides AskKey2, we need to consider the fol-
lowing events defined in game G2 (we define them to be disjoint by terminating the game as
soon as one of them occurs).

– SCBad2: G is queried at K∗ or H is queried at (m, y′, y′′, K∗) by the signcryption oracle.

– USCBad2: For some unsigncryption query (yS , c, r, s), the unsigncryption oracle queries
G at K∗ and the unsigncryption oracle accepts (yS , c, r, s) (i.e. does not reject).

Let B2 = AskKey2 ∨ SCBad2 ∨ USCBad2. We claim that if ¬B2 occurs, the view of ACCA is
identical in G1 and G2, so Pr[S1 ∧ ¬B2] = Pr[S2 ∧ ¬B2]. To show this, note first that if ¬B2

occurs then K∗ doesn’t appear in G and H queries of ACCA and the signcryption oracle, so
these queries are answered identically in G1 and G2. We now show by induction that if ¬B2

occurs then unsigncryption queries of ACCA are also answered identically in G1 and G2.

In the following analysis we assume that in both games the random oracle H is implemented in
the following standard way: at the start of the game qH +qSC +qUSC uniformly random values
hH[1], . . . , hH[qH],hSC[1], . . . , hSC[qSC], hUSC[1], . . . , hUSC[qUSC] in {0, 1}lq(k) are chosen. These
values are identical in G1 and G2. The value hH[i] is used to answer ACCA’s ith H-query if it
is “new” (otherwise the value is answered consistently with previous queries), and similarly,
hSC[i] and hUSC[i] are used to answer “new” queries of the signcryption and unsigncryption
oracles to H during the processing of ACCAs ith signcryption and unsigncryption queries,
respectively. The only exception is that in G1, the (mβ, y∗A, y∗B, K∗) queries during guess
stage are answered with r+.

Consider an outcome of event ¬B2 in which the view of ACCA is identical in G1 and G2 up to
the ith unsigncryption oracle query (yS , c, r, s) of ACCA. We show that this query is answered
identically by the unsigncryption oracle in both G1 and G2. Let K = (gryS)sx∗B denote the
key queried to G (in both G1 and G2) by the unsigncryption oracle. If K 6= K∗ then the
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unsigncryption oracle proceeds identically in G1 and G2, so we assume that K = K∗. Also,
we assume that r ∈ ZZq, s ∈ ZZ∗q , c ∈ SPc and yS ∈< g > since otherwise the query is rejected
in both G1 and G2.

– In Game G2, the unsigncryption oracle obtains τ = G(K∗) and queries H at (Dτ (c), yS ,
y∗B,K∗), obtaining response hUSC[j] where j ≤ i is the index of the earliest unsigncryption
query where the unsigncryption oracle queried H at (Dτ (c), yS , y∗B,K∗). Thanks to the
one-to-one property of the decryption function D, j is the index of the first unsigncryption
query (yS,j , cj , rj , sj) satisfying (yS,j , cj) = (yS , c) and (grjyS)sjx∗B = K∗. By definition
of ¬B2 we know that the unsigncryption oracle rejects the query (yS , c, r, s) , i.e. we
have hUSC[j] 6= r.

– In Game G1, the unsigncryption oracle queries K∗ to G and obtains response τ+. It
then queries H at (Dτ+(c), yS , y∗B,K∗). We consider two possible cases:

∗ Case 1 : (c, yS) = (c+, y∗A) in guess stage. Because Dτ+(c+) = mβ, in this case the
unsigncryption oracle queries H at (mβ, y∗A, y∗B,K∗) and obtains response r+. We
claim that r 6= r+ so the unsigncryption oracle rejects the query (yS , c, r, s). The rea-
son is that malling with the target signcryptext is impossible: if the query (yS , c, r, s)
was accepted then it would have to be equal to the challenge (y∗A, c+, r+, s+), which
is disallowed from being queried in guess stage. To show this, suppose towards a con-
tradiction that r = r+. Then using K = K∗ we have (y∗B)s(r++x∗A) = (y∗B)s+(r++x∗A).
Since y∗B has order q we have s(r+ + x∗A) = s+(r+ + x∗A) and using r+ + x∗A 6= 0 we
get s = s+, a contradiction. Hence the unsigncryption oracle rejects in this case.

∗ Case 2 : (c, yS) = (c+, y∗A) in find stage OR (c, yS) 6= (c+, y∗A). In this case the un-
signcryption oracle queries H at (Dτ+(c), yS , y∗B,K∗). Note that thanks to the one-
to-one property of the decryption function D, we have from (c, yS) 6= (c+, y∗A) that
(Dτ+(c), yS) 6= (mβ, y∗A) in the guess stage. Hence the unsigncryption oracle obtains
response hUSC[`] from the H oracle, where ` ≤ i is the index of the earliest unsign-
cryption query where the unsigncryption oracle queried H at (Dτ+(c), yS , y∗B,K∗).
Thanks to the one-to-one property of the decryption function D, ` is the index
of the first unsigncryption query (yS,`, c`, r`, s`) satisfying (yS,`, c`) = (yS , c) and
(gr`yS)s`x

∗
B = K∗. But by the induction hypothesis the `th unsigncryption query

is identical in games G1 and G2 for all ` ≤ i. Hence we must have ` = j,
where j ≤ i is the index of the first unsigncryption query (yS,j , cj , rj , sj) satisfy-
ing (yS,j , cj) = (yS , c) and (grjyS)sjx∗B = K∗ in game G2 (see analysis of G2 above).
So in game G1, the unsigncryption oracle obtains the same response hUSC[j] 6= r to
its H query as in game G2 and rejects.

Therefore, the unsigncryption oracle responds identically in G1 and G2 when ¬B2 occurs,
as claimed.

But, event SCBad2 has a negligible probability. Namely due to the uniform distribution of K
computed by the signcryption in 〈g〉 \{1}, the probability that K hits K∗ is less than 1/2lq(k)

per each signcryption query. Consequently we have Pr[SCBad2] ≤ qSC/2lq(k).

Also, event USCBad2 has a negligible probability. Namely, let USCBad2[i] denote the event in
G2 that i is the index of the earliest unsigncryption query (yS , c, r, s) such that the unsign-
cryption oracle queries G at K∗ and the unsigncryption oracle accepts (yS , c, r, s). Note that
for any outcome in USCBad2[i], the unsigncryption oracle queries H at (Dτ (c), yS , y∗B,K∗)
and receives response hUSC[j], where j is the index of the earliest unsigncryption query where
the unsigncryption oracle queried H at (Dτ (c), yS , y∗B,K∗) (we know that (Dτ (c), yS , y∗B,K∗)
was not queried to H by ACCA or the signcryption oracle since otherwise AskKey2 or SCBad
occur). Fixing the values of all random variables in G2 except hUSC[j] and varying the value
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of hUSC[j] we see that for all values of hUSC[j] different from r, either the view of ACCA remains
unchanged up to the ith unsigncryption query so that the unsigncryption oracle rejects, or
the view of A is unchanged until ACCAs `th unsigncryption query for some ` < i is accepted,
so event USCBad2[`] occurs for some ` < i. So, thanks to the uniformly random choice of
hUSC[j] in {0, 1}lq it follows that Pr[USCBad2[i]] ≤ 1/2lq(k) for i = 1, . . . , qUSC and hence at
most qUSC/2lq(k) over all unsigncryption queries.

Thus, finally we get

|Pr[S2]− Pr[S1]| ≤ Pr[AskKey2] +
qSC + qUSC

2lq(k)
.

• Game G3: In this game, we modify the rule R2-4 and obtain a new rule R3-4. However, we
retain the rules R2-1, R2-2 and R2-3 in Game G2, renaming them as “R3-1”, “R3-2” and
“R3-3” respectively.

R3-4 In this rule, we replace the random oracles G and H by the random oracle simulators
GSim and HSim. Note that two types of “query-answer” lists GList1 and GList2 are
maintained for the simulation of the random oracle G. GList1 consists of simple “input-
output” entries for G of the form (K, τ). GList2 (whose new entries are added by either
the signcryption oracle simulator) consists of the special input-output entries for G which
are of the form yR||ω||(?, τ). This implicitly represents the input-output relation τ =
G(ωlogg yR), although the input ωlogg yR is not explicitly stored and hence is denoted
by “?”. Similarly to GSim, the simulator HSim also maintains two input-output lists
HList1 and HList2. HList1 consists of simple input-output entries for H, which are of
the form (µ, r). HList2 (whose new entries are added by either the signcryption or
unsigncryption oracle simulators in later games) consists of the special input-output
entries for H which are of the form yR||ω||((m, yS , yR, ?), r) and implicitly represents the
input-output relation H(m, yS , yR,K) = r, where K = ωlogg yR is not explicitly stored
and hence is denoted by “?”. Complete specifications for GSim and HSim are as follows.

Random Oracle Simulators GSim and HSim

GSim(K)
If O(g, ω, yR,K) = 1
for some yR||ω||(?, τ) ∈ GList2

Return τ
Else if (K, τ) exists in GList1

Return τ

Else τ
R← {0, 1}lG(k)

Return τ
Add (K, τ) to GList1

HSim(m, yS , yR,K)
If O(g, ω, yR,K) = 1 and
yR||ω||(m, yS , yR, ?), r) ∈ HList2

Return r
Else if ((m, yS , yR,K), r)
exists in HList1 Return r

Else r
R← ZZq Return r

Add ((m, yS , yR,K), r) to HList1

We note that GList2 and HList2 are actually empty throughout this game because we still
have the original signcryption and unsigncryption oracles, so no entries are ever added to
them – GList1 and HList1 are used in this game.

Finally, notice that the above simulation for the random oracles G and H are perfect. Hence,
we have

Pr[AskKey3] = Pr[AskKey2].

• Game G4: We retain all the rules R3-1, R3-2 and R3-3, renaming them as “R4-1”, “R4-2”
and “R4-3” respectively. But we further modify R3-4 and obtain a new rule “R4-4”.
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R4-4 In this rule, we replace the signcryption oracle by the signcryption oracle simulator
SCSim. On the other hand, we assume that the unsigncryption oracle is perfect.

Signcryption Oracle Simulator SCSim

SCSim(y∗A, (yR,m))
If yR /∈ 〈g〉 \ {1} Return Rej
τ

R← {0, 1}lG(k); r
R← ZZq; c ← Eτ (m); s

R← ZZ∗q
If gry∗A = 1 Return Rej
ω ← (y∗Agr)s

Add yR||ω||(?, τ) to GList2
Add yR||ω||((m, y∗A, yR, ?), r) to HList2
C ← (c, r, s)
Return C

Let K = (y∗Agr)sx∗B denote the query of signcryption oracle to G in game G4. Note that if
neither (K, τ) nor ((m, y∗A, yR,K), r) exists in GList1 and HList1 respectively, the simulated
signcryptext in G4 is distributed the same as the signcryptext in Game G3 and a simulation
error occurs otherwise.

But in G3, thanks to the uniform distribution of K in 〈g〉 \ {1}, and since GList1 and HList1
contain all the queries to G and H both by the attacker; and the signcryption and unsign-
cryption oracles, we have Pr[(K, τ) ∈ GList1 ∨ ((m, y∗A, yR,K), r) ∈ HList1] ≤ qG+qH+qSC+qUSC

2lq(k) .

Since there are up to qSC signcryption queries, the total probability of outcomes leading to
signcryption oracle simulation error is upper-bounded by:

qSC

(qG + qH + qSC + qUSC

2lq(k)

)
.

Summing up all decryption queries, we have

|Pr[AskKey4]− Pr[AskKey3]| ≤ qSC

(qG + qH + qSC + qUSC

2lq(k)

)
.

• Game G5: We retain the rules R4-1, R4-2 and R4-3, renaming them as “R5-1”, “R5-2”
and “R5-3” respectively. But we modify R4-4 and obtain the following new rule “R5-4”.

R5-4 We replace the unsigncryption oracle by a unsigncryption oracle simulator USCSim
which can unsigncrypt a submitted unsigncryption query (yS , C) where C = (c, r, s),
without knowing the private key. Notice that the unsigncryption oracle simulator makes
use of AGDH’s DDH oracle ODDH(·, ·, ·, ·) to check whether a given tuple is Diffie-Hellman
one.
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Unsigncryption Oracle Simulator USCSim

USCSim(y∗B , yS , C)
If yS /∈ 〈g〉 \ {1} Return Rej
Parse C as (c, r, s)
If r /∈ ZZq or s /∈ ZZ∗q or c /∈ SPc Return Rej
ω ← (ySgr)s

If there exists (K, τ) ∈ GList1 such that ODDH(g, ω, y∗B ,K) = 1 or
there exists yR||ω′||(?, τ) ∈ GList2 such that ODDH(ω, ω′, yR, y∗B) = 1

m ← Dτ (c)
Else τ

R← {0, 1}lG(k); Add y∗B ||ω||(?, τ) to Glist2
m ← Dτ (c)

If there exists ((m, yS , y∗B ,K), h) ∈ HList1 such that ODDH(g, ω, y∗B ,K) = 1 or
there exists yR||ω′||((m, yS , yR, ?), h) ∈ HList2 such that ODDH(ω, ω′, yR, y∗B) = 1

If h = r Return m Else Return Rej
Else h

R← ZZq

Add (y∗B ||w||(m, yS , y∗B , ?), h) to HList2
If h = r Return m Else Return Rej

Observe that the full contents of GList1 ∨ GList2 and HList1 ∨ HList2 are updated identically
in games G4 and G5, where full means that before comparing the lists in the two games, we
convert the implicit GList2 and HList2 entries into the explicit entries that they represent (with
the appropriate K values). This is because the only difference is that in G5 the unsigncryption
oracle adds implicit entries to GList2 and HList2, while in G4 they are added explicitly to GList1
and HList1. Thanks to the DDH oracle used by GSim, HSim and USCSim, the oracles respond
in a way which depends only on the full contents of GList and HList, and hence the view of
ACCA is identical in G4 and G5 so

Pr[AskKey5] = Pr[AskKey4].

Since Game G2, AskKeyi for i = 2, 3, 4, 5 has implied that when AskKeyi occurs the GDH prob-
lem can be solved. More precisely, the event AskKeyi for i ≥ 2 means that K∗ = (y∗B)s+(r++x∗A) =
(y∗B)s+x∗A(y∗B)s+r+

has been queried to G or H and hence one can compute gab = (y∗B)x∗A =
(K∗/(y∗B)s+r+

)1/s+
. Furthermore, at this stage, one can check which one of the queries to the

random oracles G and H is a Diffie-Hellman key of gab using AGDH’s DDH oracle ODDH(·, ·, ·, ·).
Consequently we have

Pr[AskKey5] ≤ SuccGDH
ZZ∗p,AGDH(k).

Putting all the bounds we have obtained in each game together, we obtain
1
2
SuccFSO/FUO−IND−CCA2

ACCA,ZSCR (k) =
∣∣∣Pr[S0]− 1

2

∣∣∣

≤ qH + qSC + qUSC

2lq(k)
+

1
2
SuccPI−SKE

API,SKE (l) +
qSC + qUSC

2lq(k)

+ qSC

(qG + qH + qSC + qUSC

2lq(k)

)
+ Pr[AskKey5]

≤ 1
2
SuccPI−SKE

API,SKE (l) + qSC

(qG + qH + qSC + qUSC + 2
2lq(k)

)

+
qH + 2qUSC

2lq(k)
+ SuccGDH

ZZ∗p,AGDH(k).

The advantage bound claim of the theorem follows upon taking maximums over all adversaries
with the appropriate resource parameters. The running time counts can be readily checked.

ut
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5.4 Unforgeability of Zheng’s Signcryption Scheme

In this section we prove that the GDL assumption is sufficient for the signcryption scheme ZSCR
to achieve the strong unforgeability in the sense of FSO-UF-CMA in the random oracle model.

Theorem 2 If the GDL assumption holds then Zheng’s original signcryption scheme ZSCR is
unforgeable in the FSO-UF-CMA sense. Concretely, the following bound holds:

InSecFSO−UF−CMA
ZSCR (t, qSC, qG, qH) ≤ 2

√
qH · InSecGDL(t′, qOrDDH)

+
qSC(qG + qH + qSC) + qH + 1

2lq(k)−1
,

where t′ = 2t + O(q2
G + 1) + O(q2

H + 1) + O((t′′ + k3)qSC) and qOrDDH = 2qSC(qG + qH) + 2qH. Here
t′′ denotes the running time of the one-time symmetric key encryption scheme.

Proof. We show how to use any efficient FSO-UF-CMA attacker AUF to construct an efficient
attacker AGDL against the GDL problem, thus contradicting the GDL assumption. We will do this
in two stages. In stage 1 we use AUF to construct an efficient algorithm AGDL′ for a variant of the
GDL problem that we define below and call GDL’. Then in stage 2 we show how to transform any
efficient algorithm for GDL’ into an efficient algorithm for GDL.

Stage 1. In this stage, our aim is to keep modifying the real attack game SCRUFGame
presented in Definition 3 until we get to the stage where we obtain a game which constitutes an
algorithm for the GDL’ problem, which is defined as follows :

• Problem GDL’: Given (g, p, q, ga), where (g, p, q) = GC(k) and a
R← ZZ∗q , up to qR queries

(y[i],K[i]) ∈ 〈g〉\{1}×〈g〉 to a random beacon R which returns uniformly random independent
integers r[i] ∈ ZZq (for i = 1, . . . , qR), and up to qOrDDH queries to a restricted DDH oracle
OrDDH(g, ga, ·, ·), compute s∗ ∈ ZZ∗q and i∗ ∈ {1, . . . , qR} such that K[i∗] = y[i∗]s∗(r[i∗]+a).

We stress that the random beacon R above differs from a random oracle because R always
returns independent random integers, even for repeated queries.

We start with the following game.

• Game G0: This game is the same as the real attack game SCRUFGame in Definition 3.

First, we run the common parameter/oracle generation algorithm GC of ZSCR on input
a security parameter k and obtain a common parameter cp = (p, q, g,G,H,SKE), where
p and q are primes such that q|(p − 1), g is an element in ZZ∗p such that Ordp(g) = q,
G : {0, 1}∗ → {0, 1}lG(k) and H : {0, 1}∗ → ZZq are hash functions modelled as the random
oracles [8], and SKE is the one-time symmetric key encryption scheme that consists of the
encryption function E and the decryption function D. We then run the sender key generation
algorithm GKA on input (k, cp) to obtain Alice (sender)’s fixed private/public key pair. Here,
Alice’s private key consists of (x∗A, y∗A) where y∗A = gx∗A , and her public key is y∗A itself.

We then run AUF on input the public key y∗A. We answer AUF’s queries using the real SC, G
and H oracles. Eventually, AUF returns a forgery (C∗, y∗R), where C∗ = (c∗, r∗, s∗) is the forged
signcryptext and y∗R is the forgery recipient’s public key. We then apply the unsigncryption
algorithm to compute K∗ = (y∗R)(r

∗+x∗A)s∗ , τ∗ = G(K∗), and m∗ = Dτ (c∗) and perform the
following verification checks:

1 Check whether y∗R is in 〈g〉 \ {1}.
2 (c∗, r∗, s∗) ∈ SPc × ZZq × ZZ∗q .

3 H(m∗, y∗A, y∗R,K∗) = r∗.
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4 (y∗R,m∗) was not queried by AUF to SC oracle.

We denote by S0 the event that AUF succeeds in the sense of FSO-UF-CMA so all verification
checks above are passed, and use a similar notation Si for all games Gi.

Since this game is the same as the real attack game, we have

Pr[S0] = SuccFSO−UF−CMA
AUF,ZSCR (k).

• Game G1: In this game, we modify one of the verification checks for AUF’s output forgery.
The modification obeys the following rules (note that rules R1-2, R1-3 and R1-4 are also
satisfied in Game G0).

R1-1 Instead of the verification check (3), we check that H′(m∗, y∗A, y∗R, K∗) = r∗, where
H′ is a new random oracle independent of H.

R1-2 We use the random oracle G to answer all queries to G in the game.

R1-3 We use the random oracle H to answer all queries to H in the game.

R1-4 We use the signcryption algorithm SC to answer all signcryption queries in the
game.

Since the new random oracle H′ is never queried during the game until the verification query
(m∗, y∗A, y∗R, K∗) is made to it at the end of the game, we know that H′(m∗, y∗A, y∗R,K∗) is
uniformly random in ZZq and independent of r∗. Hence we have

Pr[S1] ≤ 1
2lq(k)

.

Note that in Game0, we also have that H(m∗, y∗A, y∗R, K∗) is uniformly random in ZZq and
independent of r∗, unless H was queried at (m∗, y∗A, y∗R,K∗) by either AUF or SC. But if event
S0 occurred then H could not have been queried at (m∗, y∗A, y∗R,K∗) by SC because this would
imply that AUF queried (m∗, y∗R) to SC, contradicting verification check (4). So let AskH0

denote the event in game G0 that AUF queried (m∗, y∗A, y∗R,K∗) to H and (y∗R, m∗) was not
queried by AUF to the SC oracle. We will use an identical notation AskHi for all the remaining
games. We therefore have:

|Pr[S1]− Pr[S0]| ≤ Pr[AskH0] = Pr[AskH1].

• Game G2: In this game, we modify rules R1-2 and R1-3 to obtain new rules R2-2 and R2-3.
However, we retain the rules R1-1 and R1-4, renaming them R2-1 and R2-4, respectively.

R2-2 We use a random oracle simulator GSim to answer all queries to G in the game.

R2-3 We use a random oracle simulator HSim to answer all queries to H in the game.

Note that two types of “query-answer” lists GList1 and GList2 are used by Gsim for the
simulation of the random oracle G. These lists are initialized as empty and updated as the
game runs. Note that list GList2 is never updated in this game but will be updated by the
signcryption oracle simulator in game G3. The list GList1 consists of simple “input-output”
entries for G of the form (K, τ). The list GList2 consists of the special input-output entries for
G which are of the form yR||r||s||(?, τ). This implicitly represents the input-output relation
τ = G(y(r+x∗A)s

R ), although the input y
(r+x∗A)s
R is not explicitly stored and hence is denoted by

“?”. Similarly to GSim, the simulator HSim also uses two input-output lists HList1 and HList2
(once again, the list HList2 is never updated in this game but will be in game G3). HList1
consists of simple input-output entries for H, which are of the form (µ, r). HList2 consists of
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the special input-output entries for H which are of the form yR||r||s||((m, yS , yR, ?), r) and
implicitly represents the input-output relation H(m, yS , yR,K) = r, where K = y

(r+x∗A)s
R is

not explicitly stored and hence is denoted by “?”. Note that HSim also uses a random beacon
R to compute independent and uniformly random values r = R(yR,K) in ZZq (the beacon R
differs from a random oracle because it always returns independent random strings, even for
repeated queries). Complete specifications for GSim and HSim are as follows.

Random Oracle Simulators GSim and HSim

GSim(K)
If OrDDH(g, y∗A, ys

R, K/yrs
R ) = 1

for some yR||r||s||(?, τ) ∈ GList2
Return τ

Else if (K, τ) exists in GList1
Return τ

Else τ
R← {0, 1}lG(k)

Return τ
Add (K, τ) to GList1

Hsim(m, yS , yR,K)
If OrDDH(g, y∗A, ys

R,K/yrs
R ) = 1

for some yR||r||s||((m, y∗A, yR, ?), r) ∈ HList2
Return r

Else if ((m, yS , yR,K), r)
exists in HList1 Return r
Else r = R(yR,K) Return r
Add ((m, yS , yR,K), r) to HList1

Note that the above simulation for the random oracles G and H is perfect. Hence, we have

Pr[AskH2] = Pr[AskH1].

• Game G3: We retain rules R2-1, R2-2 and R2-3, renaming them as “R3-1”, “R3-2” and
“R3-3” respectively. But we modify rule R2-4 and obtain a new rule “R3-4”.

R5-4 We use a signcryption oracle simulator SCSim to answer all signcryption queries
in the game.

The specification for signcryption oracle SCSim follows.

Signcryption Oracle Simulator SCSim

SCSim(y∗A, (yR,m))
If yR /∈ 〈g〉 \ {1} Return Rej
τ

R← {0, 1}lG(k); r
R← ZZq; c ← Eτ (m); s

R← ZZ∗q
If gry∗A = 1 Return Rej
Add yR||r||s||(?, τ) to GList2
Add yR||r||s||((m, y∗A, yR, ?), r) to HList2
C ← (c, r, s)
Return C

In Game G2, define the event B2 that for some signcryption query we have (K, τ) ∈ GList1
or ((m, y∗A, yR,K), r) ∈ HList1. Note that in Game G2, if B2 does not occur then (τ, r, s) are
independent and uniformly distributed in {0, 1}lG × ZZq × ZZ∗q , exactly as in Game G3. Hence
Pr[AskH3] and Pr[AskH2] can differ by at most Pr[B2]. But, for each signcryption query
in G2, thanks to the uniform distribution of K in 〈g〉 \ {1}, we have Pr[(K, τ) ∈ GList1 ∨
((m, y∗A, yR, K), r) ∈ HList1] ≤ qG+qH+qSC

2lq(k) . Finally, since there are up to qSC signcryption
queries we add up these bounds to obtain:

Pr[B2] ≤ qSC

(qG + qH + qSC

2lq(k)

)
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and therefore:

|Pr[AskH3]− Pr[AskH2]| ≤ qSC

(qG + qH + qSC

2lq(k)

)
.

Now we observe that Game G3 constitutes an algorithm AGDL′ for breaking the GDL’ problem
with success probability Pr[AskH3]. Namely, AGDL′ is given input (g, p, q, y∗A = gx∗A) and runs AUF

on this input using the rules of G3. AGDL′ uses its random beacon R (qH queries) and restricted
DDH oracle OrDDH in running GSim and HSim simulators. If AskH3 occurs then we know that AUF

returns (y∗R, c∗, r∗, s∗) such that HSim was queried at (m∗, y∗A, y∗R,K∗) (with K∗ = (y∗R)(r
∗+x∗A)s∗)

by AUF and hence (since (y∗R,m∗) was not queried to SC) R was queried with (y∗R,K∗) by HSim,
returning the answer r∗. At the end of the game, AGDL′ checks which query to R was equal to
(y∗R,K∗) (using at most qUF

H additional queries to the DDH oracle OrDDH), and outputs s∗ and the
index i∗ of the matching R query as the solution to the GDL’ problem instance.

This completes the “Stage 1” reduction. The algorithm AGDL′ has run time tGDL′ = t+O(q2
G +

1)+O(q2
H +1)+O((tSKE +k3)qSC), makes qGDL′

OrDDH = qSC(qG +qH)+qH DDH queries and qGDL′
R = qH

R queries, and has success probability

SuccGDL′
ZZ∗p,AGDL′ (k) ≥ Pr[AskH3] ≥ SuccFSO−UF−CMA

AUF,ZSCR (k)−
qSC

(
qG + qH + qSC

)
+ 1

2lq(k)
.

Stage 2. We will use the “forking technique” [14, 27, 23] to perform the “Stage 2” reduction
between GDL’ and GDL. In the analysis of this stage we will use the following two lemmas.

Lemma 2 (Splitting Lemma[23]) Let a and b denote independent random variables over finite
sets A and B, respectively, with probability distribution functions PA(.) and PB(.), respectively. Let
S ⊆ A× B be a set with Pr[(a, b) ∈ S] ≥ ε. For each a ∈ A, let S(a) ⊆ B denote the set of b ∈ B
such that (a, b) ∈ S. Then there exists a ‘good’ subset G of S such that:

Pr
(a,b)∈A×B

[(a, b) ∈ G] ≥ ε/2

and, for all (a′, b′) ∈ G,
Pr
b∈B

[b ∈ S(a′)] ≥ ε/2.

Proof. Let us define the good set G to be the set of all (a′, b′) ∈ S such that Pr[b ∈ S(a′)] ≥ ε/2.
Then it is enough to show that Pr[(a, b) ∈ G] ≥ ε/2.

Suppose, towards a contradiction, that Pr[(a, b) ∈ G] < ε/2. Then Pr[(a, b) ∈ S] = Pr[(a, b) ∈
G] +Pr[(a, b) ∈ (S ∧¬G)] < ε/2+Pr[(a, b) ∈ (S ∧¬G)]. But (a, b) ∈ (S ∧¬G) means that a ∈ WA,
where WA ⊆ A is the set of a′ ∈ A such that Pr[b ∈ S(a′)] < ε/2. So Pr[(a, b) ∈ (S ∧ ¬G)] =∑

a′∈WA

∑
b′∈S(a) PA(a′)PB(b′) =

∑
a′∈WA

PA(a′) · Pr[b ∈ S(a′)] < ε/2 since Pr[b ∈ S(a′)] < ε/2
for all a′ ∈ WA. It follows that Pr[(a, b) ∈ S] < ε/2 + ε/2 = ε, a contradiction. This shows that
Pr[(a, b) ∈ G] ≥ ε/2, which completes the proof. ut

We will also use the following inequality.

Lemma 3 Let p =
∑q

j=1 pj for some q real numbers p1, . . . , pq and let δ > 0 be given. If p ≥ q · δ
then the following inequality holds:

q∑

j=1

pj · (pj − δ) ≥ (1/q) · (p− q · δ)2.
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Proof. We have
∑q

j=1 pj · (pj − δ) =
∑q

j=1 p2
j − p · δ. Using the Cauchy-Schwartz inequality we

have
∑q

j=1 ≥ (1/q) · (∑q
j=1 pj)2 = (1/q) ·p2, so

∑q
j=1 pj · (pj−δ) ≥ (1/q)(p2−q ·δ ·p). But from the

assumption that p ≥ q · δ, we have (q · δ)p ≥ (q · δ)2 and hence p2− q · δ ·p ≥ p2−2(q · δ)p+(q · δ)2 =
(p− q · δ)2, which gives the claimed inequality. ut

Now we present the “Stage 2” reduction as the following lemma:

Lemma 4 (Stage 2) Any algorithm AGDL′ for problem GDL’ with run-time tGDL′, qGDL′
OrDDH DDH

queries and qGDL′
R R queries and success probability SuccGDL′

ZZ∗p,AGDL′ (k) ≥ 2qGDL′
R /2lq can be converted

into an algorithm AGDL for problem GDL with run-time tGDL = 2tGDL′ + O(l2q) which makes
qGDL
OrDDH = 2qGDL′

OrDDH DDH queries, and has success probability

SuccGDL
ZZ∗p,AGDL(k) ≥

(
1/qGDL′

R

)
·
(
SuccGDL′

ZZ∗p,AGDL′ (k)/2− qGDL′
R /2lq

)2
.

Proof. On input (g, p, q, ga), our GDL algorithm AGDL works as follows.
Setup. AGDL first sets up two random vectors−→r = (r[1], . . . , r[qGDL′

R ]) and
−→̂
r = (r̂[1], . . . , r̂[qGDL′

R ])
with r[i]’s and r̂[i]’s chosen uniformly and independently at random from ZZq (these vectors will be
used to answer AGDL′ ’s R queries).

First Run. AGDL runs AGDL′ on input (g, p, q, ga;ω), where ω denotes the random coins input
of AGDL′ , and answers AGDL′ ’s oracle queries as follows:

(1) R-Query simulator. When AGDL′ makes its ith R query (y[i],K[i]), AGDL responds with r[i].

(2) OrDDH-Query simulator. AGDL simply forwards AGDL′ ’s query to OrDDH(g, ga, ·, ·) and sends the
response back.

First Run Output. At the end of first run, AGDL′ outputs (s∗, i∗). Note that if this run is successful
then K[i∗] = y[i∗](r[i∗]+a)s∗ .

Second Run. AGDL now runs AGDL′ again on the same input (g, p, q, ga; ω) as used in first run,
but answers its oracle queries differently as follows:

(1) R-Query simulator. When AGDL′ makes its ith R query (ŷ[i], K̂[i]), AGDL responds with r[i] if i < i∗

and with r̂[i] if i ≥ i∗.

(2) OrDDH-Query simulator. As in first run.
Second Run Output. At the end of the second run, AGDL′ outputs (ŝ∗, î∗). Note that if this run is
successful then K̂[i∗] = ŷ[̂i∗](r̂[̂i∗]+a)ŝ∗ .

AGDL’s output. If î∗ = i∗ and r̂[i∗] 6= r[i∗] then AGDL returns â = s∗r[i∗]−ŝ∗r̂[i∗]
ŝ∗−s∗ ∈ ZZq. Otherwise,

AGDL fails.
This completes the description of AGDL. The running-time of AGDL is twice the run-time of

AGDL′ plus the time O(k2) to compute â at the end. The number of OrDDH queries made by AGDL is
up to twice the number of queries made by AGDL′ . This establishes the claimed resources of AGDL.

We now lower bound the success probability of AGDL. For i ∈ {1, . . . , qGDL′
R }, we call a run

of AGDL′ i-successful if AGDL succeeds and i∗ = i. Note that in the above algorithm, if both first
and second runs of AGDL′ are i-successful for some i and r[i] 6= r̂[i], then we have i∗ = î∗ = i,
K[i∗] = y[i∗](r[i∗]+a)s∗ and K[i∗] = y[i∗](r̂[i∗]+a)ŝ∗ (note that the first i R queries are the same in
both runs because the view of AGDL′ is the same up to ith query response). Since y[i∗] ∈ 〈g〉 \ 1
has order q this implies that (ŝ∗ − s∗)a + ŝ∗r̂[i∗] − s∗r[i∗] = 0 and hence (noting that r̂[i∗] 6= r[i∗]
implies ŝ∗ 6= s∗) AGDL’s output â = s∗r[i∗]−ŝ∗r̂[i∗]

ŝ∗−s∗ is equal to a, so AGDL succeeds.
So it remains to lower bound the probability of the event S∗ that both runs of AGDL′ are i-

successful for some i ∈ {1, . . . , qGDL′
R } and r̂[i] 6= r[i]. To do this, we split S∗ into qGDL′

R disjoint
subevents S∗i according the value of i and bound each one. For each i, let Ai denote the outcome
space for the random variable ai = (g, p, q, ga, ω, r[1], . . . , r[i − 1]) consisting of the view of AGDL′
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up to the ith R-query, and let Bi denote the outcome space for the independent random variable
bi = (r[i], . . . , r[qGDL′

R ]) consisting of the view of AGDL′ after the ith R-query (including the response
r[i] to the ith query). Note that the event Si that a run of AGDL′ is i-successful is a subset of Ai×Bi

with probability pi
def= Pr[(ai, bi) ∈ Si]. Applying the Splitting Lemma 2, we know that there exists

a subevent Gi of Si such that Pr[(ai, bi) ∈ Gi] ≥ pi/2, and for each (a, b) ∈ Gi, the probability that
(a, b̂) ∈ Si over a random choice of b̂ in Bi is also at least pi/2. Hence, the probability that the
outcome (a, b) of the first run of AGDL′ in our algorithm is in Gi is at least pi/2, and then for each of
those outcomes, the probability over the random choice of b̂ = (r̂[i], . . . , r̂[qGDL′

R ]) that the second
run outcome (a, b̂) is in Si is at least pi/2. Since r̂[i] is uniformly chosen in ZZq, the chance that it
collides with r[i] is less than 1/2lq(k), so with probability at least pi/2 − 1/2lq(k) over b̂ we know
that (a, b̂) ∈ Si and also r̂[i] 6= r[i]. Summarizing, we have that the probability that (1) (a, b) ∈ Gi

and (2) (a, b̂) ∈ Si and (3) r̂[i] 6= r[i] all occur is at least pi/2(pi/2 − 1/2lq(k)). This latter event
implies that both runs are i-successful and r̂[i] 6= r[i], i.e. that event S∗i occurs. Hence

Pr[S∗i ] ≥ pi/2(pi/2− 1/2lq(k)) for all i ∈ {1, . . . , qGDL′
R },

and since pi is the probability that a run of AGDL′ is i-successful, we know that
∑qo

i=1 pi =
SuccGDL′

ZZ∗p,AGDL′ (k). Assuming that SuccGDL′
ZZ∗p,AGDL′ (k) ≥ 2qR/2lq(k), we apply Lemma 3 to get the desired

lower bound on AGDL’s success probability:

Pr[S∗] =
qGDL′
R∑

i=1

Pr[S∗i ] ≥
(
1/qGDL′

R

)
·
(
SuccGDL′

ZZ∗p,AGDL′ (k)/2− qGDL′
R /2lq(k)

)2
.

ut
To complete the proof of the theorem, we compose the reductions from “Stage 1” and “Stage

2” and convert AUF into the desired algorithm AGDL with the resources claimed in the theorem
statement and success probability satisfying the bound

SuccFSO−UF−CMA
AUF,ZSCR (k) ≤ 2

√
qH · SuccGDL

ZZ∗p,AGDL(k) +
qSC(qG + qH + qSC) + qH + 1

2lq(k)−1
.

The claimed insecurity bound of the theorem now follows by taking a maximum over all adversaries
with the appropriate resource parameters. ut

We remark here that the above result is optimal in the sense that the GDL assumption is also
necessary for the scheme ZSCR to achieve FSO-UF-CMA. If an efficient algorithm for the GDL
problem is available, it can be used to efficiently compute the sender’s secret key from his public key,
by using the sender’s flexible signcryption oracle to simulate the answers to the GDL algorithm’s
DDH queries. We refer the reader to [26] for the details of this attack.

6 Concluding Remarks

We have proved the confidentiality of Zheng’s original signcryption scheme with respect to a strong
and well defined security notion that we introduced and called “FSO/FUO-IND-CCA2”. Although
this notion bears some similarities to the well known “IND-CCA2” notion defined for standard
public-key encryption schemes, it is stronger than the direct adaptation of “IND-CCA2” to the
setting of signcryption, since we allow an attacker to query both the signcryption oracle and the
unsigncryption oracle in a flexible way. We have also introduced a strong unforgeability notion
called “FSO-UF-CMA” which allows an forger to query the signcryption oracle in a flexible way.
We have successfully proved the unforgeability of Zheng’s original signcryption with respect to this
notion.
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We emphasize here that our security models for signcryption are applicable not only to Zheng’s
original scheme but also to other various signcryption schemes: As mentioned earlier in this paper,
Zheng’s SDSS2-type signcryption scheme described in [34, 35] can be proven to be secure relative to
the same computational assumptions for the SDSS1-type signcryption scheme using the same proof
techniques presented in this paper. Another immediate consequence of the results of this work
is the provable confidentiality and unforgeability of the elliptic curve variants of Zheng’s original
signcryption scheme described in [37]. The only difference is that we need to rely on elliptic curve
equivalent GDH and GDL assumptions in proving the security of the elliptic curve variants. It
should also be noted that all these schemes require the use of two separate hash oracles, one in
generating τ which acts as an encryption key for a message m and the other in obtaining r which
participates in the generation of a signature.
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