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Abstract. Three of the most important criteria for cryptographically
strong Boolean functions are the balancedness, the nonlinearity and the
propagation criterion. This paper studies systematic methods for con-
structing Boolean functions satisfying some or all of the three criteria.
We show that concatenating, splitting, modifying and multiplying se-
quences can yield balanced Boolean functions with a very high nonlin-
earity. In particular, we show that balanced Boolean functions obtained
by modifying and multiplying sequences achieve a nonlinearity higher
than that attainable by any previously known construction method. We
also present methods for constructing highly nonlinear balanced Boolean
functions satisfying the propagation criterion with respect to all but one
or three vectors. A technique is developed to transform the vectors where
the propagation criterion is not satisfied in such a way that the func-
tions constructed satisfy the propagation criterion of high degree while
preserving the balancedness and nonlinearity of the functions. The alge-
braic degrees of functions constructed are also discussed, together with
examples illustrating the various constructions.

1 Preliminaries

Let f be a function on V,,. The (1, —1)-sequence defined by ((—1)7(®0) (—1)f(a1),

.., (=1)f(e2" 1)y is called the sequence of f, and the (0,1)-sequence defined by
(f(ao), flar), ..., f(azn_1)) is called the truth table of f, where a;, 0 < i <
2" — 1, denotes the vector in V,, whose integer representation is i. A (0, 1)-
sequence ((1,—1)-sequence) is said balanced if it contains an equal number of
zeros and ones (ones and minus ones). A function is balanced if its sequence is
balanced.
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The Hamming weight of a (0,1)-sequence (or vector) «a, denoted by W(a),
is the number of ones in a. The Hamming distance between two sequences «
and £ of the same length, denoted by d(a, ), is the number of positions where
the two sequences differ. Given two functions f and g on V,, the Hamming
distance between them is defined as d(f,g) = d(&r,&,), where £y and ¢, are the
truth tables of f and g respectively. The nonlinearity of f, denoted by Ny, is
the minimal Hamming distance between f and all affine functions on V,,, i.e.,
Ny = min;—g 1, on+1-1 d(f,pi) where @o, @1, ..., @an+1_1 denote the affine
functions on V,,.

A (1,-1)-matrix H of order n is called a Hadamard matrix if HH! = nl,,
where H? is the transpose of H and I, is the identity matrix of order n. It is
well known that the order of a Hadamard matrix is 1, 2 or divisible by 4 [11]. A
special kind of Hadamard matrix, called Sylvester-Hadamard matriz or Walsh-
Hadamard matriz, will be relevant to this paper. A Sylvester-Hadamard matrix
of order 2", denoted by H,, is generated by the following recursive relation
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Hy=1,H, = {1_1

:| ®Hn,1,n: ]., 2,
where ® denotes the Kronecker product. Note that H, can be represented as
H, = H; ® H; for any s and t with s + ¢t = n.

Sylvester-Hadamard matrices are closely related to linear functions, as is
shown in the following lemma.

lo
b
Lemmal. Write H,, = . where ¢; is a row of H,. Then {; is the se-
lan
quence of h; = {(a;, x), a linear function, where a; is a vector in V,, whose integer
representation is i and x = (x1,...,x,). Conversely the sequence of any linear

function on V,, is a row of Hy.

From Lemma 1 the rows of H, comprise the sequences of all linear func-
tions on V,,. Consequently the rows of +H,, comprise the sequences of all affine
functions on V,,.

The following notation is very useful in obtaining the functional representa-
tion of a concatenated sequence. Let 6 = (i, 42,...,4p) be a vector in V,,. Then
Ds is a function on V), defined by

Dd(ylay%---ayp) = (1 @il@l)"'(yp@ip@l)-

We now introduce the concept of bent functions.

Definition 2. A function f on V), is called a bent function if
2-% Z (_1)f(z)@(5,z> =41
zeV,

for all 8 € V,. Here f(z) & (8,x) is regarded as a real-valued function. The
sequence of a bent function is called a bent sequence.



From the definition we can see that bent functions on V,, exist only when n is
even. It was Rothaus who first introduced and studied bent functions in 1960s,
although his pioneering work was not published in the open literature until some
ten years later [10]. Applications of bent functions to digital communications,
coding theory and cryptography can be found in such as [2, 4, 7].

The following result can be found in an excellent survey of bent functions by
Dillon [5].

Lemma 3. Let f be a function on V,, and let £ be the sequence of f. Then the
following four statements are equivalent:

(i) [ is bent.
(ii) (£,0) = +23n for any affine sequence £ of length 2™.
(iii) f(z) ® f(r @ ) is balanced for any non-zero vector o € V.
(iv) f(z)® (a,z) assumes the value one 2"~ + 237~ times for any a € V.

By (iv) of Lemma 3, if f is a bent function on V,,, then f(z) @ h(z) is also a
bent function for any affine function h on V;,. This property will be employed in
constructing highly nonlinear balanced functions to be described in Section 4.

In this paper we are concerned with the propagation criterion whose formal
definition follows (see also [1, 9]).

Definition 4. Let f be a function on V,,. We say that f satisfies

1. the propagation criterion with respect to a non-zero vector a in Vi, if f(z) ®
f(z ® «) is a balanced function.

2. the propagation criterion of degree k if it satisfies the propagation criterion
with respect to all a« € V,, with 1 < W (a) < k.

Note that the SAC is equivalent to the propagation criterion of degree 1.
Also note that the perfect nonlinearity studied by Meier and Staffelbach [6] is
equivalent to the propagation criterion of degree n.

2 Properties of Balancedness and Nonlinearity

This section presents a number of results related to balancedness and nonlinear-
ity. These include upper bounds for nonlinearity and properties of concatenated
and split sequences. Due to the limit on space, proofs for some of the results are
left to the full version of the paper [13].

The following lemma is very useful in calculating the nonlinearity of a func-
tion.

Lemmab5. Let f and g be functions on V,, whose sequences are {; and {, re-
spectively. Then the distance between f and g can be calculated by d(f,g) =

2n71 - %<£f7£g>



Corollary 6. A function on 'V, attains the upper bound for nonlinearities, 2" ' —
2371 if and only if it is bent.

From Corollary 6, balanced functions can not attain the upper bound for
nonlinearities, namely 27—! — 2571 A slightly improved upper bound for the
nonlinearities of balanced functions can be obtained by noting the fact that a
balanced function assumes the value one an even number of times.

Corollary 7. Let f be a balanced function onV,, (n > 3). Then the nonlinearity
Ny of f is given by

2n=1 _92357=1 _ 9 1 even
Ny < ’
r= { [[27—! — 25771 ]], n odd

where | |z|]| denotes the mazimum even integer less than or equal to x.

The following lemma, first proved in [12], gives the lower bound of the non-
linearity of a function obtained by concatenating the sequences of two functions.

Lemma8. Let f1 and fy be functions on V,, and let g be a function on Vi1
defined by

g(u,x1,...,xn) = (1w fi(z,...,xn) Dufo(xr,...,2Tn)- (1)

Suppose that & and &, the sequences of f1 and fa respectively, satisfy (&1,£) < Py
and (&3,0) < P for any affine sequence £ of length 2™, where P, and P> are
positive integers. Then the nonlinearity of g satisfies Ny > 2™ — %(Pl + P).

As bent functions do not exist on Vo141, an interesting question is what
functions on Va1 are highly nonlinear. The following result, as a special case
of Lemma 8, shows that such functions can be obtained by concatenating bent
sequences. This construction has also been discovered by Meier and Staffelbach
in [6].

Corollary 9. In the construction (1), if both fi and fo are bent functions on
Va,, then N, > 22k — 2k,

A similar result can be obtained when sequences of four functions are con-
catenated.

Lemma10. Let fy, f1, fo and f3 be functions on V,, whose sequences are &y,
&1, & and & respectively. Assume that (§;,0) < P; for each 0 < i < 3 and for
each affine sequence £ of length 2™, where each P; is a positive integer. Let g be
a function on Vo defined by
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9(y, %) = @ D, (v) fi(=) (2)

i=0

where y = (y1,y2), v = (x1,...,%,) and «; is a vector in Vo whose integer
representation is i. Then N, > 2"+1 — %(Po + P, + P, + P;). In particular, when
n is even and fo, f1, fo and fs are all bent functions on V,, N, > 201 —23n+1,



We have discussed the concatenation of sequences of functions including bent
functions. The following lemma deals with the other direction, namely splitting
bent sequences.

Lemma11. Let f(x1,2,-..,x2) be a bent function on Vo, no be the sequence
of f(0,22,...,ma), and n1 be the sequence of f(1,%2,...,x2r). Then for any
affine sequence £ of length 22*~1 we have —2F < (no,£) < 2% and —2F < (n,,0) <
2k,

A consequence of Lemma 11 is that the nonlinearity of f(0,x2,...,x2;) and
f(1,z5,... 21) is at least 22¥—2 — 2k—1 Tt is interesting to note that concate-
nating and splitting bent sequences both achieve the same nonlinearity.

Splitting bent sequences can also result in balanced functions. Let £; be the
ith row of Hj where i = 0,1,...,2% — 1. Note that ¢y is an all-one sequence
while /41, {5, ..., €y, are all balanced sequences. The concatenation of the
rows, (bo,l1,...,0s1_1), is a bent sequence [1]. Denote by f(z1,za,...,x2;) the
function corresponding to the bent sequence. Let £ be the second half of the
bent sequence, namely, { = (lyr-1,0or-141,...,€or_1). Then & is the sequence
of f(1,22,...,29;). Since all ¢;, i = 2¥=1 2k=1 4 1 . 2F — 1 are balanced,
f(1,x2,...,z2r) is a balanced function. The nonlinearity of the function is at
least 22k—2 — k=1,

By permuting {fyx-1, lok—1,1,. .., lsx 1}, we obtain a new balanced sequence
&= ’2,“,1,8’2,6,1“, ..., 4, ) that has the same nonlinearity as that of {£. Now
let " = (62k—1él2k,1,62k—1+1él2k,1+1, ooyeor_1 Ly, ), where each e; is indepen-
dently selected from {1, —1}. " is also a balanced sequence with the same non-
linearity. The total number of balanced sequences obtained by permuting and
changing signs is 22*7".2k—11 These sequences are all different from one another
but have the same nonlinearity.

3 Highly Nonlinear Balanced Functions

Note that a bent sequence on Vs, contains 226~ + 25=1 ones and 22F—1 — 2k—1
zeros, or vice versa. As is observed by Meier and Staffelbach [6], changing 2*~1
positions in a bent sequence yields a balanced function having a nonlinearity of at
least 22#~1 —2F This nonlinearity is the same as that obtained by concatenating
four bent sequences of length 22¥~2 (see Lemma 10).

It is well-known that the maximum nonlinearity of functions on V,, coincides
with the covering radius of the first order binary Reed-Muller code R(1,n) of
length 2™, many results on covering radius of R(1,n) (see [3]) have direct impli-
cations on the nonlinearity of functions. In particular, using a result of [8], we
can construct unbalanced functions on Vapy1, £ > 7, whose nonlinearity is at
least 22k — %2’“, a higher value than 22* — 2% achieved by the construction in
Corollary 9. One might tempt to think that modifying the sequences in [8] would
result in balanced functions with a higher nonlinearity than that obtained by
concatenating or splitting bent sequences. We find that it is not the case. We



take V5 for an example. The Hamming weight of the sequences on Vj5, which
have the largest nonlinearity of 16276, is 16492. Changing 54 positions makes
them balanced. The nonlinearity of the resulting functions is 16222, smaller than
16256 achieved by concatenating two bent sequences of length 2'* (see Corol-
lary 9).

In the following we show how to modify bent sequences of length 22* con-
structed from Hadamard matrices in such a way that the resulting functions
are balanced and have a much higher nonlinearity than that attainable by con-
catenating four bent sequences. This result, in conjunction with sequences in [8],
allows us to construct balanced functions on Vagy15, £ > 7, that have a higher
nonlinearity than that achieved by concatenating or splitting bent sequences.

3.1 On V,

Note that an even number n > 4 can be expressed as n = 4t or n = 4t + 2, where
t > 1. As the first step towards our goal, we have the following lemma whose
proof is left to the full paper [13]:

Lemma 12. For any integer t > 1 there exists

(i) a balanced function f on Vi such that Ny > 24-1 —22t=1 _ ot
(ii) a balanced function f on Vizio such that N, > 241 — 22t _ 2t

With the above result as a basis, we consider an iterative procedure to further
improve the nonlinearity of a function constructed. Note that an even number
n >4 can be expressed asn =2, m >2,orn=2%2t+1), s > 1and ¢ > 1.

Consider the case when n = 2™, m > 2. We start with the bent sequence
obtained by concatenating the rows of Hym-1. The sequence consists of 22"
sequences of length 22" . Now we replace the all-one leading sequence with
a bent sequence of the same length, which is obtained by concatenating the
rows of Hym—2. The length of the new leading sequence becomes 22" Tt is
replaced by another bent sequence of the same length. This replacing process is
continued until the length of the all-one leading sequence is 22 = 4. To finish the
procedure, we replace the leading sequence (1,1,1,1) with (1,—1,1, —1). The last
replacement makes the entire sequence balanced. By induction on s = 2,3,4,.. .,
it can be proved that the nonlinearity of the function obtained is at least

2m—1

92™ -1 _ %(2 +22" 7 122 1 2.22),

The modifying procedure for the case of n = 25(2t + 1), s > 1 and t > 1,
is the same as that for the case of n = 2™, m > 2, except for the last replace-
ment. In this case, the replacing process is continued until the length of the
all-one leading sequence is 2%*!. The last leading sequence is replaced by £ =
(eat,€9t11,...,e0:+1_1), the second half of the bent sequence (eg, 1, ..., exe+1_1),
where each e; is a row of Hy11. Again by induction on s = 1,2,3, ..., it can be
proved that the nonlinearity of the resulting function is at least

92°(2t+1)—1 _ %(225‘1(2t+1) + 92° 7% (2t41) o 92026H1) 4 92641 2t+1)_



We have completed the proof for the following

Theorem 13. For any even number n > 4, there exists a balanced function f*
on V,, whose nonlinearity is

92™ -1 _ %(22*’“1 +22" 7 44
Ny > 2% +2.2?), n=2",
f* = 92°(2t4+1)—1 _ %(223—1(2:&“) + 223—2(2t+1) 4+ - 4
92(2t41) 4 92041 4 gt+1), n=2%2t+1).

Let ¢ = ((o,(1,---,Cx_1) be a sequence of length 22* obtained by modifying
a bent sequence. Permuting and changing signs discussed in Section 2 can also be
applied to (. In this way we obtain in total 22" . 9k1 different, balanced functions,
all of which have the same nonlinearity. Even more functions can be obtained by
observing the fact that the leading sequence (p has exactly the same structure
as the large sequence (, and hence permuting and changing signs can also be
applied to (p.

3.2 On V2k+1

Lemma14. Let fi be a function on Vi and fs be a function on Vi. Then
fi(zy,...,25) @ fo(y1,...,yt) is a balanced function on Vs, if either fi or fo is
balanced.

Let & be the sequence of f; on Vi and & be the sequence of fy on V;.
Then it is easy to verify that the Kronecker product & ® & is the sequence of

fl(xl,...,ms) @fg(yl,...,yt).

Lemma 15. Let fi; be a function on Vi and fy be a function on V;. Let g be a
function on Vs defined by

g(w17"'7x37y17"'7ys) :fl(x17"‘7ws)®f2(y17"'7yt)'

Suppose that & and &, the sequences of fi and fa respectively, satisfy (&1,£) < Py
and (&,0) < P> for any affine sequence ¢ of length 2™, where P, and P, are
positive integers. Then the nonlinearity of g satisfies Ny > 2511 — %Pl - Ps.

Let & be a balanced sequence of length 22 that is constructed using the
method in the proof of Theorem 13, where k > 2, Let &> be a sequence of length
215 obtained by the method of [8]. Note that the nonlinearity of & is 16276, and
there are 13021 such sequences. Denote by f; the function corresponding to &;
and by f2 the function corresponding to &;. Let

F@, oo ok, Tokrts - oo Tak1s) = f1(21, -0, Pak) © fa(Tory1, - -+, P2rr15) (3)

Then



Theorem 16. The function f defined by (3) is a balanced function on Vai1s,
k > 2, whose nonlinearity is at least

92m 414 _ 108(22’“71 + 227"72 NI

NS 22* +2.22), 2k = 2m,
fz 92° (2t+1)+14 _ 108(225_1(2t+1) + 92°7(2t+1) 4t
22(241) 4 921 4 otH1), 2k = 2°(2t + 1).

Proof. Let & = & ® & . Then £ is the sequence of f. Let £ be an arbitrary affine
sequence of length 22¥+15 Then ¢ = £/¢; ® {5, where ¢; is a linear sequence of
length 2% and /5 is a linear sequence of length 2'°. Thus

oy < 22" 422" 4 22° 1292 2k = 2m,
<£17 1> = 223_1(2t+1) + 225_2(2t+1) 4t 92(2t+1) 4+ 92t+1 4 2t+1, 9 — 25(2t + 1)'
and
(€5,65) < 2- (2" —16276) = 216
By Lemma 15, the theorem is true. O

The nonlinearity of a function on Vagy15 constructed in this section is larger
than that obtained by concatenating or splitting bent sequences for all & > 7.

4 Constructing Highly Nonlinear balanced Functions
Satisfying High Degree Propagation Criterion

This section presents two methods for constructing highly nonlinear balanced
functions satisfying the propagation criterion.

4.1 Basic Construction

On Vii41 Let f be a bent function on Vi, and let g be a function on Vapyg
defined by

g(z1,22,.. ., T2p41)
=1 ®x)f(z2,...,To041) D21 (1 ® f(22,. .., T2041))
=21 D f(w2,..., Taps1)- (4)

Lemma17. The function g defined in (4) satisfies the propagation criterion
with respect to all non-zero vectors v € Vapi1 with v # (1,0,...,0).

Proof. Let v = (a1, as,...,a214+1) # (1,0,...,0) and let z = (z1, 22, ..., Tok11)-
Then g(z)Dg(z®y) = a1 D f(x2,..., Tops1) D f(X2Daz, ..., Tapr1Da2k41). Since
f is a bent function, f(x2,...,Tok+1)® f(z2 P az, ..., Tagr1 B asgr1) is balanced
for all (as,...,a2k+1) # (0,...,0) (see (iii) of Lemma 3). Thus g(z) ® g(z & )
is balanced for all v = (aq,as,...,ax+1) # (1,0,...,0). O



From Corollary 9, the nonlinearity of the function g defined by (4) satisfies
Ny, > 22k _ 2% Furthermore, by Lemma 14, ¢ is balanced. Thus we have

Corollary 18. The function g defined by (4) is balanced and satisfies the propa-
gation criterion with respect to all non-zero vectors vy € Vagi1 withy # (1,0,...,0).
The nonlinearity of g satisfies N, > 22k — 2k,

On V;, Let f be a bent function on V5,_2 and let g be a function on Vs
obtained from f in the following way:

g($1,$2,$3, e ,:IZQk)

= (1 ©® 561)(1 D CUQ)f(iIZ3, e ,CUQk) (&) (1 D iIZl)iIZQ(l D f(CU3, e ,HZQk))

'Tl(]' D 1‘2)(1 D f(1'3, v 71:2/0)) D xlef('TSa o 71:219)

=21 @22 @ f(T3,...,T21). (5)
Lemma 19. The function g defined in (5) satisfies the propagation criterion
with respect to all but three non-zero vectors in Vay,. The three vectors where the
propagation criterion is not satisfied are y1 = (1,0,0,...,0), 2 = (0,1,0,...,0),
and v3 =71 ® v = (1,1,0,...,0).

Proof. Let v = (a1, as, .. .,as;) be a non-zero vector in Vs, differing from ~;, v2
and ~ys. Also let z = (x1,...,22;). Then we have g(z) ® g(x ®v) = a1 B ax ®
fzg,...,22p)® f(x3Das, ...,z Basy). Since f is a bent function on Vay_o and

(agy ..., a91) #(0,...,0), f(zs3,...,22) © f(x3 Das,...,Tor Dagy) is balanced,
from which it follows that g(z) ® g(« ® ) is balanced for any non-zero vector
in Vay differing from 71, 72 and ~3. This proves the lemma. O

Since x1 @ x5 is balanced on V5, g is balanced on V5. On the other hand, by
Lemma 8, we have N, > 22¢~1 — 2% Thus we have the following result:

Corollary 20. The function g defined by (5) is balanced and satisfies the propa-
gation criterion with respect to all non-zero vectors y € Vay, withy # (c1,¢2,0,...,0),
where c1,c2 € GF(2). The nonlinearity of g satisfies N, > 22k=1 — 2k,

4.2 Moving Vectors Around

Though functions constructed according to (4) or (5) satisfy the propagation
criterion with respect to all but one or three non-zero vectors, they are not
interesting in practical applications. We show that through linear transformation
of input coordinates, the vectors where the propagation criterion is not satisfied
can be transformed while the balancedness and nonlinearity of the functions are
preserved. In particular, the vectors can be transformed into vectors having a
high Hamming weight. In this way we obtain highly nonlinear balanced functions
satisfying the high degree propagation criterion.

Let f be a function on V,, A a nondegenerate matrix of order n with entries
from GF(2), and b a vector in V,,. Then f*(z) = f(xrA@b) defines a new function
on V,, where © = (z1,22,...,2,). It can be proved that the algebraic degree
and the nonlinearity of f* is the same as those of f. In addition, f* is balanced
iff f is balanced.



On Vapy1

Theorem 21. For any non-zero vector v* € Vapy1 (k > 1), there exist balanced
functions on Vapy1 satisfying the propagation criterion with respect to all non-
zero vectors v € Vagpy1 with v # ~*. The nonlinearities of the functions are at
least 22F — 2%,

Proof. Let f be a bent function and let g be the function constructed by (4).
From linear algebra we know that for any bases B; and Bs of the vector space
Vaki1, where By = {aj|j = 1,...,2k + 1} and By = {B;]5 = 1,...,2k + 1},
there exists a unique nondegenerate matrix A of order 2k + 1 with entries from
GF(2) such that a;A = B, j = 1,...,2k + L. In particular, this is true when
ay =v*and 8, = (1,0,...,0). Let x = (1, x2,...,2,) and let g* be the function
obtained from g by employing linear transformation on the input coordinates of
g:
g" (@) = gz A).

Since A is nondegenerate, g* is balanced and has the same nonlinearity as
that of g. Now we show that g* satisfies the propagation criterion with respect
to all non-zero vectors except v*.

Let v be a non-zero vector in Vi1 with v # 4*. Consider the following
function g*(z) © g*(z ® ) = g(zA) & g(xA & vA) = g(y) ® g(y ® vA) where
y = zA. Note that A is nondegenerate and thus y runs through V5,1 while
x runs through Vagiq. Since v # v* we have vA # (1,0,...,0). From (iii) of
Lemma 3, g(y) ® g(y ® vA) is balanced and hence g*(z) ® g*(z @ ) is balanced.
Consequently, g* satisfies the propagation criterion with respect to all non-zero
vectors in Vopy1 but 4*. This completes the proof. a

As a consequence of Theorem 21, we obtain, by letting v* = (1,1,...,1),
highly nonlinear balanced functions on Va1 satisfying the propagation criterion
of degree 2k. This is described in the following:

Corollary 22. Let f be a bent function on Vap and let g* (1, ..., Topr1) = 21 D
flz1®x2, 21 D3, ...,21 DTopt1). Then g* is a balanced function on Vo1 and
satisfies the propagation criterion of degree 2k. The nonlinearity of g* satisfies
Ny. > 22k — 2k,

On V2k

Theorem 23. For any non-zero vectors vy,vs € Var (k > 2) with v§ # ~3,
there exist balanced functions on Vs satisfying the propagation criterion with
respect to all but three non-zero vectors in V. The three vectors where the
propagation criterion is not satisfied are vy, v5 and vi ® v5. The nonlinearities
of the functions are at least 22%—1 — 2k,

Proof. The proof is essentially the same as that for Theorem 21. The major
difference lies in the selection of bases By = {a;|j = 1,...,2k} and By = {f;|j =



1,...,2k}. By linear algebra, we can let oy = v, a2 =3, 51 = (1,0,0,...,0),
and 32 = (0,1,0,...,0). By the same reasoning as in the proof of Theorem 21,
we can see that ¢g* defined by g*(z) = g(zA) satisfies the propagation criterion
with respect to all but the following three non-zero vectors in Vai: 77, 75 and
v Dv;. Here z = (w1, %2, ..., Tar), 9(x) = 21 Dxa® f(23,...,Ta1), and f, a bent
function on Vay_o, are all the same as in (5), and A is the unique nondegenerate
matrix such that ;A =06;, 7 =1,...,2k. O

Similarly to the case on Viy1, we can obtain highly nonlinear balanced
functions satisfying the high degree propagation criterion, by properly selecting
vectors ~; and 5. Unlike the case on Vaiy1, however, the degree of propagation
criterion the functions can achieve is %k, but not 2k—1. The construction method
is described in the following corollary.

Corollary 24. Suppose that 2k = 3t + ¢ where ¢ = 0,1 or 2. Then there exist
balanced functions on Vs, that satisfy the propagation criterion of degree 2t — 1

(when ¢ = 0 or 1), or 2t (when ¢ = 2). The nonlinearities of the functions are
at least 22F—1 — 2k,

Proof. Set ¢ = 0,co =1ifc=1and set ¢; = ¢c3 = %c otherwise. Let 7y =
(a1, ...,a3t+c) and v5 = (b1, ..., bst4c), where

_Jlforj=1,...,2t+ ¢,
%70 forj=2t+eci+1,...,3t+c

b — 0 forj=1,....,t+ecy,
7711 forj=t+ec +1,...,3t+ec.

By Theorem 23 there exists a balanced function g* on V3 satisfying the
propagation criterion with respect to all but three non-zero vectors in V5. The
three vectors are v{, 75 and v{ ® 75. The nonlinearity of g* satisfies Ng- >
22](271 _ 219-

Note that W(v;) =2t + c1, W(v5) = 2t + co, and W (yf ®3) = 2t +2¢; =
2t + c¢. The minimum among the three weights is 2¢ + ¢;. Therefore, for any
nonzero vector v € Vo, with W(y) < 2t + ¢; — 1, we have v # v, 73 or 7§ ® 3.
By Theorem 23, g*(z) ® g*(z @ ) is balanced. From this we conclude that g*
satisfies the propagation criterion of order 2t + ¢; — 1. The proof is completed
by noting that ¢; =0ifc=0o0r 1 and ¢; =1if ¢ = 2. a

In the full paper [13] we shall show that functions obtained by (4) and (5)
can achieve a wide range of algebraic degrees, namely 2, ... , k and 2, ... ,
k — 1 respectively. We shall also provide two concrete examples to illustrate our
construction methods.
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