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TECHNICAL NOTE

Cryptanalysis and improvement of signcryption
schemes

H. Petersen
M.Michels

Indexing terms: Encryption, Signcryption, Cryptanalysis, Ciphers, Algorithms, Authenticity and confidentiality

Abstract: In 1997, two new schemes for authenticated
encryption, called signcryption, have been proposed by
Zheng. In this paper we point out a serious problem with
these schemes. In fact, the way to gain nonrepudiation
violates the confidentiality. Moreover, we compare the
schemes to previously known authenticated encryption
schemes, which were not mentioned by Zheng. Finally we
outline a solution that overcomes the weakness.

1. Introduction
Authenticated encryption schemes should provide
authenticity and confidentiality of sent messages. One
way to implement such schemes is first to sign a mes-
sage and then to encrypt it, called the first-sign-then-
encrypt paradigm, the other is vice versa, called the
first-encrypt-then-sign paradigm. Instances to both
paradigms have been explicitly proposed [8,9,10],
while [5] can be regarded as a mixture of both
paradigms. The advantage of these approaches is that
also nonrepudiation can be gained, as only the correct
decryption must be proved. However, it must be taken
care that the separation of the signature and the
ciphertext is avoided.

Other schemes, which we call combined schemes
in the following, try to reduce the amount of
computation by gaining authenticity and
confidentiality together [3,4,6]. However, these
schemes do not gain nonrepudiation as pointed out in
[9]. In practice, they are used to establish a session
key and to authenticate a message, while the message
is encrypted using the session key in a symmetric
encryption scheme.

Recently, new combined schemes were proposed
by Zheng [12], called signcryption schemes. It was
claimed that authenticity, confidentiality and
nonrepudiation was gained and the efficiency is
superior to all schemes based on the paradigms
mentioned above. In contrast to
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other combined schemes, the use of a symmetric
cipher is included in the description explicitly.

In this paper, we describe the model, review
Zheng’s schemes and point out, why the
confidentiality is lost under certain circumstances. As
previous combined schemes are not mentioned in [12]
we compare them and show their similarities. Finally,
we outline how to overcome the weakness.

2. Model
An authenticated encryption scheme provides the fol-
lowing procedures:
• (probabilistic) set-up algorithm SU, that outputs

the system parameters P used by all participants.
• (probabilistic) key generation algorithm KG

which, on input the system parameters, returns a
key pair (x, y) for a user.

• (probabilistic) signature and encryption algorithm
SE(m, xS, yR) which, on input the secret key xS of
the sender S, the public key yB of the receiver R
and a message m, returns an authenticated
ciphertext c with respect to m.

• decryption and verification algorithm DV(c, yS, xR)
which on input xR of the receiver, and the public
inputs c and yS outputs an ‘alleged’ message m’,
and convinces the receiver that m’ is authenticated
by the sender S and, if that is true, m = m’.

• nonrepudiation protocol NR(m, c, yS, yR, xR) which
on secret input xR of the receiver R, and on public
inputs m, c, yS, and yR convinces a judge that m is
the correctly decrypted message with respect to c,
which is authenticated by the sender S.

 To obtain a secure authenticated encryption scheme
the following requirements must hold:

• Authenticity: There is no efficient algorithm
that on input m, xR, yS and further public
information returns a ciphertext c on an
arbitrary message m with non-negligible
probability, such that c is a ciphertext related to
message m with respect to sender S and
receiver R and m is authenticated by S.

• Confidentiality: There exists no efficient
algorithm which, on input of the ciphertext c,
the public keys yS, yR and further public
information can decrypt the related cleartext m
with non-negligible probability.

Additional public information is all information that
is obtained by an attacker during previous protocol
runs with different input parameters. Note, that the
attacker is allowed to corrupt the receiver in order to
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destroy authenticity and the judge in order to destroy
confidentiality for a message that is under dispute.

3. Review
We review the first system for authenticated
encryption, called SCS1 [12].
1. Initialization: The trusted third party chooses two

large primes p, q ∈ P with q|(p-1), an element α of
order q and a one-way function h: Zp* → Zp*.
These public parameters are authentic to all users.

2. Key generation: Each user i ∈{A, B} chooses a
secret key xj ∈ Zq* and computes his public key yj
:= αxj 

 (mod p). He publishes yj which is certified
by a trusted third party and keeps xj secret. Let
further denote E,D the encryption or decryption
function, respectively, of a suitable symmetric
encryption scheme.

3. Signature generation and encryption: The signer
Alice chooses a random k ∈ Zq* and computes
e := yB

k (mod p). She splits e into K1, K2, e.g. using
a hash function as K1||K2:=h(e), and computes
r :=d(K2,m), where d is a hash function,
s:=k·(r+xA) -1 (mod q), c := E(K1, m) and sends (c,
r, s) to the receiver Bob.

4. Decryption and signature verification: Bob
recovers e from r, s, α, p and xB as
e := (yA ·αr)s·xB (mod p) and splits e into K1, K2, e.g.
by K1||K2:=h(e). Then he decrypts m := D(K1, c)
and checks if d(K2, m) = r.

5. Non-repudiation: Bob proves the correctness of a
signature (c, r, s) on a message m by revealing e to
a judge and proving that discrete logarithms of  e
to base (yA·αr)s and yB to α are equal using the
protocol in [1]. Additionally the judge computes
K1||K2:=h(e) and checks whether r = d(K2, m), c =
E(K1, m) holds.

The second scheme, called SCS2, is very similar. It is
claimed that both schemes are unforgeable and
provide nonrepudiation as well as confidentiality.

4. Cryptanalysis
As mentioned in [12], Bob can choose a message

himself and generate a corresponding tuple (c, r, s).
Therefore, to gain nonrepudiation in case of a dispute,
a judge must be convinced by the verifier Bob, that
the signature was issued by the signer Alice. Bob can
demonstrate this by proving that e ≡ (yA·αr)s·xB (mod p)
holds. Therefore, he delivers e to the judge and gives
a zero-knowledge proof that the discrete logarithm of
yB to base α is equal to the discrete logarithm of e to
base (yA·αr)s. Unfortunately, everybody knowing e, r,
s and yB can compute the value KDH := es-1

·yB
-r≡αxA·xB

(mod p). Then, for any ciphertext (c’, r’, s’) this
person is able to compute e’:= KDH

s’·yB
rs (mod p), split

it into K1’,K2’ and decrypt the message m’ := D(K2’,
c’).

Therefore, the judge can decrypt any further
message after he was once convinced by Bob of the
authenticity of a message sent by Alice. In other
words, in order to gain nonrepudiation confidentiality
is lost.

5. Previously known combined schemes
Several schemes for authenticated encryption are
known, but not mentioned in [12]1. We describe one
scheme from the family of schemes proposed in
section 7.1 of [4], and compare it to Zheng’s scheme.
It is obtained by substituting the general variables in
[4] suitably (i.e. A := rs, B := -r, C := 1) and
resembles in many points to the SCS1 scheme
reviewed above. In order to simplify the comparison
with SCS1 we add the encryption of the message with
a symmetric cipher into the scheme, where E(K,m)
denotes the encryption of m and D(K,c) denotes the
decryption of c with respect to key K and
D(K,E(K,m))=m holds.

The initialization and key generation are the same
as described above. To send a message m, sender
Alice picks random k ∈ Zq*, K ∈ Zp* and computes
e := h(yB

k (mod p)), r:=K·e (mod p), s:= k·(r + xA)-1

(mod q) and c:= E(K, m). Then (c, r, s) is send to Bob,
who can recover e by e:=h(yB

r· s·yA
s· xB (mod p)), K by

K := r ·e-1 (mod p) and finally m= D(K, c).
Hence a combined scheme with communication

overhead of |p| + |q| bit is obtained. As the symmetric
key K is usually smaller than |q| bit, Alice can
compute r:=K·e (mod q) (and hence Bob recovers K
:= r·e-1 (mod q)) using the M mode according to the
notion in [4]. This reduces the communication
overhead to 2 |q| bit. Another variant that leads to the
same result was suggested in [6]. Compared to |q| +
|d(K2, m)| bit communication overhead in SCS1 and
using the parameter sizes suggested in [12] (|q|=160
bit and |d(K2, m)|=80 bit), this leads to a difference of
10 byte (independent of the size of |p|) which is
clearly negligible if m is large. The computational
costs for the sender and the receiver is the same in
both approaches. Hence we can conclude that Zheng’s
scheme offers no advantages compared to previous
solutions.

6. Conclusion
Let us conclude with an outline how to gain

nonrepudiation without loosing confidentiality. One
simple approach is to prove the correct use of xB in
the decryption with a general zero-knowledge proof
based on circuits without revealing e [7]. Another
suggestion is that the judge is somehow trusted and
therefore the attack does not work in that model.
However, in both cases the benefits of the combined
schemes over schemes based on the other paradigms
are definitely lost. The first countermeasure is
extremely inefficient and thus unacceptable even if
we take into consideration that the dispute case
happens quite rarely. The second countermeasure is
unrealistic as well, as such a strong assumption is not
necessary using the schemes on the first-sign-then-
encrypt paradigm.

To overcome the problems in the SCS1 scheme we
suggest an alternative approach: Let G be a finite
group of order p and g be a generator of G of order p.
We suggest to use h(x) := gx ∈ G to compute K1||K2,
while the algorithms remain the same except for the
nonrepudiation protocol. This works as follows:
Given a signature (c, r, s), Bob computes and reveals
K=K1||K2 as described above. In order to show that he
                                                          
1  Moreover, Zheng does not even mention these schemes in
his forthcoming work [13], although he was informed about
them by the authors.
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computed K correctly he additionally gives a proof
that logz(logg(K))=logα(yB) (mod q) with z:=yA

s·αr·s

(mod p) using a protocol in [11]. The other checks
described above can be performed by the judge using
this K.

Clearly, the price paid for the reasonable efficient
nonrepudiation protocol is that the computational
costs for signing/encrypting and verifying/decryption

increases, as an additional exponentiation in G is
needed to compute gx . Similarly, nonrepudiation
can be added to the many other variants described in
[4, 6].
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