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Abstract. Signcryption is a public key primitive proposed by Zheng [14]
to achieve the combined functionality of digital signature and encryption
in an efficient manner. We present a signcryption scheme based on RSA
and provide proofs of security in the random oracle model [6] for its
privacy and unforgeability. Both proofs are under the assumption that
inverting the RSA function is hard.
Our scheme has two appealing aspects to it. First of all it produces com-
pact ciphertexts. Secondly it offers non-repudiation in a very straight-
forward manner.

1 Introduction

Signcryption is a novel public key primitive first proposed by Zheng in 1997 [14].
A signcryption scheme combines the functionality of a digital signature scheme
with that of an encryption scheme. It therefore offers the three services: privacy,
authenticity and non-repudiation. Since these services are frequently required
simultaneously, Zheng proposed signcryption as a means to offer them in a more
efficient manner that a straightforward composition of digital signature scheme
and encryption scheme. An ingenious scheme was proposed to meet such a goal.

It is only recently that research has been done on defining security for sign-
cryption and providing security arguments for schemes [2, 3]. In [3] a scheme
similar to the original one proposed in [14] is analysed. The model in [2] is
slightly different. It aims to analyse any primitive that achieves the combined
functionality of signature and encryption.

Here we continue this line of research into provable security of signcryption
schemes. We present a signcryption scheme based on the RSA trapdoor one-way
function. An attractive feature of our scheme is that it offers non-repudiation
in a very simple manner. Non-repudiation for signcryption is not a straightfor-
ward consequence of unforgeability like it is for digital signature schemes. The
reason for this is that a signcrypted message is “encrypted” as well as “signed”.
Therefore, by default, only the intended receiver of a signcryption may verify its
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authenticity. If a third party is to settle a repudiation dispute over a signcryp-
tion, it must have access to some information in addition to the signcryption
itself. Of course the receiver could always surrender its private key but this is
clearly unsatisfactory. It is often the case that several rounds of zero-knowledge
are required. This is not the case for our scheme.

The scheme uses a padding scheme similar to PSS [7, 8]. The PSS padding
scheme was originally designed to create a provably secure signature algorithm
when used with RSA [7]. It was subsequently pointed out in [8] that a version
of PSS could also be combined with RSA to create a provably secure encryption
function. As demonstrated here, this makes PSS padding perfect for RSA based
signcryption. The resulting scheme is very efficient in terms of bandwidth: a
signcryption is half the size of a message signed and encrypted using standard
techniques for RSA. For this reason we give it the name Two Birds One Stone.

We envisage that our scheme could be used in an e-commerce scenario such
as signcrypting a bankcard payment authorisation. Here one RSA block suffices
and, as we have discussed, the scheme offers non-repudiation which is clearly
desirable for such an application. An alternative use could be signcryption of
session keys in a key transport protocol.

2 Two Birds One Stone (TBOS)

2.1 Abstract TBOS

The TBOS cryptosystem will make use of what we will call a permutation with
trapdoors. A permutation with trapdoors f : {0, 1}k → {0, 1}k is a function that
requires some secret, or “trapdoor”, information to evaluate and some different
secret information to invert. In the scheme below we will assume that the sender
of messages, Alice, knows the secret information necessary to evaluate f , and
the receiver, Bob, knows the secret information necessary to evaluate f−1.

The scheme may be used to signcrypt messages from {0, 1}n, where k =
n+k0 +k1 for integers k0 and k1. Before f is applied to a message some random
padding is applied. The padding used is similar to PSS [7, 8]. We describe how
the scheme works below.

Parameters
The scheme requires two hash functions

H : {0, 1}n+k0 → {0, 1}k1 and G : {0, 1}k1 → {0, 1}n+k0.

Signcryption
For Alice to signcrypt a message
m ∈ {0, 1}n for Bob:

1. r
r
← {0, 1}k0

2. ω ← H(m||r)
3. s← G(ω)⊕ (m||r)
4. c← f(s||ω)
5. Send c to Bob

Unsigncryption
For Bob to unsigncrypt a
cryptogram c from Alice:

1. s||ω ← f−1(c)
2. m||r ← G(ω)⊕ s
3. If H(m||r) = ω accept m

Else reject



As it stands TBOS has no obvious way to provide non-repudiation. We discuss
how this problem may be overcome in the next section.

2.2 RSA-TBOS

We now show how RSA is used to create something like a permutation with
trapdoors, as in Section 2.1, for use with TBOS. We are not claiming that the
resulting function is a permutation. This is not necessary for our proof of security.

To begin with a sender Alice generates an RSA key pair (NA, eA), (NA, dA),
with NA = PA · QA and |PA| = |QA| = k/2. Here and henceforth k is an even
positive integer. A receiver Bob does likewise giving him (NB , eB), (NB , dB).
Using G and H as above we describe the scheme below. Here, if a bit string α||β
represents an integer, then α represents the most significant bits of that integer.

Signcryption
For Alice to signcrypt a message
m ∈ {0, 1}n for Bob:

1. r
r
← {0, 1}k0

2. ω ← H(m||r)
3. s← G(ω)⊕ (m||r)
4. If s||ω > NA goto 1
5. c′ ← (s||ω)dA mod NA

6. If c′ > NB , c′ ← c′ − 2k−1

7. c← c′
eB mod NB

8. Send c to Bob

Unsigncryption
For Bob to unsigncrypt a
cryptogram c from Alice:

1. c′ ← cdB mod NB

2. If c′ > NA, reject
3. µ← c′

eA mod NA

4. Parse µ as s||ω
5. m||r ← G(ω)⊕ s
6. If H(m||r) = ω, return m
7. c′ ← c′ + 2k−1

8. If c′ > NA, reject
9. µ← c′

eA mod NA

10. Parse µ as s||ω
11. m||r ← G(ω)⊕ s
12. If ω 6= H(m||r), reject
13. Return m

The point of step 6 in signcryption is to ensure that c′ < NB. If c′ initially fails
this test then we have NA > c′ > NB . Since both NA and NB have k-bits we
infer that c′ also has k-bits and so the assignment c′ ← c′ − 2k−1 is equivalent
to removing the most significant bit of c′. This gives us c′ < NB as required.
Note that this step may cause an additional step in unsigncryption. In particular
it may be necessary to perform c′

eA mod NA twice (the two c′’s will differ by
2k−1). It would have been possible to define an alternative scheme under which
the trial and error occurs in signcryption. This would mean repeating steps 1-5
in signcryption with different values of r until c′ < NB was is obtained.

Non-repudiation is very simple for RSA-TBOS. The receiver of a signcryption
follows the unsigncryption procedure up until stage 2, c′ may then be given to
a third party who can verify its validity.



3 Security Notions for Signcryption Schemes

3.1 IND-CCA2 for Signcryption Schemes

We take as our starting point the standard definition of indistinguishability of
encryptions under adaptive chosen ciphertext attack (IND-CCA2) for public key
encryption schemes [1, 4, 5, 10, 11]. A public key encryption scheme enjoys IND-
CCA2 security if it is not possible for an adversary to distinguish the encryptions
of two messages of its choice under a particular public key, even when it has
access to a decryption oracle for this public key. The adversary is able to query
the decryption oracle before choosing its two messages and its queries may be
determined given information gleaned from previous queries. The adversary is
then given the challenge ciphertext i.e. the encryption under the public key in
question of one of the two messages chosen at random. It is allowed to continue
to query the decryption oracle subject to the condition that it does not query
the challenge ciphertext itself. The adversary wins if it correctly guesses which
of the two messages was encrypted.

In our definition of IND-CCA2 security for signcryption we allow the adver-
sary access to an unsigncryption oracle for the target receiver’s key in a similar
manner to that described above for encryption schemes. The difference here is
that an oracle for the target receiver’s unsigncryption algorithm must be defined
with respect to some sender’s public key. We therefore consider an attack on two
users: a sender and a receiver.

In the case of public key encryption schemes the adversary is able to encrypt
any messages that it likes under the public key that it is attacking. This is not the
case for signcryption schemes. The private key of the target sender is required
in signcryption and so the adversary is not able to produce signcryptions on its
own. We must therefore provide the adversary with a signcryption oracle for the
keys of the target sender and the target receiver. For an encryption scheme the
adversary is able to use its own choice of randomness to generate encryptions, we
therefore allow the adversary to choose the randomness used by the signcryption
oracle, except for challenge ciphertext generation.

We give a more concrete description of the attack below.

Setup
Using the global systems parameters two private/public key pairs (xA, YA) and
(xB , YB) are generated for a target sender/receiver respectively.

Find
The adversary is given YA and YB , it is also given access to two oracles: a
signcryption oracle for YA, YB and an unsigncryption oracle for YA, YB . The
adversary is allowed to choose the random input as well as the message for the
signcryption oracle. At the end of this phase the adversary outputs two messages
m0 and m1 with |m0| = |m1|.

Challenge
A bit b is chosen uniformly at random. The message mb is signcrypted under
YA, YB to produce c∗ which is given to the adversary.



Guess
The adversary may continue to query its oracles subject to the condition that
it does not query its unsigncryption oracle with c∗. At the end of this phase the
adversary outputs a bit b′. The adversary wins if b′ = b.

If A is an adversary as described above we define its advantage as:

Adv(A) = |2 · Pr[b′ = b]− 1|.

We say that a signcryption scheme is IND-CCA2 secure if the advantage of any
polynomial-time adversary is a negligible1 function of the security parameter of
the scheme.

3.2 Unforgeability of Signcryption Schemes

We adapt the definition of existential unforgeability under adaptive chosen mes-
sage attack [13] for signature schemes to the signcryption setting.

When using a signature scheme, the only private key used in signature gener-
ation belongs to the sender. An adversary can therefore be anyone, since there is
no difference in the ability to forge signatures between a receiver of signed mes-
sages and a third party. For a signcryption scheme however, signature generation
uses the receiver’s public key as well as the sender’s keys. In this instance there
may be a difference in the ability to forge signcryptions between the receiver
and a third party, since only the receiver knows the private key corresponding to
its public key. With the above in mind we assume that an adversary has access
to the private key of the receiver as well as the public key of the sender. It can
therefore perform unsigncryption itself.

We allow an adversary to query a signcryption oracle for the target sender’s
private key. This oracle takes as input a message, and an arbitrary public key
chosen by the adversary. The oracle returns the signcryption of the message
under the target sender’s key and the key chosen by the adversary.

We say that the adversary wins if it produces a valid forged signcryption on
some message under the target sender’s public key. This message must not have
been queried to the signcryption oracle during the attack.

If A is an adversary as described above we define its advantage as:

Adv(A) = Pr[A wins].

We say that a signcryption scheme is existentially unforgeable under adaptive
chosen message attack if the advantage of any polynomial-time adversary is a
negligible function of the security parameter of the scheme.

4 IND-CCA2 Security of TBOS

4.1 The Underlying Hard Problem

If the secret information necessary to evaluate a permutation with trapdoors f
is made public, then f becomes a standard trapdoor one-way permutation. We

1 A function ε(k) is negligible if for every c there exists a kc such that ε(k) ≤ k
−c for

all k ≥ kc.



call this the induced trapdoor one-way permutation of f . First of all we consider
the security of TBOS under the partial-domain one-wayness [12] of the induced
trapdoor one-way permutation of f . Let us first state formally the definitions
that we will use. Below f will be a trapdoor one-way permutation.

Definition 1 (One-wayness). The function f is (t, ε)-partial domain one-way
if the success probability of any adversary A wishing to recover the preimage of
f(s||ω) in time less than t is upper bounded by ε. We state this as:

Advow
f (A) ≤ Pr

s,ω
[A(f(s||ω)) = s||ω] < ε.

For any f we denote the maximum value of Advow
f (A) over all adversaries run-

ning for time t as Adv
ow
f (t).

Definition 2 (Partial-domain one-wayness). The function f is (t, ε)-partial
domain one-way if the success probability of any adversary A wishing to recover
the partial preimage of f(s||ω) in time less than t is upper bounded by ε. We
state this as:

Advpd−ow
f (A) ≤ Pr

s,ω
[A(f(s||ω)) = ω] < ε.

For any f we denote the maximum value of Adv
pd−ow
f (A) over all adversaries

running for time t as Adv
pd−ow
f (t).

Definition 3 (Set partial-domain one-wayness). The function f is (l, t, ε)-
set partial domain one-way if the success probability of any adversary A wishing
to output a set of l elements which contains the partial preimage of f(s||ω) in
time less than t is upper bounded by ε. We state this as:

Advs−pd−ow
f (A) ≤ Pr

s,ω
[ω ∈ A(f(s||ω))] < ε.

For any f and l we denote the maximum value of Adv
s−pd−ow
f (A) over all ad-

versaries running for time t as Adv
s−pd−ow
f (l, t).

Suppose that an adversary is given c and successfully returns a set of l elements
of which one is ω such that f(s||ω) = c for some s. It is now possible to break the
partial-domain one-wayness of f by selecting one of these elements at random.
This tells us that

Adv
pd−ow
f (t) ≥ Adv

s−pd−ow
f (l, t)/l. (1)

4.2 IND-CCA2 Security of Abstract TBOS

Theorem 1. Let A be an adversary using a CCA2 attack to break TBOS (as
defined in Section 2.1). Suppose that A has advantage ε after running for time
t, making at most qg, qh, qs and qu queries to G, H, the signcryption oracle and
the unsigncryption oracle respectively. Suppose that TBOS is implemented with



k-bit permutation with trapdoors f and let f ′ be the induced trapdoor one-way
permutation of f . We have the following

Advpd−ow
f ′ (t′) ≥

1

qg + qh + qs
·
(

ε− 2−k0 · (qh + qs)− 2−k1 · qu

)

where t′ = tg · (qg + qh + qs) + th · (qh + qs) + ts · qs + tu · qu, qg is the time taken
to simulate the random oracle G (in the proof of Lemma 1 below) and th, ts and
tu are defined analogously.

This follows from (1) and the following lemma.

Lemma 1. Using the notation of Theorem 1 we have

Advs−pd−ow
f ′ (qg + qh + qs, t

′) ≥ ε− 2−k0 · (qh + qs)− 2−k1 · qu.

Proof. We will show how the adversary A may be used to break the set-partial
domain one-wayness of f ′ by finding the partial preimage of c∗ chosen at ran-
dom from the range of f ′. Note that the adversary does not know the secret
information necessary to evaluate f . The proof is similar to the corresponding
proof in [8].

We will consider an attack on two users Alice, the target sender who knows
how to evaluate f , and Bob, the target receiver who knows how to evaluate f−1.
We run adversary A on input of all universal public parameters and the public
keys of Alice and Bob. It is necessary to show how to respond to A’s queries to
the random oracles G and H and the signcryption/unsigncryption oracles. We
denote the algorithms to do this as Gsim, Hsim, Ssim and Usim respectively and
we describe them below. To make our simulations sound we keep two lists, LG

and LH that are initially empty. The list LG will consist of query/response pairs
to the random oracle G. The list LH will do the same for H . It will also store
some extra information as described in Hsim below. At the end of the simulation
we hope to find the partial preimage of c∗ among the queries in LG.

Gsim(ω) Hsim(m||r)
If (ω, x) ∈ LG for some x: If

(

m||r, ω, c) ∈ LH for some ω:
Return x Return ω

Else: Else:

x
r
← {0, 1}n+k0 ω

r
← {0, 1}k0

Add (ω, x) to LG x← Gsim(ω)
Return x s← x⊕ (m||r)

Add
(

m||r, ω, f(s||ω)
)

to LH

Return ω

Ssim(m||r) Usim(c)
Run Hsim(m||r) If (m||r, ω, c) ∈ LH for some m:
Search LH for entry (m||r, ω, c) Return m
Return c Else reject



Note that in Hsim above we assume that each query has form m||r. All this
means is each query has length n + k0 bits and so may be parsed as m||r where
m has n bits and r has k0 bits. We make this assumption because, in the random
oracle model, it would not help A to make queries of length different from n+k0.

We also allow A to make queries of the form m||r to Ssim i.e. we allow A
to provide its own random input. This is consistent with a CCA2 attack on an
encryption scheme such as RSA-PSS where an adversary can encrypt messages
itself using its own random input.

At the end of the find stageA outputs m0 and m1. We choose a bit b uniformly
at random and supply the adversary with c∗ as the signcryption of mb. Suppose
c∗ = f(s∗||ω∗), this places the following constraints on the random oracles G
and H :

H(mb||r
∗) = ω∗ and G(ω∗) = s∗ ⊕ (mb||r

∗). (2)

We denote by AskG the event that during A’s attack ω∗ has ended up in LG.
We denote by AskH the event the query m||r∗ has ended up in LH for some m.

If ω∗ /∈ LG, then G(ω∗) is undefined and so r∗ is a uniformly distributed
random variable. Therefore the probability that there exists an m such that
m||r∗ ∈ LH is at most 2−k0 · (qh + qs). This tells us that

Pr[AskH|¬AskG] ≤ 2−k0 · (qh + qs). (3)

Our simulation Usim can only fail if it outputs reject when it is presented with a
valid ciphertext. We denote this event UBad. Suppose that Usim is queried with
c = f(s||ω) and let m||r = G(ω)⊕ s.

We may mistakenly reject a valid ciphertext if H(m||r) = ω, while m||r is not
in LH . Suppose that this query occurs before c∗ is given to A then, since m||r is
not in LH , H(m||r) will take its value at random. If this query is made after c∗

is given to A then c 6= c∗ means that (m, r) 6= (mb, r
∗) and so (2) is irrelevant.

In either case H(m||r) may take its value at random which means that

Pr[UBad] ≤ 2−k1 · qu. (4)

Let us define the event Bad as

Bad = AskG ∨ AskH ∨ UBad. (5)

Let us denote the event that the adversary wins, i.e. it outputs b′ such that
b′ = b, by S. In the event ¬Bad the bit b is independent of our simulations, and
therefore independent of the adversaries view. We infer from this that

Pr[S|¬Bad] =
1

2
. (6)

Also, in the event ¬Bad, the adversary interacts with a perfect simulation of
random oracles and signcryption/unsigncryption oracles. This gives us

Pr[S ∧ ¬Bad] ≥
1

2
+

ε

2
− Pr[Bad]. (7)

From (6) we obtain



Pr[S ∧ ¬Bad] = Pr[S|¬Bad] · Pr[¬Bad] =
1

2
· (1− Pr[Bad]). (8)

Combining (7) with (8) gives us

Pr[Bad] ≥ ε. (9)

From (5) we have

Pr[Bad] ≤ Pr[AskG ∨ AskH] + Pr[UBad]

= Pr[AskG] + Pr[AskH ∨ ¬AskG] + Pr[UBad]

≤ Pr[AskG] + Pr[AskH|¬AskG] + Pr[UBad]. (10)

Together (3), (4) and (10) give us

Pr[AskG] ≥ ε− 2−k0 · (qh + qs)− 2−k1 · qu. (11)

The result follows.

4.3 IND-CCA2 Security of RSA-TBOS

We now adapt the result of Section 4.2 to give a proof of the IND-CCA2 security
of RSA-TBOS (as defined in Section 2.2) in the random oracle model under the
assumption that the RSA function is one-way.

As in Lemma 1 we will assume that there is an adversary A that runs for
time t and has advantage ε in breaking the IND-CCA2 security of RSA-TBOS
after making at most qg , qh, qs and qu queries to G, H , the signcryption oracle
and the unsigncryption oracle respectively. Given an RSA public key (NB , eB),
with NB = PB · QB and |PB | = |QB | = k/2, and c∗, we will show how A may
be used to compute the eB-th root of c∗ modulo NB .

The first step is to generate an RSA key pair (NA, eA), (NA, dA) with NA =
PA ·QA where |PA| = |QA| = k/2. We use Gsim, Ssim and Usim from Lemma 1,
we replace Hsim with the algorithm below.

Hsim(m||r)
If

(

m||r, ω, c) ∈ LH for some ω, return ω
Else:

1. ω
r
← {0, 1}k0

2. x← Gsim(ω)
3. s← x⊕ (m||r)
4. If s||ω > NA, goto 1
5. c′ ← (s||ω)dA mod NA

6. If c′ > NB , c′ ← c′ − 2k−1

7. c← c′
eB mod NB

8. Add (m||r, ω, c) to LH

9. Return ω

The event Bad is defined as in (5) in the proof of Lemma 1. In our simulation
here we are again going to supply A with c∗ as the challenge ciphertext. This



gives us an extra consideration in our simulation. We say that our simulation is
Good if (i) c∗dB mod NB < NA and (ii) gcd(c∗dB mod NB, NA) = 1. Over the
random choices of (NB , eB) , (NB , dB), c∗ and NA we have Pr[(i)] = 1/2 and
Pr[(ii)|(i)] ≥ 1− 2−(k/2)+(3/2), hence

Pr[Good] ≥ (2−1 − 2−
k

2
+ 1

2 ). (12)

Consider (4) in the proof of Lemma 1 for Abstract TBOS. For RSA-TBOS there
are two possibilities for a ciphertext to be valid and so we have

Pr[UBad] ≤ 2−(k1−1) · qu. (13)

We may now use a similar argument as that used to derive (11) in the proof of
Lemma 1 to give us

Pr[AskG|Good] ≥ ε− 2−k0 · (qh + qs)− 2−(k1−1) · qu (14)

in our new simulation. We are interested in the event AskG ∧ Good. We have

Pr[AskG ∧ Good] = Pr[AskG|Good] · Pr[Good]. (15)

Together (12), (14) and (15) tell us

Pr[AskG ∧ Good] ≥ (2−1 − 2−
k

2
+ 1

2 ) ·
(

ε− 2−k0 · (qh + qs)− 2−(k1−1) · qu

)

= δ.

(16)

Now, in the event AskG ∧ Good we recover a set LG of size

q = qg + qh + qs, (17)

containing the k1 least significant bits of z∗

0 where (z∗

0
dA mod NA)eB mod NB =

c∗. Call these bits ω0.
Once we have run our simulation once with challenge ciphertext c∗ and ob-

tained LG we do the following:

For i = 1, . . . , ν − 1:

αi
r
← Z

∗

NB

c∗i
r
← c∗ · αeB

i mod NB

Run the simulation with challenge ciphertext c∗i
keeping a list LGi

for G query/response pairs

For i = 1, . . . , ν− 1 after each run we end up with a list LGi
of size q containing

the k1 least significant bits of z∗

0 · βi mod NA where βi = αeA

i mod NA with
probability at least that of AskG∧Good as given in (16). Now, if each of the ν runs
of our simulation were successful, we have ω0 ∈ LG, ω1 ∈ LG1

, . . . , ων−1 ∈ LGν−1

such that z∗0 = ω0 + 2k1 · x0 mod NA

βi · z
∗

0 = ωi + 2k1 · xi mod NA for i = 1, . . . , ν − 1 (18)

where z∗0 and x0, . . . , xν are unknown. Now, for i = 1, . . . , ν − 1 let



γi = 2−k1 · (βiω0 − ωi) mod NA. (19)

From (18) and (19) we derive the following for i = 1, . . . , ν − 1

xi − βi · x0 = γi mod NA. (20)

We have the following lemma from [9].

Lemma 2. Suppose 2k−1 ≤ NA < 2k, k1 > 64 and k/(k1)
2 ≤ 2−6. If the set of

equations (20) has a solution x = (x0, . . . , xν−1) such that ||x||∞ < 2k−k1 , then
for all values of β = (β1, . . . , βν−1), except for a fraction

2ν·(k−k1+ν+2)

Nν−1
A

(21)

of them, this solution is unique and can be computed in time polynomial in ν
and in the size of NA.

It is also shown in [8] that taking ν = d(5k)/(4k1)e gives

2ν·(k−k1+ν+2)

Nν−1
A

≤ 2−k/8. (22)

If we have ν successful runs of our simulation we still do not know which elements
of the LG’s form the equations (20) and so to use this method we will have to
apply the Lemma 2 algorithm qν times. Once we have a solution to (20) we know
z∗0 such that c∗ =

(

(z∗0
dA mod NA)

)eB

mod NB . From this we may use dA to
compute z∗, the eB-th root of c∗, as

z∗ = z∗0
dA mod NA. (23)

Now, from (16), (20), (22), (23) and Lemma 2 we obtain the result below.

Theorem 2. Let A be an adversary that uses a CCA2 attack to attempt to break
RSA-TBOS with security parameter k. Suppose that A succeeds with probability ε
in time t after making at most qg, qh, qs and qu queries to G, H, the signcryption
oracle and the unsigncryption oracle respectively. In the random oracle model for
G and H we may use A to invert RSA with probability ε′ in time t′ where

ε′ ≥ δν − 2−k/8,

t′ ≤ ν · t + (qg + qh + qs)
ν · poly(k) + 2 · ν · (qh + qs) · T,

ν = d(5k)/(4k1)e, and T is the time it takes for a modular exponentiation.

Note that as is the case in the proofs of security for RSA-OAEP [12], and PSS
with standard RSA [8], our reduction is far from tight. Consequently, for the
proof of security to be meaningful, we recommend using 2048-bit RSA moduli.



5 Unforgeability of RSA-TBOS

Before we give our security result we must discuss exactly what constitutes a
forged RSA-TBOS signcryption. Suppose that we have a user of RSA-TBOS
with public key (NB , eB). This user can produce a random c ∈ Z

∗

NB
and claim

to have forged a signcryption from user who owns key (NA, eA). Without know-
ing (NB , dB) it would not be possible to verify this claim. A forged signcryption
by the owner of (NB , dB) must therefore be presented by following the unsign-
cryption procedure up until stage 2, c′ may then be given to a third party who
can verify its validity.

Let us suppose that we have an RSA public key (NA, eA) and c ∈ Z
∗

NA
whose

eA-th root we wish to compute. We show in the appendix how to use A, a forging
adversary of RSA-TBOS, to do this. This gives the result below.

Theorem 3. Let A be an adversary attempting to forge RSA-TBOS signcryp-
tions. Let k be the security parameter of RSA-TBOS. Suppose that A succeeds
with probability ε in time t after making at most qg, qh and qs queries to G, H
and the signcryption oracle respectively. In the random oracle model we may use
A to invert RSA with probability ε′ in time t′ where

ε′ ≥ ε− qs ·
(

2−(k0+1) · (2qh + qs − 1) + 2−(k1+1) · (2qg + 2qh + qs − 1)
)

−2−(k1+1) · qh · (2qg + qh + 2qs − 1),

t′ ≤ t + (qh + 2qs) · T, (24)

where T is the time it takes for a modular exponentiation.

6 Conclusion

We have proposed provably secure signcryption scheme based on the RSA func-
tion. This scheme is attractive in that it produces very compact signcryptions
with little extra computational cost. Also, our scheme offers non-repudiation in
a very simple manner.

In the future it would be interesting to adapt these ideas to produce a scheme
that is provably secure under the stronger definitions of security proposed for
signcryption in [3]. It is also important to investigate the possibility of a padding
scheme for which there exists a tighter security reduction.
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Appendix

Proof of Theorem 2



Our proof technique is similar to one used in [7]. We are going to run the
adversary A in a simulated environment. We first describe or simulation before
analysing how it could fail and showing how it could be used to invert the RSA
function.

Our simulation must respond A’s queries to the random oracles G and H and
the signcryption oracle. We denote the algorithms to do this Gsim, Hsim, and
Ssim respectively and we describe them below. To make our simulations sound
we keep two lists LG and LH that are initially empty. The list LG will consist of
query/response pairs. At the end of the simulation we hope to find the partial
preimage of c∗ among queries in LG.

Gsim(ω)
If (ω, x) ∈ LG for some x:

Return x
Else:

x
r
← {0, 1}n+k0

Add (ω, x) to LG

Return x

Hsim(m||r) Ssim(m||r, (NB , eB))

If
(

m||r, ω,−) ∈ LH for some ω: x
r
← Z

∗

NA

Return ω y ← xeA mod NA

Else: Parse y as s||ω

x
r
← Z

∗

NA
Add (m||r, ω,−,−,−) to LH

z ← xeA mod NA Add (ω, s⊕ (m||r)) to LG

y ← c∗z mod NA If x > NB , x← x− 2k−1

Parse y as s||ω c← xeB mod NB

Add (m||r, ω, x, y, z) to LH Return c
Add (ω, s⊕ (m||r)) to LG

Return ω

Let us now analyse our simulation. Consider events that would cause the adver-
sary’s view in our simulated run to differs from it’s view in a real attack. Such
an event could be caused by an error in Gsim, Hsim or Ssim. We let AskG be the
event that there is an error in Gsim and define AskH and SBad analogously.

It is easily verified that

Pr[AskG] = 0. (25)

An error in Hsim will only occur if it attempts to add (ω, s⊕ (m||r)) to LG when
G(ω) is already defined. We conclude that

Pr[AskH] ≤ 2−k1 ·

qh−1
∑

i=0

(qg + qs + i)

= 2−(k1+1) · qh · (2qg + qh + 2qs − 1). (26)



An error in Ssim will occur if it attempts to add (m||r, ω,−,−,−) to LH when
H(m||r) is already defined. The only other possibility for an error in Ssim is
attempting to add (ω, s ⊕ (m||r)) to LG when G(ω) is already defined. We
conclude that

Pr[SBad] ≤ 2−k0 ·
(

qs−1
∑

i=0

(qh + i)
)

+ 2−k1 ·
(

qs−1
∑

i=0

(qg + qh + i)
)

= qs ·
(

2−(k0+1) · (2qh + qs − 1) + 2−(k1+1) · (2qg + 2qh + qs − 1)
)

.

(27)

We also define the event FBad to be that when A outputs a valid forged sign-
cryption c on some message m, but m||r was never a query to Hsim. Clearly we
have

Pr[FBad] ≤ 2−k1 . (28)

We define the event Bad to be

Bad = AskG ∨ AskH ∨ SBad ∨ FBad. (29)

Let us consider the event A wins ∧ ¬Bad in our simulated run of A. If this
event occurs then A outputs a forged signcryption c of some m such that
(m||r, ω, x, y, z) ∈ LH for some r, ω, x, y, z. Now, looking at the construction
of Hsim we see that we have

(c/x)eA = (y/xeA) = (y/z) = (c∗z/z) = c∗ mod NA. (30)

Therefore (c/x) mod NA is the eA-th root of c∗ modulo NA as required. We
denote the event that we manage to find the eA-th root modulo NA of c∗ by
Invert. We see from (30) that

Pr[Invert]sim ≥ Pr[A wins ∧ ¬Bad]sim, (31)

where the subscript sim denotes the fact that these are probabilities in our
simulated run of A. We will denote probabilities in a real execution of A with
the subscript real . From (31) and the definition of Bad we see that

Pr[Invert]sim ≥ Pr[A wins ∧ ¬Bad]real ≥ Pr[A wins]real − Pr[Bad]real. (32)

The result now follows from (25), (26), (27), (28), (29) and (32).


