
An example of proving UC-realization with
formal methods

(extended abstract)

S. Andova1, K. Gjøsteen1, L. Kr̊akmo2, S. F. Mjølsnes1, and S. Radomirović1

1 Department of Telematics, Norwegian University of Science, Trondheim, Norway
2 Department of Mathematical Sciences, Norwegian University of Science,

Trondheim, Norway

Abstract. In the universal composability framework we consider ideal
functionalities for secure messaging and signcryption. Using traditional
formal methods techniques we show that the secure messaging function-
ality can be UC-realized by a hybrid protocol that uses the signcryption
functionality and a public key infrastructure functionality. We also dis-
cuss that the signcryption functionality can be UC-realized by a secure
signcryption scheme.

1 Introduction

Composing several (possibly identical) protocols into a large protocol, in general,
may not preserve security. Universally composable security is a framework pro-
posed by Canetti [1] as a way to define security for protocols such that security-
preserving composition is possible. This allows for a modular design and analysis
of protocols. For each cryptographic task, an ideal functionality can be defined,
which incorporates, the required properties of a protocol for that task and the al-
lowed actions of an adversary. A protocol securely realizes the ideal functionality
if any effect caused by an adversary attacking the protocol can be obtained by an
adversary attacking the ideal functionality. If, in addition, the environment and
the adversary are allowed to interact and exchange information freely, it is said
that the protocol UC-realizes the ideal functionality. The universal composition
theorem guarantees that in a complex protocol in which the involved parties
have a secure access to the ideal functionality, it is secure to replace the ideal
functionality by a protocol that UC-realizes the functionality. We refer to [1] for
a complete overview of this framework.

Signcryption is a cryptographic primitive for achieving both, confidential-
ity and authenticity of message delivery in a logically single step. This crypto-
graphic primitive was first introduced by Zheng in [6] with the aim to reduce
the cost compared to the standard “sign-then-encrypt” approach. Since then,
several models have been proposed. A good overview of the different models is
provided in [5].

In this paper we consider two primitives, secure messaging and signcryption,
in the universal composability framework. The paper is an extension of [3]. In

47

[3] the authors define ideal functionalities for these two primitives and show that
signcryption can be UC-realized by a secure signcryption scheme, and that the
secure messaging can be realized by means of signcryption and public key infras-
tructure functionality. Unfortunately, the latter proof is not very convincing.

The goal of this paper is to show that using formal methods we can give a
convincing proof for UC-realization of secure messaging as defined in [3]. As a
matter of fact, formal methods are the “right” tool for this type of problems,
since they allow a completely rigorous protocol specification. Then, it is easy to
reason (formally) about interaction and communication of processes running in
parallel, and to determine whether two behaviours are the same.

2 Secure messaging and signcryption

We will write FSM , FSC , and FPKI for the ideal functionalities for secure mes-
saging, signcryption, and public key infrastructure, respectively, and πSM for the
signcryption protocol. The ideal functionalities and the protocol are described
in Figs. 2–5 in the appendix.

In general, while a functionality is processing a message from party P̃i, no
further messages from P̃i will be accepted by the functionality until the current
processing is done. Messages from other parties will be accepted and processed,
however.

Under a static corruption model, the functionality FSC can be securely real-
ized by a secure signcryption scheme. For a precise formulation and more detail
we refer to [3]. In order to save space, the functionalities described here do not
consider corruption. We also note that the signcryption functionality does not
allow signatures on messages to be derived from the ciphertexts (not every sign-
cryption scheme has this property).

The rest of the paper is devoted to the following theorem.

Theorem 1. The protocol πSM securely realizes FSM in the (FPKI ,FSC)-hybrid
model.

Proof. We need to show that for every adversary A, interacting with parties
running πSM in the (FPKI ,FSC)-hybrid model, there is an ideal adversary S
such that no environment can tell whether it is interacting with A and πSM ,
or with S and the ideal protocol for FSM . For a given adversary A the ideal
adversary S is given in Fig. 6. It runs a simulated copy of A and forwards all
messages for the environment to A and back using two interfaces APKI and
ASC . The correctness of the theorem follows from Lemma 1 on page 49. ��

3 Using formal methods to prove FSM realization

In order to complete the proof of Theorem 1, we represent all processes (be-
haviours), the functionalities FSM , FPKI , FSC , the ideal adversary S, and the
involved running parties P1, . . . , Pn, whose description is built into protocol πSM ,

48

in a formal language. By this, we will be able to derive and formally specify re-
sults of the interaction between the processes. Then, we can compare the ways
the environment interacts with the two systems, the first containing A and πSM ,
denoted by MπSM

, and the second containing S and FSM , denoted by MI . Note
that we need to compare only the external behaviour of the two systems, i.e. the
input/output messages exchanged with the environment.

For this purpose, we use the language µCRL [4, 2]. It is a process algebraic
language that can handle abstract data. It is very suitable for the analysis of
interacting concurrent processes, since it is supported by a proof theory and
proof methodology that can be used for verification purposes, as well as by a
toolset for the automatic analysis and manipulation of µCRL specifications.

For lack of space we do not give the specifications of the processes, but
only point out the most important bits. The set of atomic actions Act consists
of two sets, the set of internal actions, ActI , containing all messages sent and
received between the processes, and the set of external actions, ActE, containing
the the messages exchanged between the processes and the environment. We
define a set Nonce instead of using a random nonce generator. Registered entries
within a process are stored in a buffer. The behaviour of each process P (such
as FSM , FPKI , S, P1, . . . , Pn) is described by a µCRL specification that we
denote by XP . Informally, XP is a µCRL process equation that exactly specifies
the read and send activities the process P is performing, and in which order.
From specification XP one can follow how process P exchanges information and
thus communicates with other processes, and how this information reflects the
future state and activities of the process. Therefore, this specification can be
seen as a formal expression (using the formal language) that captures exactly
the definition of process P given in the UC-framework (in the appendix). As
such, it can be easily derived from the definition of process P.

Once we have obtained formal specifications of all involved processes, we can
compose them and we can analyze the behaviour of the composed processes.
For our purpose, we need to consider the composition of FSM and S when
run in parallel with “dummy” processes P̃1 . . . P̃n on one side, and the parallel
composition of FSC ,FPKI , P1, . . . , Pn on the other side. Formally, we write

MI = XFSM
|| XS || XP̃1

|| . . . || XP̃n

and
MπSM

= XFSC
|| XFP KI

|| XP1 || . . . || XPn
.

A set of rules in the µCRL language expresses how process expressions, when
composed, ought to be manipulated in order to obtain the behaviour of their
composition. Thus, from the specifications of the separate processes (FSM , S,
FSC , etc.) we are able to derive the process expressions of their compositions,
MI and MπSM

.
The next step in our analysis is to compare the interaction of the two com-

posed systems with the environment, ignoring the way the built-in parts interact
with each other. Therefore, we shall distinguish between the external and the
internal behaviour of the systems. All communications between the processes

49

within the system, either MI or MπSM
, are considered to be internal (the subset

of actions ActI). The interaction with the environment makes the external be-
haviour. Our aim is to compare the external behaviours of MI and MπSM

after
abstraction from the internal activities. The µCRL language contains a so-called
hiding operator used to model abstraction from internal activities. Without go-
ing into detail about its derivation, we claim that the two systems exhibit the
same external behaviour (i.e. both interact with the environment in the same
way) which, for the registration phase, can be informally described as follows:

The system receives (i,SM.Register) from the environment:

1. If Pi has already been registered, send (i,SM.Already.Registered) to the
environment and stop.

2. Otherwise, send (i,SC.KeyGen) to the signcryption module.
3. Receive (i,SC.Key, (pks

i , pkr
i)) from the signcryption module.

4. Send (i,PKI.Register, (pks
i , pkr

i)) to the PKI module.
5. Receive (i,PKI.Registered) from the PKI module.
6. Send (i,SM.Registered) to the environment.

Fig. 1. Interaction with the environment in the registration phase for both systems.

If we denote the external behaviour of MI and MπSM
by EXI and EXπSM

,
respectively, we have the following lemma:

Lemma 1. EXI and EXπSM
specify branching bisimilar processes.

Note that branching bisimulation is a rather strong equivalence for our needs
here. Indeed, it is sufficient to consider trace equivalence or weak bisimulation.
However, the proof methodology of this language is investigated with respect to
this equivalence.

References

1. R. Canetti, Univerally composable security: A new paradigm for cryptographic
protocols, Cryptology ePrint archive, Report 2000/067, 2005, available at
http://eprint.iacr.org/2000/067.

2. W. J. Fokkink, J. Pang, Cones and foci for protocol verification revisited, In: Pro-
ceedings of the 6th Conference on Foundations of Software Science and Computa-
tion Structures, LNCS 2620, Springer, pp 267281, 2003.

3. K. Gjøsteen, L. Kr̊akmo, Universally composable signcryption, manuscript, 2005.

4. J. F. Groote, A. Ponse, The sintax and semantics of µCRL, in Algebra of Com-
municating Processes ’94, Workshop in Computing Series, A. Ponse, C. Verhoef,
S.F.M. van Vlijmen, (eds.), pp. 26-62, 1995.

5. J. C. Malone-Lee, On the security of signature schemes and sighcryption schemes,
PhD. thesis, University of Bristol, 2004.

50

6. Y. Zheng, Digital signcryption or How to achieve Cost(Signature & Encryption) ¡¡
Cost(Signature) + Cost(Encryption), Proc. of the 17th Annual International Cryp-
tology Conference - CRYPTO ’97, B.S. Kaliski Jr. (Ed.), LNCS 1294, Springer-
Verlag, pp. 165-179, 1997.

A Functionalities and protocols

When (PKI.Register, v) is received from P̃i:

1. If FPKI has already processed a PKI.Register message from P̃i, send
PKI.Already.Registered to P̃i and stop.

2. Send (PKI.Register, Pi, v) to A and wait for (PKI.Register.OK, Pi) from A.
3. Store (Pi, v) in the registration buffer and send (PKI.Registered) to P̃i.

When (PKI.Retrieve, Pi) is received from P̃j :

1. Send (PKI.Retrieve, Pj , Pi) to A and wait for (PKI.Retrieve.OK, Pj , Pi)
from A.

2. If there is an entry (Pi, v) in the registration buffer, send (PKI.Retrieved, v) to
P̃j , otherwise send (PKI.Retrieved,⊥) to P̃j .

Fig. 2. The PKI functionality FPKI .

51

When SC.KeyGen is received from P̃i:

1. If FSC has already processed an SC.KeyGen message from P̃i, send
SC.Key.Already.Generated to P̃i and stop.

2. Send (SC.KeyGen, Pi) to the adversary A and wait for (SC.Key, Pi, pks
i , pkr

i)
from A. (We note that A is free to choose (pks

i , pkr
i), subject to the restriction

that pks
i or pkr

i should not have appeared before in messages between A and
FSC .)

3. Store (Pi, pks
i , pkr

i) in the public key buffer and send (SC.Key, pks
i , pkr

i) to P̃i.

When (SC.Encrypt, pkr, m) is received from P̃i:

1. If an entry (Pi, pks
i , ·) is not stored in the public key buffer, send

SC.Key.Not.Generated to P̃i and stop.
2. If an entry (Pj , ·, pkr) is stored in the public key buffer:

(a) Send (SC.Encrypt, pks
i , pkr, |m|) to A and wait for

(SC.Ciphertext, pks
i , pkr, c) from A. (We note that A is free to choose c,

subject to the restriction that c should not have appeared before in an
SC.Ciphertext message from A to FSC , nor in an SC.Decrypt message to
A from FSC .)

(b) Store (pks
i , pkr, c, m) in the ciphertext buffer, send (SC.Ciphertext, c) to P̃i

and stop.
3. Send (SC.Encrypt, pks

i , pkr, m) to A and wait for (SC.Ciphertext, pks
i , pkr, c)

from A. (We note that the above restrictions on c also apply here.)
4. Send (SC.Ciphertext, c) to P̃i.

When (SC.Decrypt, pks, c) is received from P̃j :

1. If an entry (Pj , ·, pkr
j) is not stored in the public key buffer, send

SC.Key.Not.Generated to P̃j and stop.
2. Send (SC.Decrypt, pks, pkr

j , c) to A and wait for (SC.Plaintext, pks, pkr
j , m′)

from A.
3. If there is an entry (pks, pkr

j , c, m) in the ciphertext buffer, send

(SC.Plaintext, m) to P̃j and stop.
4. If there is an entry (Pi, pks, ·) in the public key buffer, send (SC.Plaintext,⊥)

to P̃j and stop.
5. Send (SC.Plaintext, m′) to P̃j .

Fig. 3. The signcryption functionality FSC .

52

When Pi receives SM.Register from the environment:

1. If Pi has already processed SM.Register, send SM.Already.Registered to the
environment and stop.

2. Send SC.KeyGen to FSC and wait for (SC.Key, pks
i , pkr

i) from FSC .
3. Send (PKI.Register, (pks

i , pkr
i) to FPKI and wait for PKI.Registered from

FPKI .
4. Send SM.Registered to the environment.

When Pi receives (SM.Encrypt, m) from the environment:

1. If Pi has not processed SM.Register, send SM.Not.Registered to the
environment and stop.

2. Send (PKI.Retrieve, Pj) to FPKI and wait.
3. If FPKI replies with (PKI.Retrieved,⊥), send

SM.Recipient.Not.Registered to the environment and stop.
4. Otherwise FPKI replies with (PKI.Retrieved, (·, pkr

j)).
5. Send (SC.Encrypt, pkr

j , m) to FSC and wait for (SC.Ciphertext, c) from FSC .
6. Send (SM.Ciphertext, c) to the environment.

When Pj receives (SM.Decrypt, c) from the environment:

1. If Pj has not processed SM.Register, send SM.Not.Registered to the
environment and stop.

2. Send (PKI.Retrieve, Pi) to FPKI .
3. If FPKI replies with (PKI.Retrieved,⊥), send SM.Sender.Not.Registered

to the environment and stop.
4. Otherwise FPKI replies with (PKI.Retrieved, (pks

i , ·)).
5. Send (SC.Decrypt, pks

i , c) to FSC and wait for (SC.Plaintext, m) from FSC .
6. Send (SM.Plaintext, m) to the environment.

Fig. 4. The secure messaging protocol πSM .

53

When SM.Register is received from P̃i:

1. If FSM has already processed an SM.Register message from P̃i, send
SM.Already.Registered to P̃i and stop.

2. Send (SM.Register, Pi) to the adversary A and wait for
(SM.Register.OK, Pi) from A.

3. Store Pi in the registration buffer and send SM.Registered to P̃i.

When (SM.Encrypt, Pj , m) is received from P̃i:

1. If Pi is not stored in the registration buffer, send SM.Not.Registered to P̃i and
stop.

2. Send (SM.Encrypt, Pi, Pj , |m|) to the adversary A and wait for
(SM.Ciphertext, Pi, Pj , c) from A. (We note that A is free to choose c, subject
to the restriction that c should not have appeared before in an SM.Ciphertext
message from A to FSM , nor in an SM.Decrypt message to A from FSM that
resulted in an SM.Plaintext being sent from FSM .)

3. If Pj is not stored in the registration buffer, send
SM.Recipient.Not.Registered to P̃i and stop.

4. Store (Pi, Pj , c, m) in the ciphertext buffer and send (SM.Ciphertext, c) to P̃i.

When (SM.Decrypt, Pi, c) is received from P̃j :

1. If Pj is not stored in the registration buffer, send SM.Not.Registered to P̃j

and stop.
2. Send (SM.Decrypt, Pj , Pi, c) to the adversary A and wait for

(SM.Plaintext, Pj , Pi, m
′) from A.

3. If Pi is not stored in the registration buffer, send SM.Sender.Not.Registered
to P̃j and stop.

4. If an entry (Pi, Pj , c, m) is stored in the ciphertext buffer, send
(SM.P laintext, m) to P̃j , otherwise send (SM.P laintext,⊥) to P̃j .

Fig. 5. The secure messaging functionality FSM .

54

When S receives (SM.Register, Pi) from FSM :

1. Send (SC.KeyGen, Pi) to ASC and wait for (SC.Key, Pi, pks
i , pkr

i).
2. Store (Pi, pks

i , pkr
i) in the public key buffer.

3. Send (PKI.Register, (Pi, pks
i , pkr

i)) to APKI and wait for
(PKI.Register.Ok, Pi) from APKI .

4. Send (SM.Register.Ok, Pi) to FSM .

When S receives (SM.Encrypt, Pi, Pj , |m|) from FSM :

1. Send (PKI.Retrieve, Pi, Pj) to APKI and wait for (PKI.Retrieve.Ok, Pi, Pj)
from APKI .

2. If there is no entry (Pj , ·, ·) in public key buffer, send
(SM.Ciphertext, Pi, Pj ,⊥) to FSM and stop.

3. Find entries (Pi, pks
i , ·) and (Pj , ·, pkr

j) in public key buffer, send
(SC.Encrypt, pks

i , pkr
j , |m|) to ASC , and wait for (SC.Ciphertext, pks

i , pkr
j , c)

from ASC .
4. Send (SM.Ciphertext, Pi, Pj , c) to FSM .

When S receives (SM.Decrypt, Pj , Pi, c) from FSM :

1. Send (PKI.Retrieve, Pj , Pi) to APKI and wait for (PKI.Retrieve.Ok, Pj , Pi)
from APKI .

2. If there is no entry (Pi, ·, ·) in public key buffer, send (SM.Plaintext, Pj , Pi,⊥)
to FSM and stop.

3. Find entries (Pi, pks
i , ·) and (Pj , ·, pkr

j) in public key buffer, send
(SC.Decrypt, pks

i , pkr
j , c) to ASC , and wait for (SC.Plaintext, pks

i , pkr
j , m′)

from ASC .
4. Send (SM.Plaintext, Pj , Pi, m

′) to FSM .

Fig. 6. The ideal adversary S.

