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Abstract

Security of mobile communications comes with the cost
of computational overhead. Reducing the overhead in se-
curity computations is critical to ensure the overall perfor-
mance of a mobile network. In this paper, we present the
notion of online/offline signcryption, where most of compu-
tations are carried out offline and the online part of our
scheme does not require any exponent computations and
therefore is very efficient. Our scheme allows any third party
to verify the encryption without compromising confidential-
ity. We also show that our scheme is secure against ex-
istential forgery under chosen message attacks and adap-
tively chosen ciphertext attacks under the notion of indistin-
guishability of ciphertext.

Key Words: Mobile security, Signcryption, Public-key
Cryptography.

1. Introduction

Use of mobile personal systems in an open networked
environment is very likely to revolutionize the way we use
computers. This raises several issues with regard to in-
formation security and privacy, system dependability and
availability. A networked environment is susceptible to a
number of security threats. These include: masquerading,
unauthorized use of resources, unauthorized disclosure and
flow of information, unauthorized alteration of resources
and information, repudiation of actions, unauthorized de-
nial of service. The mobile environment aggravates some of
the above security concerns and threats. Because the con-
nection to wireless link may be easy, the security of wire-
less communication can be compromised much more easily
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than that of wired communication. The situation gets fur-
ther complicated if the users are allowed to cress security
domains. A mobile system is reachable at any location and
at any time. This creates greater concern about privacy is-
sues among the potential users.

Security comes with cost. When communication flows
are encrypted or signed digitally, the computational cost
will inevitably be added to the total expenses. Therefore,
finding efficient security algorithms for secure mobile com-
munications becomes an importance task. In this paper, we
propose an offline signcryption scheme where most of com-
putations for signing and encrypting a message are carried
out offline and the corresponding online computation is very
efficient.

1.1. Previous Work

Digital signatures are used to ensure the authenticity of
information and its sender, whereas the information con-
fidentiality is achieved using encryption schemes. Hence
to achieve both authenticity and confidentiality both sign-
ing and encryption techniques are needed. That is, to se-
cure the message, it is firstly signed and then encrypted.
The total computational cost therefore includes the compu-
tational costs for performing digital signature and encryp-
tion. The notion of signcryption was introduced by Zheng
[11], with the goal of achieving greater efficiency than when
carrying out the signature and encryption operations sepa-
rately. Signcryption schemes can achieve both authenticity
and confidentiality in public key setting.

The notion of online/offline signature was introduced
by Even, Goldreich, and Micali [5]. In this notion, signing
phase is broken into two parts. The first part is offline, in-
dependent of the message to be signed, while the second
part is online once the message is presented. To ensure that
both online signing and verification are efficient, the major
computational overhead is shifted to the offline part. Their
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method uses a one-time signature scheme, i.e., a scheme
which can securely sign only a single message. The essence
of their method is to apply (online) the ordinary signing al-
gorithm to authenticate a fresh one-time verification key,
and then to apply (online) the one-time signing algorithm,
which is typically very fast. Since Even, Goldreich, and Mi-
cali’s online/offline signature has a very inefficient tradeoff
between the size of the keys and the complexity of the one-
time signing algorithm, it is not practical. Shamir and Tau-
man [9] proposed an improved version that is more practi-
cal.

The notion of online/offline signcryption was introduced
by An, Dodis, and Tabin [1]. In their paper, they did not give
any concrete method in this work, since they were only in-
terested in general security proofs on signcryption schemes.
Like an online/offline signature scheme, an online/offline
signcryption should satisfy a basic property, namely effi-
ciency in the online computation. All expensive operations
such as exponent computations should be left offline in the
first phase of the scheme. It is reasonable to assume that
the offline operations are independent of the particular mes-
sage to be signed, since the message only becomes avail-
able at a later stage. The second phase is performed on-
line, once the message is presented. We are interested in on-
line/offline signcryption schemes in which the offline stage
is feasible and the online operation, including a symmetric-
key encryption and an online signing part, is fast.

1.2. Our Contribution

In this paper, we extend the notion of online/offline sign-
cryption by An, Dodis, and Tabin and provide a concrete
scheme. In our scheme, the online part does not require
any exponent computations so it is very efficient. We uti-
lize the notion of short signatures [2]; therefore, online sig-
nature part of our scheme is very short. We prove that our
scheme is secure. It is even more secure then the original
signcryption, since to break the scheme, we need to break
the combination of the computationally hard problems.

The rest of this paper is organized as follows. In Sec-
tion II, we define our scheme and give some basic defini-
tions and security requirements. In Section III, we present
our scheme and discuss its properties. In Section IV, we pro-
vide a concrete proof on the security of our scheme. In Sec-
tion V, we conclude the paper.

2. Definitions

In this section, we provide definitions of our protocol and
its security requirements.

Definition 1 Our signcryption scheme SC is a triple of
polynomial-time algorithms (KeyGen, SigEnc, VerDec),
where

• KeyGen(1�) is a polynomial algorithm that takes as
input the security parameter � and outputs a pair of
keys (SDK, VEK). SDK is the user’s sign/decrypt key,
which is kept secret, and VEK the user’s verify/encrypt
key, which is made public.

• SigEnc, a polynomial algorithm, takes as input the
sender S’s secret key SDK and the receiver R’s pub-
lic key VEK and a message m from the associated
message space M and outputs a signcryption s ←
SigEncSDK,VEK(m). This algorithm is split into two
parts: online and offline. The offline part does not re-
quire the message to be signcrypted and produces an
offline signature S and a secret key K to be used for
the offline part. In the online part, The online signature
is converted into the fully signature with the given mes-
sage and the associated secret key related to K and the
message is encrypted with the key associated with K.

• VerDec is a deterministic de-signcryption algorithm
that takes as input the signcrypted message u, the re-
ceiver’s secret key SDK and the sender S’s public key
VEK and outputs m or ⊥, where ⊥ indicates that the
message wa not signcrypted properly.

We require our scheme to be secure against existential
forgery under chosen message attacks (EF-CPA) and adap-
tive chosen ciphertext attacks under the notion of indistin-
guishability of ciphertext (IND-CCA).

The security of the offline signing part of the proto-
col is based on so-called q-Strong Diffie-Hellman Problem
(q-SDHP) introduced in [2], where they used this notion
to achieve Strong Existential Unforgeability under chosen
message attacks. We will make use this notion in the pro-
tection of the sender’s authenticity.

Definition 2 A forger AEF-CPA
q-SDH (tq-SDH, qq-SDH, ε)

breaks an SC scheme (offline signing part) if
AEF-CPA

q-SDH (t, qq-SDH, εq-SDH) runs in time at most tq-SDH,
makes at most qq-SDH offline signing queries, and
Adv SCAEF-CPA

q-SDH
(tq-SDH, qq-SDH, εq-SDH) is at least εq-SDH.

The offline signing is (tq-SDH, qq-SDH, εq-SDH)-existentially
unforgeable under an adaptive chosen message attack
against q-SDH if no forger (tq-SDH, qq-SDH, εq-SDH)-breaks
it.

The security of the encryption part in our scheme given
in Section 3 refers to the Computational Diffie Hellman
(CDH) problem, where the encryption key can be computed
if the CDH problem is computable in polynomial time. We
required that the encryption part is secure against IND-CCA
if the CDH problem is hard.
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Definition 3 An adversary AIND-CCA
CDH (tCDH, qCDH, εCDH)-

breaks an SC scheme (encryption and online signing) if
AIND-CCA

CDH runs in time at most tCDH, makes at most qCDH

queries to CDH oracle, and Adv CDHAIND-CCA
CDH

is at least
εCDH. The encryption and online signing are (tCDH, qCDH,
εCDH)-secure under IND-CCA if no adversary (tCDH, qCDH,
εCDH)-breaks it.

The online signing part in our scheme given in Section
3 is a variant of Schnorr’s signature scheme; The security
refers to the elliptic curve discrete log (EDL) problem. The
security of this kind of problems has been described by
Pointcheval and Stern [8] under random oracle assumptions.
Their notions are also suitable for elliptic curve settings. We
refer this problem to as PC-EDL. The online signing part is
secure against EF-CPA if solving PC-EDL in polynomial
time is negligible. The security of the online signing part is
then defined as follows.

Definition 4 An adversary AEF-CPA
PC-EDL (tPC-EDL, qPC-EDL,

εPC-EDL)-breaks a SC scheme (online signing) if AEF-CPA
PC-EDL

runs in time at most tPC-EDL, makes at most qPC-EDL

queries to PC-EDL oracle, and Adv PC-EDLAEF-CPA
PC-EDL

is
at least εPC-EDL. The encryption and online signing are
(t, qPC-EDL, εPC-EDL)-secure under EF-CPA if no adver-
sary (tPC-EDL, qPC-EDL, εPC-EDL)-breaks it.

We require our scheme to be secure against EF-CPA on
the signing part and IND-CCA on the encryption part. To
break the scheme, the adversary has to solve q-SDH, CDH,
and PC-EDL problems.

2.1. Bilinear Pairings

In the section, we review some concepts in bilinear pair-
ings provided by Boneh and Franklin [3].

Define two cyclic groups G1, G2. G1 is an additive
group and G2 is multiplicative group, where both group
have a prime order p. Let e be a computable bilinear map
e : G1 × G1 → G2. For a, b ∈ Zp and P,Q ∈ G1, we have
e(aP, bQ) = e(P, Q)ab. We also require non-degeneration
e(P, P ) �= 1.

Joux and Nguyen [6] showed that an efficiently com-
putable bilinear map e provides an algorithm for solving
the Decision Diffie-Hellman problem (DDH). That is given
P, aP, bP, cP ∈ G1 and a, b, c ← Zp, decide whether

c
?= ab ← Zq . This is because e(aP, bP ) = e(P, cP ). The

computational Diffie-Hellman problem is still hard. Let a, b
be chosen from Zp at random and P be a generator chosen
from G1 at random. Given (P, aP, bP ), it is hard to com-
pute abP ← G1.

2.2. The Strong Diffie-Hellman Assumption

In [2], the strong Diffie-Hellman Assumption is referred
to as q-SDH, where they utilised a map for two cyclic
groups of prime order p, where possibly two cyclic groups
are the same. For simplicity, we assume that two cyclic
groups both are the same additive group. Therefore, we
need to rewrite q-SDH.

Let P be a generator of G1. The q-SDH prob-
lem in G1 is defined as follows: given a (q + 1)-tuple
(P, xP, x2P, · · · , xqP ) as input, output a pair (c, 1

x+cP ),
where c ← Zp. An algorithm A has advantage ε in solv-
ing q-SDH in G1 if

Pr

[
A(P, xP, x2P, · · · , xqP = (c,

1
x + c

P )
]

> ε,

where the probability is over the random choice of x in Zp

and the random bits consumed by A.

Definition 5 We say that the (q, t, ε)-SDH assump-
tion holds in G1 if no t-time algorithm has advantage at
least ε in solving the q-SDH problem in G1.

In [2], it is proved that the q-SDH assumption has simi-
lar properties to the Strong RSA problem and they therefore
view q-SDH as a discrete logarithm analogue of the Strong
RSA assumption. A weaker version of the q-SDH assump-
tion was previously used by Mitsunari, Sakai, and Kasahara
[7] to construct a traitor tracing system. It was also used in
[10] to prove security in their short signature scheme.

3. The Scheme

In this section, we present our online/offline signcryp-
tion scheme that satisfies the model introduced in the previ-
ous section. Assume that Alice and Bob are the sender and
the receiver, respectively. The protocol is described as fol-
lows.

• KeyGen. Take � as input and generate Alice’s key tuple
(Ppub1, Ppub2, x, y), where Ppub1 = xP, Ppub2 = yP .
P ∈ G1 is a public generator and x, y ← Zq are
the associated private keys. The same key generator
KeyGen generates Bob’s key tuple (PpubB , xb), where
PpubB = xbP and xb ∈ Zq is the private key of Bob.
We have omitted the other key pair, since it is not used
by Bob.

• SigEnc. This step is split into two phases, online and
offline. The offline phase results in an offline part of
the signature and the encryption key for the offline
phase. The offline phase produces the offline signa-
ture S = 1

x+ry P and the keys (y−1, k1, k2) for the
online phase, where k1, k2 are generated from the key
generation function KDF (K), where K = ryPpubB ,
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r ∈ Zp. In the online phase, the message encryp-
tion is done with k1 and a symmetric-key encryption
algorithm such as AES. The resultant ciphertext is
c = Ek1(m), m ← M = Zp. The online signature is
computed as σ = r − hy−1, h = H(m, k2). The sign-
ing scheme is actually a variant of the Schnorr’s signa-
ture scheme. The full signature is thus s = (c, σ, h, S).

• VerDec. The verification phase requires the public
key of the senders and the public key the receiver.
The correct verification requires to verify the equal-
ity e(hP + σPpub2 + Ppub1, S) = e(P, P ) and cor-
rectly generate xb(hP + σPpub2) = K. Consequently,
correctly decrypt the message Dk1(c) = m and ver-
ify h = H(m, k2).

Correctness: The verification of the signcryption protocol
is as follows:

e(hP + σPpub2 + Ppub1, S)

= e(
1

x + ry
(hP + (r − hy−1)yP + xP ), P )

= e(P, P ).

xb(hP + σPpub2)
= xbhP + xb(r − hy−1)yP

= xbyrP

= K.

Third party verification: The signcryption can be verified
by a third party, since the verification process does not re-
quire the verifier to know the message. By verifying the fol-
lowing equality,

e(hP + σPpub2 + Ppub1, S) ?= e(P, P ),

the third party is assured of the correctness of the signcryp-
tion.

Length of the signing part: The signcryption consists of
(c, σ, h, S), where the signing part comprises (σ, h, S). The
size of σ, h, and S are log2 p, 160 bits, and log2 ρ respec-
tively; therefore the total length is log2 p + log2 ρ + 160,
where ρ is the safe length for G1. Note that S = 1

x+ry P =
1

x+yσ+hP . It is comparable to [2, 4]. We will prove the sign-
ing part is secure against EF-CPA.

Performance: In an online/offline scheme, the offline phase
must be very efficient and requires minimum computation.
Our protocol is designed to meet this requirement. All ex-
pensive computations are done in the offline phase. The on-
line phase consists of only simple computations including
one hashing, one multiplication, and a symmetric-key en-
cryption.

4. Security

As defined in Section 2, we split the security analysis
into three cases in terms of the offline signing part, the com-
putation of K, and the offline signing part. The encryption
part of the protocol should be secure against IND-CCA. The
security of the encryption part is based on the CDH prob-
lem. That is, given P , Ppub2 and PpubB , compute yxbP that
leads to K = ryxbP , where r is a random number selected
from Zp. The following theorem shows that our scheme is
secure against EF-CPA and IND-CCA.

Theorem 1 Suppose the CDH-(tCDH, qCDH, εCDH),
PC-EDL-(tPC-EDL, qPC-EDL, εPC-EDL), and q-SDH-(tq-SDH,
qq-SDH, εq-SDH) assumptions hold. Then our signcryp-
tion scheme is (t, qSC, ε)-secure against EF-CPA and
IND-CCA, provided that

t ≤ tCDH + tPC-EDL + tq-SDH − O(qSC),

qSC = qCDH + qPC-EDL + qq-SDH,

ε = εCDH · εPC-EDL · εq-SDH.

The proof of Theorem 1 is described in three experiments
given in the next three subsections.

Assume A is a forger that that (t, qSC , ε)-breaks the sign-
cryption scheme. For convenience, we will denote by A
all AIND-CCA

CDH , AEF-CPA
PC-EDL, and AEF-CPA

q-SDH . A takes advantage of
three separate algorithms BCDH, BPC-EDL, and Bq-SDH that,
by interacting with A, solve the following problems respec-
tively,

• the CDH problem in time tCDH and probability εCDH.

• the PC-EDL problem in time tPC-EDL, which is related
to the discrete log problem, and probability εPC-EDL,
and

• the q-SDH in time tq-SDH and probability εq-SDH.

4.1. Experiment 1: A interacts with BCDH

A interacts with BCDH, expecting output Z = yxbP .
BCDH is given (P, Ppub2, PpubB).

Query: A sends qCDH queries to BCDH. BCDH must respond
with guesses Zi, i = 1, · · · , qCDH.

Response: BCDH outputs Zi, i = 1, · · · , qCDH with proba-
bility Pr(Z = yxbP |P, Ppub2, PpubB) = qCDH/p that it re-
turns the correct value. Here, we assume that BCDH does not
repeat the values that have been used.

Output: Algorithm A outputs a forgery Z∗ which is ran-
domly selected from qCDH outputs Zi, i = 1, · · · , qCDH. A
then picks r ∈ Zp at random and computes K∗ = rZ∗ as
output and split it into k1∗, k2∗ with KDF (K∗).
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4.2. Experiment 2: A interacts with BPC-EDL

A now interacts with BPC-EDL, aiming on solving the
PC-EDL problem under adaptively chosen-message attack.
We utilise Pointcheval and Stern’s method based on Fork-
ing Lemma [8]. Assume there is a random oracle OH in
which takes as input k and a message mi and outputs hi,
where k is a random number. Also assume there is an on-
line signing oracle Oσ that takes as input hi and outputs an
online signing value σi.

Query: A outputs r, k, and a list of distinct qSC messages
m1, · · · ,mqPC-EDL

∈ M, where qPC-EDL < q.

Response: BPC-EDL must respond with a list of online sign-
ing values σ1, · · · , σqPC-EDL

on qPC-EDL messages from A.
BPC-EDL does it with the aid of two oracles:

• Make qPC-EDL queries to the random oracle OH on
input m1, · · · ,mqPC-EDL

and k2∗. OH responds with
h1, · · · , hqPC-EDL

.

• Then, make qPC-EDL queries m1, · · · ,mqPC-EDL
to the

online signing oracle Oσ that in turn responds with the
triple (Ri, hi, σi) for i = 1, · · · , qPC-EDL. During the
process, the signing oracle also made queries to ora-
cle OH . Ri is the signing commitment Ri = riP for a
random ri.

Output: Given the result and Ppub2, A can verify

σiPpub2
?= Ri + hiP . According to the Forking Lemma

[8], two valid signatures can be resulted.

Lemma 1 Assume that, within time bound tPC-EDL, A pro-
duces, with probability εPC-EDL ≥ 7qPC-EDL/2�, a valid sig-
nature (m,R, h, σ). Then there is another machine which
has control over A and produces two valid signatures
(m,R, h, σ) and (m,R, h′, σ′) such that h �= h′, in ex-
pected time t′ < 84480 · tPC-EDL · qPC-EDL/εPC-EDL.

Obviously, given σ = r + hy−1 and σ′ = r + h′y−1, A
can compute y = hi−hj

σ−σ′ .
Experiment 2 is independent of Experiment 1, since k2∗

does not influence the result.

4.3. Experiment 3: A interacts with Bq-SDH

Assume y is known due to Experiment 2. The online sig-
nature can be rewritten as S = 1

x+mP for m = ry, which
is the “weekly secure” scenario of the Boneh and Boye’s
scheme [2]. Then, we can utilise their notion of the q-SDH
problem and the associated lemma:

Lemma 2 Suppose the (t′, q, εq-SDH)-SDH assump-
tion holds in G1. Then the online part of the signature
in the signcryption scheme is (t, qq-SDH, εq-SDH)-secure

against existential forgery under a chosen message at-
tack provided that

tq-SDH ≤ t′ − O(q2), qq-SDH < q.

Proof: A, by interacting with Bq-SDH, solves the q problem
in time tq-SDH with advantage εq-SDH. Algorithm Bq-SDH

is given a instance (P, A1, · · · , Aq) of the q-SDH problem,
where Ai = xiP ∈ G1 for i = 1, · · · , q and some unknown
x ∈ Z

∗
p. Bq-SDH’s goal is to produce a pair (c, 1

x+cP ) for
some c ∈ Z

∗
p. Bq-SDH does so by interacting with A as fol-

lows:

Query: A outputs a list of distinct qSC messages
m1, · · · ,mqq-SDH

∈ M, where qq-SDH < q. BB sets
qq-SDH = q − 1.

Response: Bq-SDH must respond with a public key and the
signatures Si on the q−1 messages from A. Let f(z) be the
polynomial f(z) =

∏q−1
i=1 (z + mi) =

∑q−1
i=0 aiz

i, where
a0, · · · , aq−1 ∈ Zp are coefficients of the polynomial f(z).
Compute:

P ′ =
q−1∑
i=0

aiAi = f(x)P

P ′′ =
q∑

i=1

ai−1Ai = xf(x)P = xP ′.

The public key given to A is (P ′, P ′′). For each i =
1, · · · , q−1, Bq-SDH must generate a signature Di on mi. To
do so, let fi(z) be the polynomial fi(z) = f(z)/(z+mi) =∏q−1

j=1,j �=i(z+mj). We expend fi and fi(z) =
∑q−2

j=0 bijz
j .

Compute

Si =
q−2∑
j=0

bijAj = fi(x)P =
1

x + mi
P ′ ∈ G1.

Si is a valid signature on mi under the public key (P ′, P ′′),
since e(miP

′ + P ′′, Si) = e(P ′, P ′).

Output: A returns a forgery (m∗, S∗) such that S∗ ∈ G1 is
a valid signature on m∗ ∈ Z

∗
q and m∗ �∈ {m1, · · · ,mq−1}

since there is only one valid signature per message. We have
e(m∗P ′ + P ′′, S∗) = e(P ′, P ′), therefore

S∗ =
1

x + m∗
P ′ =

f(x)
x + m∗

P.

Using long division we write the polynomial f as
f(z) = γ(z)(z + m∗) + γ−1 for some polynomial
γ(z) =

∑q−2
i=0 γiz

i and some γ−1 ∈ Zp. Then the ratio-
nal fraction f(z)/(y + m∗) can be written as

f(z)/(y + m∗) =
γ−1

z + m∗
+

q−2∑
i=0

γiy
i.
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(z + m∗) does not divide f(z). Note γ−1 �= 0, f(z) =∏q−1
i=1 (z + mi) and m∗ �∈ {m1, · · · , mq−1}. Then, Bq-SDH

computes

W =
1

γ − 1

(
S∗ +

q−1∑
i=0

(−γi)Ai

)
=

1
x + m∗

P.

and returns (m∗,W ) as the solution to the q-SDH instance.

4.4. Security of the Receiver

The security of the receiver is related to the confiden-
tiality of the message. Only the receiver can decrypt the ci-
phertext c to obtain the message. In other words, only the
receiver can compute the decryption key K. The security
of the receiver relies on hardness of the CDH problem. To
compute K = xb(hP + σPpub2) without knowing the se-
cret key xb, we need to compute xbyP from given P , Ppub2

and PpubB , which has been discussed previously.

5. Conclusion

We have proposed the first online/offline signcryption
scheme from bilinear pairings. In our scheme, the computa-
tion performed online is very efficient, since it does not re-
quire any exponent computations. Our online/offline sign-
cryption can be verified by any third party, because the ver-
ification does not take the corresponding message as in-
put. We have also provided a security proof to show that
our scheme is secure against IND-CCA and EF-CPA. We
showed that the security of our scheme is based on CDH,
PC-EDL, and q-SDH. The total time of breaking our scheme
is the sum of times required for breaking all these hard prob-
lems.

Our scheme is especially suitable for a mobile environ-
ment, in particular, for low power mobile devices, because
the online security computation part is very efficient.
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