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Abstract

For any integers n, m, 2n > m > n we construct a set of boolean functions on Vj,,,
say {f1(2),..., fn(2)}, which has the following important cryptographic properties:
(i) any nonzero linear combination of the functions is balanced;
(ii) the nonlinearity of any nonzero linear combination of the functions is at least
2m—1 _ 2n—1.
(iii) any nonzero linear combination of the functions satisfies the strict avalanche cri-
terion;
(iv) the algebraic degree of any nonzero linear combination of the functions is m—n+1;

(v) F(z) = (fi(2),-.., fn(2)) runs through each vector in V;, precisely 2™~ times
while z runs through V,,.

1 Basic Definitions

Let V,, be the vector space of n tuples of elements from GF(2). Let a, 8 € V,,. Write
a = (a1,...,an), B = (b1,...,by), where a;,b; € GF(2). Write (o, 3) = 337 a;jb;. Also
write @ = (ag,...,a,) < B = (b1,...,by) if there exists k, 1 < k < n, such that a; = by,
.oy 01 =bp_1 and a; = 0, by, = 1. Hence we can order all vectors in V,, by the relation <

oy <o <---<agn_q,

where



Definition 1 Let f(x) be a function from V,, to GF(2), where x = (z1,...,zy), (or simply,
a function on ;). The (1 -1)-sequence 5 = ((—1)/(@0) (—1)f(e) = (—1)/(@2n-1)) is called
the sequence of f(z). Similarly, the (0, 1)-sequence (f(ao) f(a1) ... f(agan_1)) is called
the truth table of f(z). In particular, if the truth table of f(z) has 2" ! zeros (ones) f(z)
is said to be 0-1 balanced (or simply, balanced).

Definition 2 We call h(z) = a121 + -+ + apzp + ¢, aj,c € GF(2), an affine function. In
particular, we will call A(z) a linear function if ¢ = 0. The sequence of an affine function
(a linear function) will be called an affine sequence (a linear sequence).

Definition 3 Let f and g be functions on V,, whose sequences are £ and 7 respectively.
The Hamming distance between f and g, denoted by d(f,g), is the number of components
where ¢ and 7 differ. Let ¢1,...,@on,0on 1,...,¢9n+1 be all affine functions on V,,. Ny =
min;—; _on+1 d(f, ;) is called the nonlinearity of f(z).

The nonlinearity is a crucial criterion for a good cryptographic design. It prevents a
cryptosystem from being attacked by solving a set of linear equations.

Definition 4 Let f(z) be a function on V,,. If f(z) + f(z + «) is 0-1 balanced for every
a € V, with W(a) = 1, where W(«a) denotes the number of nonzero components (the
Hamming weight) of «, we say that f(x) satisfies the strict avalanche criterion the (SAC).

The strict avalanche criterion was originally defined in [16], [17], and was generalized
in two different directions [2], [5], [8], [9], [10], [14]. The 0-1 balance, the nonlinearity
and the avalanche criterion are important criteria for cryptographic functions [1], [5], [7],
[10].

Definition 5 A (1, -1)-matrix of order n will be called a Hadamard matriz if HHT = nlI,,.

If n is the order of an Hadamard matrix then n is 1, 2 or divisible by 4 [15]. A special
kind of Hadamard matrix defined below will be relevant:

Definition 6 A Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order 2", de-
noted by H,, is generated by the recursive relation

H, 1 H,_
H,=| n n . n=1,2,..., Hy=1.
" [ anl _anl ] 0
Notation 1 For a vector § = (i1,...,ip) € V), we define a function on V),:

Dts(yla"' ayp) = Dil,n-,ip(yla"'ayp) = (yl +7;1) (yp +Z;))

where i = 1 + 1.



Notation 2 Define a matriz of order s + t, denoted by Q(s,t), whose entries come from
GF(2), such that

_ Is 0s><t ]
Q(S, t) - l D It 9
where I; is the identity matriz of order i, Osx¢ s the zero-matriz of order s X t,
1 0 --- 0]
10 --- 0
D=
10 --- 0 J

Obviously Q(s,t) is a nonsingular matrix.

2 The Properties of Balance, Nonlinearity and SAC

In this section we review a number of results on balance, nonlinearity and the SAC. These
results will be employed in the later part of the paper.

Lemma 1
Di i (Y1y..., = ; VI ey
" 7Zp(y yp) { 0 Zf(yla"'ayp)7&(217"'7211)‘
Proof. The verification is straightforward. O
Lemma 2 Let &, . ;, be the sequence of a function fi . ; (x1,...,24) on V. Set { =
(&o,...0,05 €0,....015 --+» &1,...1,1). Then & is the sequence of the function
f(yla---aypaxla"'amq) = Z Di1,~-~7ip(y1a"'ayp)fil,---,ip(xla---axq)a (1)
(i1,-ip) EVp
that is a function on Vyyp.
(See Lemma 1 of [11].)
Lemma 3 f(y1,...,Yp,Z1,...,2q), defined as in ( 1) is the zero function on Vg, if and
only if each fi, . i, (%1,...,24) is the zero function on V.
Proof. f(y1,...,Yp,T1,...,%4) is the zero function on Vg, if and only if f (i1, ..., ip, z1,...,z4)
is the zero function on Vj, for any fixed (i1, ...,iy) € V). From Lemma 1, f(i1,...,ip, Z1,...,%4) =
it yin (T15 -+, Tg). O

;From the proof of Lemma 3, any function can be uniquely presented by (1).



Lemma 4 D;s(y + 8) = Dsi(y) where y, § € V.

Proof. Since Ds(y+ ) =1 ifand only if y + 3 =6. Dsyp(y) =1 if and only if y = 6 + 5.
This proves the lemma. O

o
Lemma 5 Write H, = :1 where £; is a row of Hy,. Then each ¢; is the sequence
ton 1
of the linear function h;(z) = (a;, ) where a;, 0 <7 < 2" — 1, 4s a vector in Vi, x € Vj,.
(See Lemma 2 of [11].)
ijFrom Lemma 5, the rows of H,, comprise all the sequences of linear functions on V,,

and hence the rows of +=H,, comprise all the sequences of affine functions on V,.

Lemma 6 Let f and g be functions on V, whose sequences are 1y and ng respectively. Then
d(f,g) =2""" = 3{ns,my).

(See Lemma 3 of [11].)
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Lemma 7 For any function f on V,, Ny S 271 — 2371
(See Lemma 4 of [11].)

Lemma 8 Let f(z) be a function on V,, A be a nonsingular matriz of order n, with entries
from GF(2). Set f(zA) =1(x). Then

(1) f is balanced if and only if v is balanced,

(i) Ny = Ny.

Proof. (i) Note that 1(z) = 0 if and only if f(zoA) = 0.

(ii) Let h(z) be an affine function on V,,. Set ha(x) = h(zA). ¥(xo) # ha(xo) if and
only if f(xzgA) # h(zoA). Thus d(f,h) = d(1p,ha). Note that while A runs through all
affine functions on V,,, h4 runs through all affine functions on V,, since A is nonsingular. 0O

Theorem 1 Let f(x) be a function on V,, A be a nonsingular matriz of order n, with
entries from GF(2). Set f(zA) = (x). Lety; denote the ith row of A. If f(x)+ f(x +v)
is balanced for i =1,...,n then 1(x) satisfies the SAC.



Proof.  Let 0; denote the vector V,,, whose the ith entry is 1 and others 0. Note that
IA = A. Thus 6;A =+;,i=1,...,n. Note that ¢(z) + ¥ (x + ;) = f(zA)+ f((z +;)A) =
f(u)+ f(u+;), where u = zA. Since A is nonsingular uA~! = x will go through V;, while
u runs through V,,. Thus ¢(z) + ¢ (z + 0;) is balanced, ¢ = 1,...,n, that is to say, (z)
satisfies the SAC. O

Lemma 9 Let g(y1,...,ys) be a function on V. Set f(y1, .-, Ysy Tty Tt) = g(Y1s- - Ys),
a function on Vsiy.

(i) If g is balanced then f is balanced,

(ii) Np = 2!N,.

Proof. (i) g(y1,...,ys) takes the value 0 and the value 1 both 2°~! times while (yy,...,ys)
runs through V; once. Hence f(y1,...,ys,Z1,...,2;) takes the value 0 and the value 1 both
2151 times while (y1,...,Ys, 1,...,2;) Tuns through V,,,; once.

(i) Let fi(x1,-- s ZesY1ye-sYs) = W1y s Uss T1y o vy t) = g(Y1y -+ Ys)-

Let & be the sequence of g hence n = (&,...,&) is the sequence of fi, where 7 is the
concatenation of 2! &,.

Let L be an affine sequence of length 2!+, By Lemma 5, L is arow of £ H;, ; = £ H; x H,.
Thus L = £¢' x " where ¢ is a linear sequence of length 2, a row of H; and ¢” is a linear
sequence of length 2% a row of Hs. Write ¢/ = (aq,...,a) thus L = (a1l",... al").
Note that (n,L) = Z?;l a;i(&,¢"). Let ¢ be the sequence of a linear function on Vi, say
h. Since d(g,h) 2 Ny, by Lemma 6, (£,¢") < 25 — 2N,. Note that Z?;l aj < 2' thus
(n,L) < 21(2° — 2N,). Let L be the sequence of an affine function on Vs, say h*. Hence
by Lemma 6, d(fi,h*) 2 2'N,. Since h* is arbitrary Ny, 2 2'N,. By (ii) of Lemma 8,
Nf:NhéQtNg. O

Corollary 1 Let g(y1,...,ys) be a function on V. Set f(y1,.. . Ys, T1y---52t) = g(y1,- -+, Ys),
a function on Viiy. Let A = Q(s,t) where Q(s,t) is defined as in Notation 2. Set

f(zA) = (z) where z = (y, x), ¥y = (Y1,---,Ys), T = (x1,...,2¢). If g satisfies the
SAC then v satisfies the SAC.

Proof. Let ; denote the ith row of A. Write y; = (0y, 7;) where o; € Vs, 7; € V.

Fori=1,...,s, f(2) + f(z+7) = g(y) + gy + 0i).

Since ¢ satisfies the SAC ¢(y) + g(y + 0;) is balanced on Vj, by (i) of Lemma 9, f(z) +
f(z+ ;) is balanced on V4.

Fori=s+1,....,s+¢t f(2)+ f(z+v) = g(y) + g(y + 0;). By the same reasoning,
f(2) + f(z+ ) is balanced on V.
Note that A is nonsingular. By Theorem 1, ¢, as a function on V,, satisfies the SAC. O



3 Basic Construction

For y € Vs, z € Vi, write y = (y1,...,9s), £ = (1, ..., x¢).

s ysswnem) = Y Dy G W) fiyge () + (1) (2)
(J1,--575)EVs

where Dj, ;. is defined as in Notation 1, each fj, . ; (z) is a function on Vi, r(y) is a
function on V.

Lemma 10 If each fj, .., (z) in (2) is balanced then f is balanced.

Proof. For any fixed (j1,...,7s) € Vs f(41s---sds, @1, s2t) = Dy o (Gis - 3s) Fin,js () +
r(J1s -+ 7s) = fjr,js (@) +7(J1,- .-, Js), that is balanced. Thus f is balanced. O

Theorem 2 Let f be defined as in (2), where each fj, . ;. () is a nonzero linear function
on Vi then

(i) [ is balanced,
(i) Ny 2 25701 — 2071 f il ;i (z) are distinct linear functions on Vi,

(iii) f(z) + f(z+ ) is balanced whenever 3 # 0, where z = (y, z), v = (B, a), y,0 € Vs,
z,a € Vi, if fj,..5,(x) are distinct linear functions on V.

Proof. (i) Since any nonzero linear function is balanced, by Lemma 10, f is balanced.

(ii) Let &, ... j, be the sequence of f(ji,...,JsT1,--- &) = fj1,.js (@) + 1715+, 7s)-
Thus &j, .. ;, is a nonzero affine sequence. By Lemma 2, n = (&,....0, &o,..0,1,---,&1,..,1,1) 18
the sequence of f(y1,...,Ys, T1,-..,Tt).

Let L be an affine sequence of length 257!, By Lemma 5, L is arow of + Hs; = £ Hyx H;.
Thus L = £/ x ¢" where ¢ is a linear sequence of length 2%, a row of H; and ¢ is a
linear sequence of length 2¢, a row of Hy. Write £ = (ao,. 0, ao,.01,---,01,..1,1), Where
the subscript (ji,...,Js) € Vs. Thus L = (ao,..ol", ao,.01¢",...,a1,..1.¢"). (n,L) =
D itids @t s (&t g £)- Note that each £, ;. is a nonzero affine sequence. Thus

90 if g, o= 4l
<£j17___7js,€”> — { 0 g]l,...,]s

otherwise.

Since all the ¢;, . ;, are distinct there exists at most one &;, . ; such that &, ., = +0",
Thus (n, L) = +2' or 0. Let L be the sequence of an affine function, say h*. By Lemma 6,
d(f,h*) 2 2571 — 2171 Since h* is arbitrary Ny = 25T—1 — 2t=1,

(iii) Let 8 = (b1,...,bs). By Lemma 4,

Djl;---;js (yl + bla s Ys T bs) = Dj1+b1,...,js+bs (yla s ayS)'



Hence

fz+7) = > Dy s+ B g +a)+r(y+p)
1 seiis
= Z Dj\ 1by,...pjs+b (y)fjl,...,js (x+a)+r(y+P)
jly---yjs
= Z Dj s, stbr, W) Fir s (@ + 0) +7(y + ). (3)

Ji+b1,...,5s+bs

Set (jla---ajs):(il +b1,---,is+bs).

Z+7 Z Dll; ;Zs f21+bla 7Zs+bs(x+a)+,r(y+ﬁ)

lly 52

FE+FE+1 = Y0 Dinie ) (Fire (@) + Fjitbreorvs (@ + @) +7(y) +1(y + ).

Ulyeenls

Note that § = (b1, ..., bs) # 0 fjy,.... (2)FFji101,jatbe (@H0) = fj1 g (2)FFrwbrgorn, () +
Fir4b1,..rjs+bs (@) is a non-constant affine function since all f;, ;. (z) are distinct linear func-
tions on V;. By Lemma 10 f(z) + f(z + ) is balanced.

4 A Group Generalised Hadamard Matrix

Let G be a group, p = (p1,...,Pn), ¢ = (q1,.--,qn) be two vectors of length n, whose
entries pj, ¢q; come from G. Define the operation o such that po ¢ = (p1q1,...,pngn) and

the inverse of ¢ such that gfl = (ql_l, .. ,qk_l).

p and ¢ are s-orthogonal if p o q -1 = (pqul, ..., Pnq; ") comprise s times of all the
elements of G.

A generalised Hadamard matriz ( [3], [4]) of type s for group G is a square matrix with
entries from G whose rows are mutually s-orthogonal.

A group Hadamard matriz [6] is a generalised Hadamard matrix whose rows form a
group and whose columns form a group under the operation o. Note that in a group
Hadamard matrix of type s for G there exists a row acting the role of identity. By the
definition of generalised Hadamard matrix, each of other rows contains each element of G
s times.

Let ¢ be a primitive element of GF(2¥), G be the additive group of GF(2F). Set
0 --- 0

X = (e—t+1mod 2°=1)) "where 4,5 = 1,2,...,2 =1, and D; = | : x . Hence D,
0

is a generalised Hadamard matrix of order 2%, type 1 (1-orthogonal) for G also a group
Hadamard matrix [3], [4], [6].



0 --- 0
It is easy to find out that Dy = | @ vy , where Y = (gdti-L(mod 28 -1)) "ig a]q0
0

a generalised Hadamard matrix of order 2¥, type 1 (l-orthogonal) for G also a group
Hadamard matrix.

Note that an entry of Y, an element of G, is a polynomial in £, whose degree is no more
than k — 1, say ag + a1e +--- + ap_1ek1.

k—

We now change ag+a1e+---+a_1€ Uinto agz1 +a1ze+- - - +ap_12k, a linear function

on V.
Note that all linear functions on Vj, form an additive group, denoted by ['y.

Correspondingly Dy becomes a matrix £ with entries from I'y. Obviously E is also a
group Hadamard matrix of order 2¥, type 1 (1-orthogonal) but for group I'j.

Write E = (e; ), where i,5 =0,1,...,2% — 1.
Let y = (y1,---,Yk), © = (Z1,...,Tk). Set
filyrs - Yk 1, - mk) = Do, o(y)eio(z) + Do,.o01(y)eii(z) + -+ D1 1(y)e; o1 (7) (4)

where i =0,1,...,2F — 1.

Lemma 11 For any fired s, 1 £ s < 2k 1, 1,5, -+ Ck,s are linearly independent.

Proof. Consider 2?21 c;jfj where (ci,...,¢c;) # (0,...,0). Note that e;; = z1, e21 = 2,
... €1 = T It is obvious that

k
Z ciei1 # 0. (5)
i=1

Since F is a group Hadamard matrix of type 1 (1-orthogonal) for Iy there exists a row
in F, say the ¢pth row, such that &;, = Zle c;&;, where each & denotes the ith row of F and
hence Zle cieij = €y, forevery j =1,... ,2F—1. ;From (5), the ipth row of E is not a zero
row (i.e. ip # 0) and thus contains every linear function on Vj, since E is a group Hadamard
matrix of type 1 (1-orthogonal) for I'y. Thus Zle cieis = €, 1S a nonzero linear function
for every s = 1,...,2¥ — 1. This proves that for any s, 1 < s < 2F — 1, Zi-“:l ciejs = 0 if
and only if (ci,...,¢;) = (0,...,0) thus ey 4, ..., e are linearly independent. O

5 A Set of Functions with Cryptographic Properties

Let P be a permutation on 1, 2,...,2F — 1. Let E’ be the matrix obtained from E by
putting P on the nonzero columns of E. Set E' = (e; ;), where i,5 = 0,1,... 2k — 1.



Let k <n < 2k. Write y = (y1,..-,Yn—k), T = (T1,...,7k), 2 = (y, ). Note that e] ;
is nonzero linear function on Vj, for i = 1,2,...,2F — 1. Set

9i(y, ) = Do,.o(y)es  (2) + Do,..0,1(y)e;2() + -+ + D1 1(y)e] gn-i () +7iy)  (6)

where i = 1,...,2F — 1, each subscript (i1,...,in_) € V,,_} and each r; is a function on
Vi k-

Let A= Q(n —k,k). Set

Yi(z) = gi(zA), i=1,...,2F — 1. (7)

Theorem 3 For any nonzero linear combination of 11, ... 1y, defined as in (7), say 1 =
Z?Zl cjtpj, where (c1,...,¢x) # (0,...,0).

(i) 1 is balanced,

(ii) Ny =z2n 1t —2k1,

(iii) 1 satisfies the SAC,

(iv) the algebraic degree of 1 can be n —k + 1.
Proof.  jFrom (6),
k k k k
g = Z Cjg; = D(),___,g(y) Z Cj€;~71($)+D07___,071(y) Z Cj€;~72(.’L‘)+' . '+D1,___,1 (y) Z Cj€;’2n—k(.’lf).
j=1 j=1 j=1 j=1
By Lemma 11, each of Zle cje 1 (), Z§:1 Cj6;~72($),...,2§:1 Cje;.’Zn_k(m) is a nonzero

linear function on Vj. Since E’ is a group Hadamard matrix of type 1 for 'y, Z?Zl cje;q(z),

j=1
balanced and N, = 2"~ — 2¥~1. By Lemma 8, ¢ is balanced and N, = 271 —2k~L,

Z?Zl cj€io(T), -, sk cje;. on—i(z) are distinct linear functions. By Theorem 2, g is

Let v; = (Bi, «;) be the ith row of A = Q(n — k,k), where 8; € V,, k, a; € Vj,
i=1,...,n. Since all 5; # 0, by (iii) of Theorem 2, g(z)+g(z+y;) is balanced, i = 1,...,n.
Note that ¢(z) = g(zA). By Theorem 1, 1) satisfies the SAC.

n—k . . . .
We can choose E such that Z?Zl 6’17]- is a nonzero linear function on Vj,. Otherwise

if Z?;k ey ; is zero, we exchange the 2"~kth and the (2" + 1)th columns of E'. Cor-

: a : "o o__ " : ! / on—k gy .

respondingly, E’ is changed into E" = (ei’j). Since €} gn—t # €} gn—k 15 D=1 €1  is a
. . o . n—k .

nonzero linear function on V,. Hence it is reasonable to suppose Z?Zl e’l,j is a nonzero

linear function on V. Note that each D, ; , (y1,...,Yn—i) contains the term y; - - - yp—j

and y1 - yn—k Z?;k e} j cannot be deleted in

91(y, «) = Do_..o(y)e} 1 (x) + Do, 01(y)e) o(z) + -+ + D1,...,1(y)6'1,2n7k($) +ri(y).

This proves that the degree of g isn — k + 1.



Since Dy (E) is symmetric the columns of Dy (E) also form a group thus the columns

I s

n—k . . . n—k
of E' form a group. Recall 22:1 e} j is a nonzero linear function on Vj. Thus 22:1 € i

also a nonzero linear function on Vi, i = 2,...,2% — 1.

To show this, note that the columns of E’ form a group thus the sum of the first, the
second, ..., the 27 7*th columns of F’ is equal to a column of E’, say the soth column. Since
Z?:lk €l; = €, is a nonzero linear function on Vj the soth column of E' is a nonzero
column (i.e. so # 0). Thus the soth column contains all the linear functions on Vj since the
columns of E’ form a group.

. n—k . L
This proves that Z?Zl e ; = €, is a nonzero function if i # 0.

By the same reasoning, the degree of g; isn —k+1,i=2,...,2F — 1.

Since the rows of E’' form a group there exists igth such that the iy row is equal to
the linear combination of g1, ... , gx corresponding to the coefficients c¢y,...,c;. Thus
25:1 cigi = Gi,- Since the first, the second, ..., the 2" ¥th rows of E’ are linearly in-
dependent (see Lemma 11) g;, is a nonzero function (i.e. 49 # 0). Thus the degree of

n—k .
Z?ﬂ Cigi = Gip iIsn —k + 1.

Corollary 2 U(z) = (¥1(2),...,¢¥r(2)), a mapping from V,, to Vj,, where each 1; is defined
as in. Theorem 3, runs through all the 28 vectors in V, each 2" times while z runs through

V.

Proof. By Theorem 1 of [13], this corollary is equivalent to (i) of Theorem 3. 0

Since any matrix obtained by permuting the columns of a group Hadamard matrix
is still a group Hadamard matrix, we can obtain an extremely large number of boolean
function sets with the cryptographic properties mentioned in Theorem 3 and Corollary 2.
These functions can be used in many cryptographic designs. In particular, results shown in
this section have been successfully employed by the authors in systematically constructing
cryptographically robust substitution boxes (S-boxes) [12].

6 Example

Example 1 By using Theorem 3, we now construct 4 functions of 6 variables. Let & = 4
and n = 6 in Theorem 3. Choose z* + = + 1 as the primitive polynomial. Let € be a root
of s+ 2 +1=0. ¢, j=0,1,...,2* — 1 form a sequence:

1, £, €2, 3, 1+4+e¢, £+ €2, 2463, 14+e+e3,
1462, e463 1+e+e? e4+e24+6%, 1+e+e2+63, 142463, 1+,

10



0 --- 0

that is the first row of Y , where Do = | © v of order 2¥ (see Section 4). We change
0

e into z;11, 4 = 0,1,2,3. The above sequence becomes

Ty, x2, xs3, T4, 1 + x2, T2 + x3, T3 + X4,
Ty + %2+ %4, T1+T3, T2+ Ty, Ty +T2+T3, T2+ T3+ Ta, T+ T2+ T3+ Ty, Tyt T3+ T,
T1 + x4,

0 --- 0

that is the first row of W , where E = | | (see Section 4).
0

We choose the submatrix of order k& x 2872, that is the conjunction of the first four rows
and the 4th, the 9th, the 12th, the 15th columns of W:

T4 1 + T3 To + x3 + X4 T+ x4
T+ X9 T2+ x4 T+ T2+ X3+ T4 T
o+ x3 x1+ X2+ 23 1+ a3+ 24 o
I3+ T4 To+ T3+ T4 T+ x4 T3

Using the above array we define (see (6))

91(y1,y2, w1, 22,23, 74) = (1 +y1)(1 +y2)za + (1 + y1)ye (21 + 23)+
y1(1 4+ y2)(z2 + 3 + x4) + yiy2(z1 + 24),

92(y1,y2, 21, T2, 13, 74) = (1 +y1)(1 +y2) (21 + 22) + (1 + y1)y2(z2 + 24)+
y1(1 4+ y2)(z1 + 2 + 23 + 24) + Yy1y221,

93(y1,y2, 21, 22,23, 24) = (1 +y1)(L + y2) (22 + 23) + (1 + y1)y2 (21 + 22 + 23)+
y1(1 +y2)(z1 + 23 + T4) + Y1Y222,

91(y1,y2, 1, T2, 23, 24) = (1 +y1)(1 + y2) (23 + 24) + (1 + y1)y2(x2 + 23 + 24)+
y1(1 4+ y2)(z1 + x3) + y1y2x3,

Simplify the four functions

91(Y1,Y2, 1, T2, T3, Ta) = Ta + Y2Ta + Y21 + Y223 + Y1T2 + Y123 + Y1Y222 + Y1Y2Z4,
92(y1, y2, 1, T2, T3, T4) = T1 + T2 + Y21 + Y24 + Y123 + Y1T4 + Y1Y2T1 + Y1Y2Z2 + Y1Y2T3,
93(y1, y2, 1, T2, T3, T4) = T2 + T3 + Y122 + Y21 + Y121 + Y124 + Y1Y2T2 + Y1Y223 + Y1Y2T4,

94(Y1, Y2, 1,2, T3, T4) = T3 + 4 + Y191 + Yoo + Y124 + Y1y221 + Y1Y2T2.
Let

A=Q(2,4) =

—_ = = = O =
[eNeNeNael -l
OO O = OO
OO = O OO
o= OO oo
-0 o o o O
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and g;(zA) = 9(z), where z = (y1,y2,$1,$2,$3,$4) j =1,2,3,4. Hence ¥;(y1, Y2, 1, T2, T3, T4) =

g9i(y1 + 21 + 220 + 3 + x4,y2,x1,x2,x3,m4) =1,2,3,4. Let 9 be a nonzero linear combi-

nation of 2[)17 11027 2[)37 1104 Le. @b Zl Cjwja (Cla C2, (3, 64) 7£ (07 07 07 0) By Theorem 3
and Corollary 2

is balanced,

(i
(ii) Ny =25 —2% =24,

) @
)
(iii) 1) satisfies the SAC,
(iv) the degree of 9 is 3
)

U(z) = (1(2),%2(2),13(2),14(2)), a mapping from Vg to Vy, runs through all the 24
vectors in Vj each 22 times while z runs through Vg once.

(v

Note that the upper bound of nonlinearities of a balanced function on Vg is 26 (see
Corollary 3 of [11]). Thus the nonlinearity 24 of any nonzero linear combination of the
these functions in this S-box is very high.
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