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Abstract—In this paper, we present a signcryption scheme based 
on elliptic curve cryptosystem, which can perfectly integrate 
digital signature with public key encryption. Then, based on the 
proposed signcryption scheme, we design a verifiable (t, n) 
threshold signcryption scheme. This threshold signcryption 
scheme not only has the advantages of threshold scheme but also 
has the functions that can prevent the cheating of trusted center, 
the cheating of participants each other, and the cheating that 
participants modify their private keys. In the message recovery 
phase, only the specified recipient can recover the signcryption 
message. Our proposed scheme has small communication cost, 
and this cost becomes smaller by compressing the points over 
elliptic curve.  

Keywords-signcryption; threshold scheme; verifiable secret 
sharing; elliptic curve cryptosystem 

I.  INTRODUCTION 
In the network security and cryptography, the study of 

confidentiality and authenticity are very important. In general, 
confidentiality is provided by encryption, and authenticity is 
guaranteed by digital signature. Traditionally, these two goals 
are always considered separately. Signcryption is a new 
paradigm in public key cryptography, which was first proposed 
by Zheng [1] in 1997. It can simultaneously fulfil both the 
functions of digital signature and public key encryption in a 
logically single step, and with a cost significantly lower than 
that required by the traditional “signature-then-encryption” 
[1][2][3]. Signcryption scheme will be suitable for the cases 
where both confidentiality and authenticity are required. 

The Zheng’ signcryption scheme had been simultaneously 
fulfilled both the functions of digital signature and public key 
encryption. However, the digital signature and public key 
encryption were separate, in other word, two operations were 
simply overlapped. Many authenticated encryption schemes 
and signcryption schemes almost have this weakness. Recently, 
two threshold signature encryption schemes which can 
perfectly integrate digital signature with public key encryption 
were respectively proposed in [4] and [5]. However, they 
cannot verify the cheating of trusted dealer and the cheating of 
participants each other. Due to the elliptic curve cryptosystem 
(ECC for short) has several advantages, such as small key 
sizes, high security, good flexibility, and easily implemented in 
hardware. It is becoming more and more important. In this 
paper, we shall design a verifiable (t, n) threshold signcryption 

scheme based on the difficulty of ECDLP. This scheme not 
only can perfectly integrate digital signature with public key 
encryption, but also can prevent the cheating of trusted center, 
the cheating of participants each other, and the cheating that 
participants modify their private keys, and it has privacy of the 
receiver. To make the communication cost becomes smaller, 
we can compress the point over elliptic curve when this scheme 
is implemented.  

Threshold digital signature scheme is a combination of 
threshold secret sharing and digital signature scheme. In this 
paper, the (t, n) threshold scheme is built based on the Shamir’ 
secret sharing [6]. Thus it has following characters:  

• A group of n signers share a signcryption secret key. 
• Only t or more participants can rebuild the secret key 

and generate a valid signcryption. 
• Any t-1 or fewer participants cannot rebuild the secret 

key and forge valid signcryption. 

II. A NEW SIGNCRYPTION SCHEME BASED ON ECC  
In this section, we design a new signcryption scheme based 

on elliptic curve cryptosystem and Schnorr’ signature scheme 
by employing the idea of authenticated encryption [7]. This 
signcryption scheme does not use the one-way hash function. 
The procedure of this scheme contains three phrases: the 
initialization phase, the signcryption phase, and the verification 
and message recovery phase. 

A. The Initialization Phase 
Our scheme requires a trusted center CA as a dealer, which 

is responsible for generating parameters. CA chooses a secure 
elliptic curve E(Fp) over finite field Fp and a base point P on it 
which has an order of q, where q is a large prime (q≥160bits). 
Signer A chooses a random integer dA∈ [1, q-1] as private key 
and computes corresponding public key QA = dA ·P, and sends 
QA to CA. Similarly, receiver B chooses a random integer 
dB∈ [1, q-1] as private key and computes corresponding public 
key QB = dB ·P, and sends QB to CA. Finally, CA publishes p, q, 
E(Fp), P, QA and QB. 

B. Signcryption Phase 
 Suppose a message m∈ [1, p-1] will be signcrypted by A, 

and then it will be sent to B. The message m includes redundant 
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information that can be applied to authenticate its validity. 
Signcryption operations as follow: 

Step 1: Signer A chooses a random integer k ∈[1, q-1] and 
computes Y1 = k ·P, Y2 = k ·QB. 

Step 2: Signer A generates the signcryption (r, s) by 

qYmr x mod)( 2⋅= ,                                (1) 

qrdks A mod⋅−= ,                                (2) 

where (Y2)x is a x-coordinate of point Y2. Finally, signer A 
sends the signcryption (r, s) and Y1 to receiver B via public 
channel. As is shown in (1) and (2), the signcryption (r, s) not 
only includes the message m (hidden in r), but also includes the 
signature by private key dA of signer A. 

C. Verification and Message Recovery Phase 
After B receives the signcryption (r, s), he can verify its 

validity and recover the message m by following steps: 

Step 1: Computes ,1 PsQrY A ⋅+⋅=′ 12 YdY B ′⋅=′ . 

Step 2: Verifies whether 11 YY ′= is correct. If it is correct, 
the signcryption (r, s) is valid, otherwise is invalid. 

Step 3: Recovers the message m by 

( ) pYrm x mod1
2

−′⋅= .                           (3) 

Then, B checks its validity from redundant information of m. 

Theorem 1 as below shows the proof of correctness about 
this new signcryption scheme. 

Theorem 1. If the signer A can strictly carry out above 
signcryption steps, the signcryption (r, s) can pass the test of 
validity, and the specified receiver B can also recover the 
message m.  

Proof. If user A can strictly carry out the signcryption steps, 
then 11 )()( YPkPrdkPdrPsQrY AAA =⋅=⋅⋅−+⋅⋅=⋅+⋅=′ , that 
is, the validity of signcryption (r, s) can be verified by 11 YY ′= . 
Thus, we have 2112 )( YQkPkdYdYdY BBBB =⋅=⋅⋅=⋅=′⋅=′ , so 
we can say the specified receiver B with private key dB can 
recover the message m by (3). 

III. A VERIFIABLE THRESHOLD SIGNCRYPTION SCHEME 
In this section, we shall design a verifiable (t, n) threshold 

signcryption scheme based on our proposed signcryption 
scheme. In this threshold scheme, there are four phases: the 
parameters choosing phase, the verifiable secret key split 
phase, the threshold signcryption phase, and the verification 
and message recovery phase. 

A. Parameters Choosing Phase 
In this threshold signcryption scheme, the receiver is still B. 

However, the signer is changed to a signers’ group which is 
denoted by G={P1, P2,…, Pn}. That is, G is a set of n signers in 
which each member can sign the partial signcryption. From the 
definition of threshold scheme, any t out of n signers (1≤ t ≤n) 

can represent the group G to perform the signcryption. In the 
threshold signcryption phase, a participant will be randomly 
selected from group G as a designated clerk, who is responsible 
for collecting and verifying the partial signcryption, and then 
computing the group signcryption. The trusted dealer is still 
denoted by CA. Let C denotes the clerk. CA chooses a random 
integer d ∈[1, q-1] as a private key of group G, thus the 
corresponding public key is Q = d ·P. 

In this section, the parameters p, q, E(Fp), P, dB and  QB are 
the same as that of the subsection A in section II. Finally, CA 
publishes p, q, E(Fp), P, Q and QB,  

B. Verifiable Secret Key Split Phase 
In following steps, we present a verifiable secret key split 

protocol based on Pedersen’s verifiable secret sharing [8][9]. 
The private key d of group G will be distributed to Pi (1≤ i ≤n). 

Step 1: The trusted dealer CA randomly generates a secret 
polynomial 

qxaxaaxf t
t mod)( 1

110
−

−+++=  

over Zq of degree t-1 satisfying a0 = f(0)=d. Then, CA computes 
di = f(i) as private key of Pi (1≤ i ≤n), thus the corresponding 
public key is Qi = d i ·P. Finally, CA publishes Qi. 

Step 2: CA sends di secretly to Pi (1≤ i ≤n) and broadcasts 
aj ·P (1≤ j ≤t-1) to all n signers. 

Here, “verifiable” means each signer can verify his share. 
This verification is given by 

∑
−

=
⋅=⋅

1

0
)(

t

j
j

j
i PaiPd .                             (4) 

That is, each signer Pi (1≤ i ≤n) may use (4) to verify whether 
his secret key di from CA is correct or not. If this equation 
holds, the share di is accepted, otherwise rejected. 

C. Threshold Signcryption Phase 
Suppose the message m∈ [1, p-1] will be signcrypted by t 

participants from group G for the receiver B. Without loss of 
generality, let P1, P2 ,…, Pt are the t participants. In this phase, 
the group signcryption (r, s) will be generated. This phase 
includes four steps:  

Step 1: Each signer Pi (1≤ i ≤t) chooses a random integer 
]1,1[ −∈ qki , then computes Yi = k i ·P and sends it to clerk C 

and receiver B via public channel, computes Zi = k i ·QB and 
sends it secretly to clerk C. 

Step 2: Signcryption clerk C computes 

∑∑
==

⋅=⋅==
t

i
BBi

t

i
i QkQkZZ

11
,                      (5) 

 pZmr x mod)(⋅= ,                                      (6) 

where ∑
=

=
t

i
ikk

1
, and broadcasts r to each signer Pi (1≤ i ≤t). 

Step 3: Each signer Pi (1≤ i ≤t) computes 
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−
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≠=
,                (7) 

qreks iii mod⋅−= ,                               (8) 

and then sends the partial signcryption si to clerk C. 

Step 4: After clerk C receives the partial signcryption si, he 
first computes PsQxrY iiii ⋅+⋅⋅=′ , and then verifies validity                                  
of partial signcryption si by  

ii YY ′= .                                         (9) 

If this equation holds, si is valid, otherwise, is invalid (the proof 
of correctness is similar to Theorem 1). If all the partial 
signcryptions are valid, C computes group signature s by 

qss
t

i
i mod

1
∑
=

= .                                (10) 

Finally, (r, s) as a signcryption of group G is sent to receiver B. 

D. Verification and Message Recovery Phase 
After receiver B receives the signcryption (r, s), he can 

verify its validity using public key Q of group G and recover 
the message m using his private key dB by following steps: 

Step 1: Computes  

PkPkYY
t

i
i

t

i
i ⋅=⋅== ∑∑

== 11
, 

YdZPsQrY B ′⋅=′⋅+⋅=′ , . 

Step 2: Verifies whether YY ′=  is correct. If this equation 
holds, the signcryption (r, s) is valid, otherwise is invalid. 

Step 3: Recovers the message m by 

( ) pZrm x mod1−′⋅= ,                        (11) 

and checks its validity from redundant information of m.  

Following Theorem 2 is the proof of correctness about this 
threshold signcryption scheme.  

Theorem 2. If all signers can strictly carry out the threshold 
signcryption steps, the signcryption can pass the test of validity 
and the specified receiver can also recover the message.  

Proof. If all signers can strictly carry out the threshold 
signcryption steps, then 
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By Lagrange polynomial interpolation, we have  
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Hence Y ' =k ·P=Y, signcryption can pass the test of validity. If 
the signcryption is valid, then 

ZQkPkdYdZ BBB =⋅=⋅⋅=′⋅=′ . 

Therefore, the receiver B with private key dB can recover the 
message m by (11).  

E. Security Analysis 
1) Verifiable secret key distribution: In the secret key split 

phase, each participant can verify his share from CA using (4). 
Therefore, this threshold scheme can prevent the cheating of 
trusted center, the cheating of participants each other, and the 
cheating that participants modify their private keys. If any 
attacker wants to forge secret key di to make (4) correct, he 
has to solve the ECDLP problem. 

2) Unforgeability of partial signcryption: In the threshold 
signcryption phase, it is impossible that the signer Pi modifies 
his secret key di or forges the partial signcryption si, because 
of this cheating will be verified from (9). It is also impossible 
that any attacker forges the partial signcryption si to cheat the 
verification of (9), because of he does not know ki, he has to 
solve the ECDLP problem. 

3) Unforgeability of group signature: In the threshold 
signcryption phase, it is impossible that signcryption clerk C 
or attacker forges group signature s to cheat receiver B, 
because of he must forge all partial signcryption si to make (9) 
correct. However, he does not know ki and di, so he has to face 
the ECDLP problem. 

4) Confidentiality of private key: Any attacker wants to 
obtain d, di and ki from all public information in this scheme. 
The difficulty is equivalent to solving the ECDLP problem. 

5) Against conspiracy attack: This threshold scheme has 
the security of Shamir’s secret sharing scheme. Any t-1 or less  
participants from group G can not rebulid the group secret key 
and generate a valid group signcryption. 

6) Confidentiality and unforgeability of message: Only 
specified receiver B who owns private key dB can recover the 
message m from (11). Any attacker can not forge m to cheat 
receiver B, because of this cheating can be checked from  
redundant information of m. 

7) Attack of receiver: It is impossible that the specified 
receiver B wants to obtain the private key d of group G from 
signcryption (r, s). By Lagrange polynomial interpolation, we 
have 

.mod)(mod
1

qdrkqss
t

i
i ⋅−==∑

=
 

However, B does not know k, thus he can not computes d. 

IV. ALGORITHM STRATEGY AND EFFICIENCY ANALYSIS 
Because of the ECC is applied to design our signcryption 

scheme, the key sizes can be considerably reduced. Thus it has 
lower communication complexity.  

In order to make the communication cost becomes smaller, 
we use compression method to transmit the point over elliptic 
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curve. A point P(xp, yp) over elliptic curve can be represented 
more compactly by storing only x-coordinate xp and a certain 
bit bxy derived from xp and yp. The point P(xp, yp) can be 
recovered from xp and bxy [10]. By means of such compressing 
technique, the communication cost can be reduced. The 
concrete analysis about this as follow: 

• In the secret key split phase, to achieve the verifiable 
function, the dealer CA wants to broadcast t points Q, 
aj ·P (1≤ j ≤t-1). If no compression, CA need broadcast 
2t|p| bits. However, after these points are compressed, 
the value can be reduced to t(|p|+1) bits. 

• In the threshold signcryption phase, t participants need 
send t(6|p|+|q|) bits, we can reduce it to t(3|p|+1+|q|) 
bits. 

Similarly, due to the property of ECC, the computational 
cost can be obviously reduced in our scheme. In fact, the 
modular exponentiation and point multiplication are the most 
time-costing computation in cryptosystem. When |p|=1024 bits, 
|q|=160 bits, the operation of point multiplication is about 8 
times faster than the operation of modular exponentiation [11]. 
Therefore, compare to the signcryption scheme based on the 
difficulty of computing discrete logarithms, such as scheme in 
[4], our scheme has higher computational efficiency.  

V. CONCLUSIONS 
In this paper, we proposed a new signcryption scheme, and 

based this signcryption scheme we built a (t, n) threshold 
signcryption scheme. These schemes not only can solve the 
problem that signature and encryption were separated in early 
signcryption schemes, but also can provide confidentiality, 
authenticity, data integrity and anonymity of receiver. Besides, 
the threshold signcryption scheme has advantages of verifiable 
threshold scheme, and it can prevent various cheating. In 
addition, we point out such algorithm technique: compressing 
the point over elliptic curve, so that the communication cost 
can become smaller. 

In this paper, the threshold signcryption scheme requires a 
trusted center as a dealer, which is responsible for choosing 

system parameters and distributing secret key. In fact, our 
threshold signcryption scheme can be easily converted into a 
threshold signcryption scheme without trusted center based on 
our signcryption scheme in section II by employing Pedersen’s 
verifiable secret sharing scheme without trusted center [12]. In 
such scheme, each participant plays a role as the dealer CA in 
our scheme.  
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