
Description of Provably Secure Signcryption

Schemes

Joonsang Baek1 and Yuliang Zheng2

1 School of Network Computing, Monash University, Frankston, VIC 3199, Australia
joonsang.baek@infotech.monash.edu.au

2 Dept. of Software and Info. Systems, University of North Carolina at Charlotte,
NC 28223, USA
yzheng@uncc.edu

Aug. 2002

Abstract

In this report we provide a detailed description of four signcryption schemes all of which
have been proven secure. The first two of the schemes are based on discrete logarithm on
finite fields and the other two schemes are based on elliptic curves. We also discuss issues
on the implementation of signcryption schemes.

1 Introduction

Signcryption proposed by Zheng [7] at Crypto’97 is a public key or asymmetric cryptographic
method that provides simultaneously both message confidentiality and unforgeability at a lower
computational and communication overhead than doing signature and public key encryption
separately. Recent progress in the security analysis of signcryption indicates that the specific
instantiations of signcryption demonstrated in [7] are indeed secure in a very strong sense. More
specifically, it has been proven in [4, 5] that these schemes are secure against adaptive chosen
ciphertext attacks and existentially unforgeable against adaptive chosen message attacks, both
in the random oracle model, relative to Gap Diffie-Hellman and Strong Discrete Logarithm
problems respectively.

It should be emphasized that the signcryption schemes could be proven secure without
any significant changes of the schemes. However to simplify analysis, [4, 5] modified the
original schemes slightly by introducing an extra one-way hashing into the signcryption and
unsigncryption operations.

The aim of this report is to provide a detailed description of the signcryption schemes which
are provably secure. The reader is referred to [?, 5] for detailed explanations on the security
proofs of signcryption.

2 Preliminaries

2.1 Notations

In this section we define general notations used in this report.

1



• A(·) – Algorithm

– When input is explicitly appeared instead of ‘·’ , say ‘a’, A(a) represents the output
value of A(·) on input a.

– The term ‘algorithm’ is sometimes referenced as ‘function’, e.g., ‘hash function’.

• | · | – Bit length of an element or output of an algorithm

• modN – Modular reduction under modulus N

• OrdN (g) – Order of an element g modulo N , i.e., the smallest integer a satisfying ga =
1 mod N

• [a, . . . , b] – An integer range between a and b inclusive

• k – An integer representing security parameter, e.g., 512, 1024

• S – Sender unless stated

• R – Receiver unless stated

2.2 Hash functions and Symmetric Cipher

Two one-way hash functions denoted by G(·) and H(·) are used in signcryption. These two
functions are assumed as random oracles [6].

The bit length of G(·) and H(·) are determined by the security parameter k which will be
provided as input to a signcryption scheme. More precisely, if k is provided as bit length of a
prime modulus p, i.e., k = |p| to the signcryption scheme then |H(·)| = |q|, where q is a (large)
prime such that q|(p− 1). Also |G(·)|, which is generally smaller than k, is the same as the bit
length of a key used in the symmetric encryption.

Constructions of the hash functions G(·) and H(·) modelled as random oracles can be quite
flexible but we recommend Mask Generation Function (MGF)-style implementations defined
in the IEEE P1363 standard. For example, H(·) can be implemented as follows.

H(x) = hash(x||0)|| · · · ||hash(x||l − 1),

where l = d|H(·)|/|hash(·)|e and hash(·) is a conventional hash function such as SHA-1 [3].
Note that if |G(·)| < |hash(·)| we simply truncate the output of hash(·) to get the size of

|G(·)|.
A symmetric block-cipher denoted by (Eα(·), Dα(·)) is used in signcryption. Choices for

the symmetric block-cipher are also flexible. For example, one can choose DES [2] or AES [1].

3 Description of Signcryption Scheme Defined on Multiplica-
tive Group

3.1 Overview

Zheng’s signcryption scheme proposed in [7] is defined over a subgroup of the multiplicative
group ZZ∗p. As mentioned earlier, this original signcryption scheme with a slight modification
was proven secure in [4, 5].

2



Actually two signcryption schemes were proposed in [7]. These two schemes differ only in
computing one of the components in a signcryptext.

We denote these signcryption schemes defined over a subgroup of ZZ∗p by SCR-type1 and
SCR-type2, both of which consist of the following four algorithms.

• GC(·) – Common Parameter Generation

• GK(·) – Key Generation

• SC(·) – Signcryption of message

• USC(·) – Unsigncryption of signcryptext

In the forthcoming sections we precisely describe each sub-algorithm of SCR-type1 and
SCR-type2.

3.2 Common Parameter Generation Algorithm

Common parameters are generated by the algorithm GC(k) where k is a security parameter.
The output of this algorithm denoted by cp contains two safe primes p, q and an integer g
with order q modulo p. The party that runs GC(k) can vary, depending on applications. For
example, Certificate Authority (CA) can generate the common parameter cp and send it to the
parties S and R. However, if S and R themselves have agreed upon the common parameter
generation then one of them can generate cp and send it to the other party. A summary of
GC(k) follows.

Common Parameter Generation Algorithm GC(k)

1. Choose p – a large prime

2. Choose q – a large prime such that q|(p− 1)

3. Randomly choose g – an integer from [1, . . . p−1] such that Ordp(g) = q

4. Return cp = (p, q, g)

3.3 Key Generation Algorithm

In signcryption, two parties denoted by a sender (S) and a receiver (R) are involved. The
sender S and the receiver R generate their own secret/public key pairs denoted by (xS , yS)
and (xR, yR) respectively, using the key generation algorithm described below. Note that the
security parameter k and the common parameter cp are provided as input to this algorithm.

Key Generation Algorithm GK(k, cp):

1. Pick xS uniformly at random from [1, . . . , q − 1]

2. yS = gxS mod p

3. Return (xS , yS)

3



In the same way, (xR, yR) is generated.

3.4 Signcryption Algorithm

The signcryption algorithm SC(·) is run by the sender S. The common parameter cp, the
sender S’s secret key xS , and the receiver R’s public key yR and bind info containing the
sender and receiver’s public keys (yS , yR) are provided as input to this algorithm. We remark
that including bind info in the input to the signcryption algorithm was first suggested in [8]
and it was shown in [4, 5] that bind info is necessary for the signcryption to be proven secure.
As pointed out in [8], bind info could contain strings that uniquely identify the sender S and
the receiver R or hash values of the public key of each party. However we assume in this
report that bind info contains the concatenation of yS with yR. A detailed description of
SC(cp,m, xS , yR, bind info) is as follows.

Signcryption Algorithm SC(cp, m, xS , yR, bind info)

1. Pick x uniformly at random from [1, . . . , q − 1]

2. w = yx
R mod p

3. K = G(w)

4. r = H(m, bind info, w) where bind info =(yS , yR)

5. s = x/(r + xS) mod q if ‘type1’ is used, or
s = x/(1 + xS · r) mod q if ‘type2’ is used

6. c = EK(m)

7. Return C = (c, r, s)

3.5 Unsigncryption Algorithm

Now we describe the unsigncryption operation of the signcryptext C = (c, r, s) by the receiver
R. Note that the common parameter cp, the receiver R’s secret key xS , and the sender
S’s public key yS and bind info containing the sender and receiver’s public keys (yS , yR) are
provided as input to the unsigncryption algorithm USC(·).

4



Unsigncryption Algorithm USC(cp, C, xR, yS , bind info)

1. Parse C as (c, r, s)

2. w = (yS · gr)s·xR mod p if ‘type1’ is used, or
w = (g · yr

S)s·xR mod p if ‘type2’ is used

3. K = G(w)

4. m = DK(c)

5. If r /∈ [0, . . . , q − 1] or s /∈ [1, . . . , q − 1] then return ‘Rej (reject)’

6. If r = H(m, bind info, w) then return m. Else output ‘Rej ’

4 Description of Signcryption Scheme Defined on Elliptic Curves
over Finite Fields

4.1 Overview

The security proofs of the signcryption schemes provided in [4, 5] are not only applicable to a
subgroup of the multiplicative group ZZ∗p as described in Section 3 but also that of the elliptic
curve group over finite fields. Similarly to the case of a multiplicative group, we denote two
signcryption schemes defined over elliptic curve groups by ECSCR-type1 and ECSCR-type2,
both of which consist of the following four algorithms.

• GCEC(·) – Common Parameter Generation

• GKEC(·) – Key Generation

• SCEC(·) – Signcryption of message

• USCEC(·) – Unsigncryption of signcryptext

In the forthcoming sections we precisely describe each sub-algorithm of ECSCR.

4.2 Common Parameter Generation Algorithm

Common parameters are generated by the algorithm GCEC(k) where k is security parameter.
The output of this algorithm is denoted by cp and this contains; an elliptic curve EC over the
finite field of pm denoted by GF (pm), where p is a prime and m is a positive integer; a prime q
whose size is approximately of |pm|; a point P with order q randomly chosen from the points
on EC. Note in the choice of GF (pm) that p and m satisfy either p ≥ 2k and m = 1 or p = 2
and m ≥ k. A summary of GCEC(k) follows.

5



Common Parameter Generation Algorithm GCEC(k)

1. Choose EC – an elliptic curve over the finite field GF (pm), where either
p ≥ 2k and m = 1 or p = 2 and m ≥ k

2. Choose q – a large prime with |q| ≈ |pm|
3. Randomly choose P – a point with order q randomly chosen from the

points on EC

4. Return cp = (EC, q, P )

4.3 Key Generation Algorithm

The sender S and the receiver R generate their own secret/public key pairs denoted by (xS , PS)
and (xR, PR) respectively, using the key generation algorithm described below. Note that the
security parameter k and the common parameter cp are provided as input to this algorithm.

Key Generation Algorithm GKEC(k, cp):

1. Pick xS uniformly at random from [1, . . . , q − 1]

2. PS = xSP

3. Return (xS , PS)

In the same way, (xR, PR) is generated.

4.4 Signcryption Algorithm

The common parameter cp, the sender S’s secret key xS , and the receiver R’s public key PR

and bind info containing the sender and receiver’s public keys (PS , PR) are provided as input
to the signcryption algorithm SCEC(·). A detailed description of SC(cp,m, xS , yR, bind info) is
as follows.

6



Signcryption Algorithm SCEC(cp,m, xS , PR, bind info)

1. Pick x uniformly at random from [1, . . . , q − 1]

2. W = xPR

3. K = G(W )

4. r = H(m, bind info,W ) where bind info =(PS , PR)

5. s = x/(r + xS) mod q if ‘type1’ is used, or
s = x/(1 + xS · r) mod q if ‘type2’ is used

6. c = EK(m)

7. Return C = (c, r, s)

4.5 Unsigncryption Algorithm

The common parameter cp, the receiver R’s secret key xS , and the sender S’s public key yS

and bind info containing the sender and receiver’s public keys (PS , PR) are provided as input
to the unsigncryption algorithm USCEC(·).

Unsigncryption Algorithm USCEC(cp, C, xR, PS , bind info)

1. Parse C as (c, r, s)

2. u = sxR mod q

3. W = uPS + urP if ‘type1’ is used, or
W = uP + urPS if ‘type2’ is used

4. K = G(W )

5. m = DK(c)

6. If r /∈ [0, . . . , q − 1] or s /∈ [1, . . . , q − 1] then return ‘Rej (reject)’

7. If r = H(m, bind info, W ) then return m Else output ‘Rej ’

References

[1] Advanced Encryption Standard, Federal Information Processing Standard Publication 197,
2001.

[2] Data Encryption Standard (DES), Federal Information Processing Standard Publication
46, 1976.

[3] Secure Hash Standard, Federal Information Processing Standard Publication 180-1, 1995.

7



[4] J. Baek, R. Steinfeld and Y. Zheng: Formal Proofs for the Security of Signcryption,
Proceedings of Public Key Cryptography 2002 (PKC 2002), Vol. 2274 of LNCS, Springer-
Verlag 2002, pages 80–98.

[5] J. Baek, R. Steinfeld and Y. Zheng: Formal Proofs for the Security of Signcryption, A
full version, Submitted to Jornal of Cryptology. A draft is available upon request to the
authors.

[6] M. Bellare and P. Rogaway: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols, Proceedings of First ACM Conference on Computer and Communica-
tions Security 1993, pages 62–73.

[7] Y. Zheng: Digital Signcryption or How to Achieve Cost (Signature & Encryption) ¿ Cost
(Signature) + Cost (Encryption), Advances in Cryptology - Proceedings CRYPTO ’97,
Vol. 1294 of LNCS, Springer-Verlag 1997, pages 165–179.

[8] Y. Zheng: Digital Signcryption or How to Achieve Cost (Signature & En-
cryption) ¿ Cost (Signature) + Cost (Encryption), full version, available at
http://www.pscit.monash.edu.au/ yuliang/pubs/.

8


