
Improved Proxy Re-encryption Schemes with
Applications to Secure Distributed Storage

GIUSEPPE ATENIESE

The Johns Hopkins University

KEVIN FU

University of Massachusetts, Amherst

MATTHEW GREEN

The Johns Hopkins University

and

SUSAN HOHENBERGER

Massachusetts Institute of Technology

In 1998, Blaze, Bleumer, and Strauss (BBS) proposed an application called atomic proxy
re-encryption, in which a semitrusted proxy converts a ciphertext for Alice into a ciphertext for

Bob without seeing the underlying plaintext. We predict that fast and secure re-encryption will be-

come increasingly popular as a method for managing encrypted file systems. Although efficiently

computable, the wide-spread adoption of BBS re-encryption has been hindered by considerable

security risks. Following recent work of Dodis and Ivan, we present new re-encryption schemes

that realize a stronger notion of security and demonstrate the usefulness of proxy re-encryption

as a method of adding access control to a secure file system. Performance measurements of our

experimental file system demonstrate that proxy re-encryption can work effectively in practice.

Categories and Subject Descriptors: H.3.4 [Information Storage and Retrieval]: Systems and

Software—Distributed systems; E.3 [Data Encryption]: Public Key Cryptosystems

General Terms: Security, Algorithms

Additional Key Words and Phrases: Proxy re-encryption, double decryption, key translation,

bilinear maps

1. INTRODUCTION

Proxy re-encryption allows a proxy to transform a ciphertext computed under
Alice’s public key into one that can be opened by Bob’s secret key. There are

Authors’ addresses: G. Ateniese, M. Green; Department of Computer Science; The Johns Hopkins

University; 3400 N. Charles St.; Baltimore, MD 21218; K. Fu; Department of Computer Science;

140 Governors Drive; University of Massachusetts; Amherst, MA 01003-9264; S. Hohenberger;

Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology;

32 Vassar St.; Cambridge, MA 02139.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1094-9224/06/0200-0001 $5.00

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006, Pages 1–30.

2 • G. Ateniese et al.

many useful applications of this primitive. For instance, Alice might wish to
temporarily forward encrypted email to her colleague Bob, without giving him
her secret key. In this case, Alice the delegator could designate a proxy to re-
encrypt her incoming mail into a format that Bob the delegatee can decrypt
using his own secret key. Alice could simply provide her secret key to the proxy,
but this requires an unrealistic level of trust in the proxy.

We present several efficient proxy re-encryption schemes that offer security
improvements over earlier approaches. The primary advantage of our schemes
is that they are unidirectional (i.e., Alice can delegate to Bob without Bob having
to delegate to her) and do not require delegators to reveal all of their secret key
to anyone—or even interact with the delegatee—in order to allow a proxy to
re-encrypt their ciphertexts. In our schemes, only a limited amount of trust is
placed in the proxy. For example, it is not able to decrypt the ciphertexts it re-
encrypts and we prove our schemes secure even when the proxy publishes all
the re-encryption information it knows. This enables a number of applications
that would not be practical if the proxy needed to be fully trusted.

We provide the first empirical performance measurements of applications
using proxy re-encryption. To demonstrate the practical utility of our proxy
re-encryption schemes, we measure an implementation of proxy re-encryption
used in a secure file system. Our system uses a centralized access control server
to manage access to encrypted content stored on distributed, untrusted repli-
cas. We use proxy re-encryption to allow for centrally-managed access control
without granting full decryption rights to the access control server.

1.1 Proxy Re-encryption Background

A methodology for delegating decryption rights was first introduced by Mambo
and Okamoto [1997] purely as an efficiency improvement over traditional
decrypt-and-then-encrypt approaches.

In 1998, Blaze, Bleumer, and Strauss [1998] proposed the notion of “atomic
proxy cryptography,” in which a semitrusted proxy computes a function that
converts ciphertexts for Alice into ciphertexts for Bob without seeing the
underlying plaintext. In their Elgamal-based scheme, with modulus a safe
prime p = 2q + 1, the proxy is entrusted with the delegation key b/a mod q
for the purpose of diverting ciphertexts from Alice to Bob via computing
(mgkmod p, (gak)b/amod p). The authors noted, however, that this scheme con-
tained an inherent restriction: it is bidirectional; that is, the value b/a can be
used to divert ciphertexts from Alice to Bob and vice versa. Thus, this scheme is
only useful when the trust relationship between Alice and Bob is mutual. (This
problem can be solved, for any scheme, by generating an additional, otherwise
unused, key pair for the delegatee, but this introduces additional overhead.)
The BBS scheme leaves several open problems. Delegation in the BBS scheme
is transitive, which means that the proxy alone can create delegation rights be-
tween two entities that have never agreed on this. For example, from the values
a/b and b/c, the proxy can re-encrypt messages from Alice to Carol. Another
drawback to this scheme is that if the proxy and Bob collude, they can recover
her secret key as (a/b) ∗ b = a!

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 3

Jakobsson [1999] developed a quorum-based protocol where the proxy is di-
vided into subcomponents, each controlling a share of the re-encryption key.
The keys of the delegator are safe so long as some of the proxies are honest. A
similar approach was considered by Zhou et al. [2004].

Recently, Dodis and Ivan [2003] realized unidirectional proxy encryption for
Elgamal, RSA, and an IBE scheme by sharing the user’s secret key between
two parties. They also solved the problem of the proxy alone assigning new
delegation rights. In their unidirectional Elgamal scheme, Alice’s secret key s
is divided into two shares s1 and s2, where s = s1 + s2, and distributed to the
proxy and Bob. On receiving ciphertexts of the form (mgsk , gk), the proxy first
computes (mgsk/(gk)s1), which Bob can decrypt as (mgs2k/(gk)s2) = m. Although
this scheme offers some advantages over the BBS approach, it introduces new
drawbacks as well. These “secret-sharing” schemes do not change ciphertexts
for Alice into ciphertexts for Bob in the purest sense (i.e., so that Bob can
decrypt them with his own secret key), they delegate decryption by requiring
Bob to store additional secrets (i.e., shares {s(i)

2 }) that may, in practice, be difficult
for him to manage. For example, in our file system in Section 4, the number of
secrets a user must manage should remain constant regardless of the number of
files he accesses. One exception is the Dodis–Ivan IBE scheme [Dodis and Ivan
2003] where the global secret that decrypts all ciphertexts is shared between
the proxy and the delegatee. Thus, the delegatee need only store a single secret,
but an obvious drawback is that when the proxy and any delegatee in the system
collude, they can decrypt everyone else’s messages.

Thus, proxy re-encryption protocols combining the various advantages of the
BBS and Dodis–Ivan schemes, along with new features such as time-limited
delegations, remained an open problem. (We provide a list of these desirable
features in Section 3.) Our results can be viewed as contributing both to the
set of key-insulated [Dodis et al. 2002, 2003, 2004] and signcryption [An et al.
2002; Baek et al. 2002; Zheng 1997] schemes, where Alice may expose her secret
key without needing to change her public key and/or use the same public key
for encryption and signing purposes. This work should not be confused with
the “universal re-encryption” literature [Golle et al. 2004], which rerandomizes
ciphertexts instead of changing the public key that they are encrypted under.

1.2 Applications of Proxy Re-encryption

Proxy re-encryption has many exciting applications in addition to the previous
proposals [Blaze et al. 1998; Dodis and Ivan 2003; Jakobsson 1999; Zhou et al.
2004] for email forwarding, law enforcement, and performing cryptographic
operations on storage-limited devices. In particular, proxy cryptography has
natural applications to secure network file storage. The following paragraphs
describe potential applications of proxy re-encryption.

1.2.1 Secure File Systems. A secure file system is a natural application of
proxy re-encryption because the system often assumes a model of untrusted
storage.

A number of file systems build confidential storage out of untrusted compo-
nents by using cryptographic storage [Adya et al. 2002; Blaze 1993; Goh et al.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

4 • G. Ateniese et al.

2003; Kallahalla et al. 2003]. Confidentiality is obtained by encrypting the con-
tents of stored files. These encrypted files can then be stored on untrusted file
servers. The server operators can distribute encrypted files without having ac-
cess to the plaintext files themselves.

In a single-user cryptographic file system, access control is straightforward.
The user creates and remembers all the keys protecting content. Thus, there
is no key distribution problem. With group sharing in cryptographic storage,
group members must rendezvous with content owners to obtain decryption keys
for accessing files.

Systems with cryptographic storage, such as the SWALLOW object
store [Reed and Svobodova 1981] or CNFS [Harrington and Jensen 2003] as-
sume an out-of-band mechanism for distributing keys for access control. Other
systems such as Cepheus [Fu 1999] use a trusted access control server to dis-
tribute keys.

The access control server model requires a great deal of trust in the server
operator. Should the operator prove unworthy of this trust, he or she could
abuse the server’s key material to decrypt any data stored on the system.
Furthermore, even if the access control server operator is trustworthy, plac-
ing so much critical key data in a single location makes for an inviting
target.

In contrast, our system makes use of a semitrusted access control server.
We propose a significant security improvement to the access control in crypto-
graphic storage, using proxy cryptography to reduce the amount of trust in the
access control server. In our approach, keys protecting files are stored encrypted
under a master public key, using one of the schemes in Section 3. When a user
requests a key, the access control server uses proxy cryptography to directly re-
encrypt the appropriate key to the user without learning the key in the process.
Because the access control server does not itself possess the master secret, it
cannot decrypt the keys it stores. The master secret key can be stored offline,
by a content owner who uses it only to generate the re-encryption keys used
by the access control server. In Section 4, we describe our implementation and
provide a performance evaluation of our constructions.

1.2.2 Outsourced Filtering of Encrypted Spam. Another promising appli-
cation of proxy re-encryption is the filtering of encrypted emails performed by
authorized contractors. The sheer volume of unsolicited email, along with rapid
advances in filter-avoidance techniques, has overwhelmed the filtering capabil-
ity of many small businesses, leading to a potential market for outsourced email
filtering. New privacy regulations, such as the US Health Insurance Porta-
bility and Accountability Act (HIPAA), are encouraging companies to adopt
institution-wide email encryption to ensure confidentiality of patient informa-
tion [104th United States Congress 1996]. By accepting encrypted email from
outside sources, institutions become “spam” targets and filters are only effec-
tive on messages that are first decrypted (which could be unacceptably costly).
Using proxy re-encryption, it becomes possible to redirect incoming encrypted
email to an external filtering contractor at the initial mail gateway, without
risking exposure of plaintexts at the gateway itself. Using our temporary proxy

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 5

re-encryption scheme in Section 3.6, a healthcare institution can periodically
change filtering contractors without changing its public key.

1.3 Roadmap

The rest of this paper consists of the following sections describing the the-
ory and implementation of proxy re-encryption. Section 2 gives a number of
theoretic preliminaries and definitions necessary to understand our schemes
and their security guarantees. Section 3 presents improved proxy re-encryption
schemes as well as a discussion of the factors to consider when compar-
ing proxy re-encryption schemes. Section 4 highlights the design, imple-
mentation, and performance measurements of our proxy re-encryption file
system.

2. DEFINITIONS

Our protocols are based on bilinear maps [Boneh and Franklin 2003; Boneh
et al. 2001, 2003; Joux 2000], which we implemented using the fast Tate pair-
ings [Galbraith et al. 2002].

Definition 2.1 (Bilinear Map). We say a map e : G1 × Ĝ1 → G2 is a bilinear
map if: (1) G1, Ĝ1 are groups of the same prime order q; (2) for all a, b ∈ Zq , g ∈
G1, and h ∈ Ĝ1, then e(ga, hb) = e(g , h)ab is efficiently computable; and (3) the
map is nondegenerate (i.e., if g generates G1 and h generates Ĝ1, then e(g , h)
generates G2). (In our scheme descriptions, we treat G1 and Ĝ1 as the same
group. However, we recognize that, for some instantiations of the mappings, it
is more efficient to let G1 and Ĝ1 be distinct groups of size q. Our constructions
will work in this setting as well.)

Now, we define what a unidirectional proxy re-encryption scheme is and
what minimum security properties it should have. We compare our defini-
tion to a similar definition of Dodis and Ivan [Dodis and Ivan 2003]. In
remarks 2.4 and 2.5, we discuss some of the shortcomings and benefits of this
definition.

Definition 2.2 (Unidirectional Proxy Re-encryption). A unidirectional pro-
xy re-encryption scheme is a tuple of (possibly probabilistic) polynomial time
algorithms (KG, RG, �E, R, �D), where the components are defined as follows:

� (KG, �E, �D) are the standard key generation, encryption, and decryption al-
gorithms for the underlying cryptosystem. Here �E and �D are (possibly sin-
gleton) sets of algorithms. On input the security parameter 1k , KG outputs a
key pair (pk, sk). On input pkA and message m ∈ M , for all Ei ∈ �E the output
is a ciphertext CA. On input skA and ciphertext CA, there exists a Di ∈ �D
that outputs the message m ∈ M .

� On input (pkA, sk†
A, pkB, sk∗

B), the re-encryption key generation algorithm,
RG, outputs a key rkA→B for the proxy. The fourth input marked with a “∗”
is sometimes omitted; when this occurs we say that RG is noninteractive,
since the delegatee does not need to be involved in the generation of the

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

6 • G. Ateniese et al.

re-encryption keys. The second input marked with a “†” may, in some cases,
be replaced by the tuple (rkA→C, skC); see Remark 2.4 for more.

� On input rkA→B and ciphertext CA, the re-encryption function, R, outputs
the re-encrypted ciphertext CB.

Correctness.. Informally, a party holding a secret key skA should always be
able to decrypt ciphertexts encrypted under pkA; while a party B should be
able to decrypt R(rkA→B, CA). �E may contain multiple encryption algorithms;
for example, having first-level encryptions that cannot be re-encrypted by the
proxy; while second-level encryptions can be re-encrypted by the proxy and then
decrypted by delegatees. This provides the sender with a choice given the same
public key whether to encrypt a message only to Alice or to Alice and, say, her
secretary. Whenever a re-encryption does take place, however, we require that
the underlying plaintext remain consistent—i.e., Bob should get exactly what
Alice was supposed to receive.1

More formally, let key pairs (pkA, skA) and (pkB, skB), generated according
to KG, belong to parties A and B, respectively, and let rkA→B be generated
according to RG. Then, for all messages m in the message space M , the following
equations hold with probability one:

∀Ei ∈ �E, ∃D j ∈ �D, D j (skA, Ei(pkA, m)) = m,

∃Ei ∈ �E, ∃D j ∈ �D, D j (skB, R(rkA→B, Ei(pkA, m))) = m

We provide a security definition similar to that of Dodis and Ivan [2003].
Although their definition was for CCA2 security, they instead used CPA security
for the Elgamal, RSA, and IBE-based schemes; for simplicity, we focus directly
on CPA security. The first main difference between our definitions is that we
consider the security of a user against a group of colluding parties; for example,
the security of a delegator against the proxy and many delegatees, whereas
the Dodis–Ivan definition focused on a single delegatee. Second, we discuss the
system’s security for circular delegation where the adversary watches Alice
and Bob delegate to each other. Finally, we provide a new guarantee for the
delegator—even if the proxy and all delegatees collude, they can not recover his
master secret key. We discuss some benefits of this last feature in Remark 2.5.

Definition 2.3 (Security of Unidirectional Proxy Re-encryption). Let � =
(KG, RG, �E, R, �D) be a unidirectional proxy re-encryption scheme.

Standard Security.. The underlying cryptosystem (KG, �E, �D) is semanti-
cally secure [Goldwasser and Micali 1984] against anyone who has not been
delegated the right to decrypt. We use subscript B to denote the target user, x
to denote the adversarial users, and h to denote the honest users (other than

1Note, this only applies to ciphertexts that were honestly generated by the sender; no guarantee is

implied in the case of malformed ciphertexts.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 7

B). That is, for all PPT algorithms Ak , Ei ∈ �E, and m0, m1 ∈ M 2
k ,

Pr[(pkB, skB) ← KG(1k), {(pkx , skx) ← KG(1k)},
{rkx→B ← RG(pkx , skx , pkB, sk∗

B)},
{(pkh, skh) ← KG(1k)},

{rkB→h ← RG(pkB, skB, pkh, sk∗
h)},

{rkh→B ← RG(pkh, skh, pkB, sk∗
B)},

(m0, m1, α) ← Ak(pkB, {(pkx , skx)}, {pkh}, {rkx→B}, {rkB→h}, {rkh→B}),
b ← {0, 1}, b′ ← Ak(α, Ei(pkB, mb)) :

b = b′] < 1/2 + 1/poly(k)

The above definition captures B’s security, even when the proxy (with knowl-
edge of all the re-encryption keys) and a group of adversarial users (with knowl-
edge of their own secret keys) collude against B—provided that B never dele-
gated decryption rights to any adversarial user.

We now turn our attention to what security can be guaranteed in the case that
B does delegate decryption rights to an adversarial user. Obviously, in this case,
the adversary can simply decrypt and trivially win the game above. However,
we are now interested in determining whether or not an adversary (consisting
of the proxy and a group of colluding users) can recover B’s master secret key.
(We will see some examples later where, for the same public key, two types of
ciphertexts may be generated: one that can be opened by a delegatee and one
that can only be opened with the master secret key.) Thus, we define here (and
later prove) that just because B delegates decryption rights to another party
does not mean that B surrenders his digital identity (i.e., the meaningful parts
of his secret key).

Master Secret Security. The long-term secrets of a delegator (sometimes
serving as a delegatee) cannot be computed or inferred by even a coalition of
colluding delegatees. We use subscript B to denote the target user and x to
denote the adversarial users. For all PPT algorithms Ak ,

Pr[(pkB, skB) ← KG(1k), {(pkx , skx) ← KG(1k)},
{rkB→x ← RG(pkB, skB, pkx , sk∗

x)},
{rkx→B ← RG(pkx , skx , pkB, sk∗

B)},
α ← Ak(pkB, {(pkx , skx)}, {rkB→x}, {rkx→B}) :

α = skB] < 1/poly(k)

Remark 2.4. Unfortunately, achieving security based on the definition of
the re-encryption key generation function RG as originally stated is very dif-
ficult to realize. We do not know of any such scheme, including the prior work
of Dodis and Ivan [2003], that does not succumb to the follow attack: transfer
of delegation rights, where, on input skB and rkA→B, one can compute rkA→C.
(Recall our discussion of nontransferability in Section 3.) To see this in our
second and third schemes, consider that on input b and gb/a, one can output

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

8 • G. Ateniese et al.

Table I. Comparision of Known Proxy Re-encryption Schemes.

Property Blaze et al. [1998] Dodis and Ivan [2003] This Work

1. Unidirectional No Yes Yes

2. Noninteractive No Yes Yes

3. Proxy invisible Yes No Yes

4. Original access Yes† Yes Yes†

5. Key optimal Yes No Yes

6. Collusion “safe” No No Yes∗
7. Temporary Yes† Yes† Yes†

8. Nontransitive No Yes Yes

9. Nontransferable No No No

aNo scheme achieves property 9. We refer to the unidirectional schemes of Dodis–Ivan. (∗)

indicates master secret key only. (†) Indicates possibility to achieve with additional overhead

(gb/a)1/b = g1/a, which would allow anyone to decrypt Alice’s second-level ci-
phertexts. Thus, we modify the definition of RG to be executed with either the
secret key of the delegator Alice skA or with both a re-encryption key from Alice
to Bob rkA→B and Bob’s secret key skB. This implies that Bob is allowed to
transfer Alice’s decryption capability. Arguably, this relaxed definition is not so
damaging, since Alice is already trusting Bob enough to delegate decryption
rights to him.

Remark 2.5. At first glance, master secret security may seem very weak.
All it guarantees is that an adversary cannot output a delegator’s secret key
skA. One might ask why this is useful. One motivation, mentioned above, stems
from the fact that some proxy re-encryption schemes define two or more types
of ciphertexts, some of which may only be decrypted using the master secret.
A scheme which provides master secret security will protect those ciphertexts
even in the event that the proxy and delegatee collude. A second motivation
comes from the fact that most standard signature schemes, such as Elgamal
[1984] and Schnorr [1991], are actually proofs of knowledge of a discrete log-
arithm value, such as skA = a ∈ Zq , turned into a signature using the Fiat–
Shamir heuristic [Fiat and Shamir 1986]. Intuitively, if an adversary cannot
output Alice’s secret key, then the adversary cannot prove knowledge of it ei-
ther. Thus, using a proxy re-encryption scheme with master secret security, a
user may be able to safely delegate decryption rights (via releasing ga) without
delegating signing rights for the same public key Z a.

3. IMPROVED PROXY RE-ENCRYPTION SCHEMES

To talk about “improvements,” we need to get a sense of the benefits and draw-
backs of previous schemes. Here is a list of, in our opinion, the most useful
properties of proxy re-encryption protocols. We use these properties to compare
known proxy re-encryption schemes in Table 1.

1. Unidirectional: Delegation from A → B does not allow re-encryption from
B → A.

2. Noninteractive: Re-encryption keys can be generated by Alice using Bob’s
public key; no trusted third party or interaction is required. (Such schemes
were called passive in BBS [Blaze et al. 1998].)

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 9

3. Proxy invisibility: This is an important feature offered by the original BBS
scheme. The proxy in the BBS scheme is transparent in the sense that nei-
ther the sender of an encrypted message nor any of the delegatees have to
be aware of the existence of the proxy. Clearly, transparency is very desir-
able but it is achieved in the BBS scheme at the price of allowing transi-
tivity of delegations and recovery of the master secrets of the participants.
Our pairing-based schemes, to be described shortly, offer a weaker form of
transparency which we call proxy invisibility. In particular, both sender and
recipient are aware of the proxy re-encryption protocol but do not know
whether the proxy is active, has performed any action or made any changes,
or even if it exists (the proxy is indeed “invisible”). More specifically, we al-
low the sender to generate an encryption that can be opened only by the
intended recipient (first-level encryption) or by any of the recipient’s dele-
gatees (second-level encryption). At the same time, we can ensure that any
delegatee will not be able to distinguish a first-level encryption (computed
under his public key) from a re-encryption of a ciphertext intended for an-
other party (we are assuming that the encrypted message does not reveal
information that would help the delegatee to make this distinction).

4. Original access: Alice can decrypt re-encrypted ciphertexts that were orig-
inally sent to her. In some applications, it may be desirable to maintain
access to her re-encrypted ciphertexts. This is an inherent feature of the
Dodis–Ivan schemes (since the re-encryption key is a share of the original);
the BBS scheme and the pairing schemes presented here can achieve this
feature by adding an additional term to the ciphertext: for example, in BBS,
a re-encrypted ciphertext with original access looks like (mgk , gak , (gak)b/a).
This may impact proxy invisibility.

5. Key optimal: The size of Bob’s secret storage remains constant, regardless of
how many delegations he accepts. We call this a key optimal scheme. In the
previous Elgamal- and RSA-based schemes [Dodis and Ivan 2003], the stor-
age of both Bob and the proxy grows linearly with the number of delegations
Bob accepts. This is an important consideration, since the safeguarding and
management of secret keys is often difficult in practice.

6. Collusion “safe”: One drawback of all previous schemes is that by colluding,
Bob and the proxy can recover Alice’s secret key: for Dodis–Ivan, s = s1 + s2;
for BBS, a = (a/b) ∗ b. We will mitigate this problem, allowing recovery of a
“weak” secret key only. In a bilinear map setting, suppose Alice’s public key
is e(g , g)a and her secret key is a; we might then allow Bob and the proxy
to recover the value ga, but not a itself.

The property of collusion “safeness” is extremely useful in our context,
since we allow the sender to generate first-level encryptions, that can be
opened only by the intended recipient (Alice), or second-level ones that can be
opened by any of the recipient’s delegatees (e.g., Bob). Indeed, this property
implies that even if Bob and the proxy collude, they will not be able to open
any of Alice’s first level-encryptions!

In general, collusion “safeness” allows Alice to delegate decryption rights,
while keeping signing rights for the same public key. In practice, a user can

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

10 • G. Ateniese et al.

always use two public keys for encryption and signatures, but it is theoreti-
cally interesting that she does not need to do so. Prior work on “signcryption”
explored this area [e.g., Zheng 1997; Baek et al. 2002; An et al. 2002]; here
we present, what can be viewed as, the first “signREcryption” scheme (al-
though we will not be formally concerning ourselves with the security of the
signatures in this work).

7. Temporary: Dodis and Ivan [2003] suggested applying generic key-insulation
techniques [Dodis et al. 2002, 2003, 2004] to their constructions to form
schemes where Bob is only able to decrypt messages intended for Alice that
were authored during some specific time period i. Citing space considera-
tions, they did not present any concrete constructions. In Section 3.6, we
provide a bilinear map construction designed specifically for this purpose.
In our construction, a trusted server broadcasts a new random number at
each time period, which each user can then use to update their delegated se-
cret keys. This is an improvement over using current key-insulated schemes
where the trusted server needs to individually interact with each user to
help them update their master (and, therefore, delegation) secret keys.

8. Nontransitive: The proxy, alone, cannot redelegate decryption rights. For
example, from rka→b and rkb→c, he cannot produce rka→c.

9. Nontransferable: The proxy and a set of colluding delegatees cannot redel-
egate decryption rights. For example, from rka→b, skb, and pkc, they can-
not produce rka→c.We are not aware of any scheme that has this property,
and it is a very desirable one. For instance, a hospital may be held legally
responsible for safeguarding the encrypted files of its patients; thus, if it
chooses to delegate decryption capabilities to a local pharmacy, it may need
some guarantee that this information “goes no further.” First, we should ask
ourselves: is transferability really preventable? The pharmacy can always
decrypt and forward the plaintext files to a drug company. However, this
approach requires that the pharmacy remain an active, online participant.
What we want to prevent is the pharmacy (plus the proxy) providing the
drug company with a secret value that it can use offline to decrypt the hos-
pital’s ciphertexts. Again, the pharmacy can trivially send its secret key to
the drug company. However, in doing so, it assumes a security risk that is as
potentially injurious to itself as the hospital. Achieving a proxy scheme that
is nontransferable, in the sense that the only way for Bob to transfer offline
decryption capabilities to Carol is to expose his own secret key, seems to be
the main open problem left for proxy re-encryption.

3.1 First Attempt

As Dodis and Ivan pointed out [2003], one method for delegating decryption
rights is to create a cryptosystem that has a two-stage decryption procedure
with two different secret keys. In practice, Alice’s secret key s is divided into
two shares: s1, given to the proxy, and s2, given to Bob. A ciphertext intended
for Alice can be partially decrypted by the proxy via s1. Bob can complete the
decryption process by using s2 and then recover the message. We already noticed
that this “secret sharing” approach does not exactly yield proxy re-encryption

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 11

schemes given that Bob must use secrets other than his own to recover the
plaintext (i.e., there is no transformation of a ciphertext under Alice’s public key
into one under Bob’s). In particular, this implies that the schemes as presented
in Dodis and Ivan [2003] are not key optimal, proxy invisible, or collusion “safe.”
Notice that there are trivial solutions to the collusion-“safe” problem when Alice
is allowed to use two different key pairs, but we are interested in solutions
that minimize the number of keys to safeguard and manage while remaining
efficient. Indeed, in our first attempt, we try to improve on this by providing
a cryptosystem that generates ciphertexts that can be fully decrypted using
either of two distinct keys. In particular, we consider a variant of the Paillier
cryptosystem with two trapdoors proposed by Cramer and Shoup [2002]. For
simplicity, we will describe a version that is only semantically secure and we
refer to the original work [Cramer and Shoup 2002] for the full CCA2 secure
scheme. This simplified scheme was described in Bresson et al. [2003] where
the authors also show a variant of the scheme in Cramer and Shoup [2002] that
works in the cyclic group of quadratic residues modulo n2.

The public key is (n, g , h = g x) with g of order λ(n) = 2p′q′, the master
secret key is the factorization of n = pq (where p = 2p′ +1, q = 2q′ +1 are safe
primes), and the “weak” secret key is x ∈ [1, n2/2]. (As remarked in Cramer and
Shoup [2002], such a g can be easily found by selecting a random a ∈ Z ∗

n2 and
computing g = −a2n.) To encrypt a message m ∈ Zn, select a random r ∈ [1, n/4]
and compute: T1 = gr , T2 = hr (1 + mn) (mod n2).

If x is known, then the message can be recovered as: m = L(T2/T x
1 mod n2),

where L(u) = u−1
n , for all u ∈ {u < n2 | u = 1 mod n}. If (p, q) are known,

then m can be recovered from T2 by noticing that T λ(n)
2 = gλ(n)xr (1 + mλ(n)n) =

(1 + mλ(n)n). Thus, given that gcd(λ(n), n) = 1, m can be recovered as: m =
L(T λ(n)

2 mod n2)[λ(n)]−1mod n.

Part of the cryptosystem above can be seen as a variation of Elgamal when
working modulo a squared composite number. Thus, similarly to the Dodis–Ivan
scheme, we can divide x into two shares x1 and x2, such that x = x1 + x2. The
share x1 is given to the proxy, while x2 is stored by Bob. The scheme is collusion
safe, since only the “weak” secret x is exposed if Bob and the proxy collude,
but the factors of n, p, and q, remain secret. Indeed, one could send only the
value T2, rather than the ciphertext pair (T1, T2), to allow Alice, and only her,
to decrypt the message. (Remember that we are assuming that ciphertexts are
generated correctly.) Although collusion “safe,” this scheme is not key optimal
or proxy invisible, but it remains theoretically interesting because it is not
based on bilinear pairings. However, it cannot yet be seen as a pure proxy re-
encryption scheme, since there is no transformation of ciphertexts computed
under Alice’s key into ones under Bob’s.

One way to address this, which also applies to the Dodis–Ivan schemes, is
to let the proxy store Bob’s shares encrypted under his own public key. For
instance, in the case where Alice is the delegator, the proxy could store x1 and
x2, the latter encrypted under Bob’s public key. The encrypted share will be
sent to Bob along with the ciphertext partially decrypted by the proxy. This
solution, however, is not satisfactory: It requires more bandwidth, it doubles
the cost of decrypting, it forces Bob to perform distinct decryption procedures

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

12 • G. Ateniese et al.

based on whether he receives ciphertexts intended for him or ciphertexts from
the proxy, and it complicates the revocation of decryption rights.

3.2 Second Attempt

To minimize a user’s secret storage and thus become key optimal, we present
the BBS [Blaze et al. 1998], Elgamal-based [Elgamal 1984] scheme operating
over two groups G1, G2 of prime order q with a bilinear map e : G1 × G1 → G2.
The system parameters are random generators g ∈ G1 and Z = e(g , g) ∈ G2.

� Key Generation (KG). A user A’s key pair is of the form pka = ga, ska = a.
� Re-Encryption Key Generation (RG). A user A delegates to B by pub-

lishing the re-encryption key rkA→B = gb/a ∈ G1, computed from B’s public
key.

� First-Level Encryption (E1). To encrypt a message m ∈ G2 under pka
in such a way that it can only be decrypted by the holder of ska, output
c = (Z ak , mZ k).

� Second-Level Encryption (E2). To encrypt a message m ∈ G2 under pka
in such a way that it can be decrypted by A and her delegatees, output c =
(gak , mZ k).

� Re-Encryption (R). Anyone can change a second-level ciphertext for A into
a first-level ciphertext for B with rkA→B = gb/a. From ca = (gak , mZ k),
compute e(gak , gb/a) = Z bk and publish cb = (Z bk , mZ k).

� Decryption (D1, D2). To decrypt a first-level ciphertext ca = (α, β) with
secret key sk = a, compute m = β/α1/a. To decrypt a second-level ciphertext
ca = (α, β) with secret key sk = a, compute m = β/e(α, g)1/a.

Discussion of Scheme. This scheme is very attractive; it is unidirectional,
noninteractive, proxy invisible, collusion safe, key optimal, and nontransitive.
In particular, notice that first-level encryptions intended for Alice are safe, even
if Bob and the proxy collude. Indeed, the weak secret g1/a cannot be used to
decrypt first-level encryptions (but only second-level ones, which Bob and the
proxy can open anyway).

The scheme is also very efficient since both encryption and decryption oper-
ations are similar to those of plain Elgamal while the pairing computation is
only performed by the proxy.

The security of this scheme depends upon (at least) the assumption that the
following problem is hard in (G1, G2):

Given (g , ga, gb, Q), for g ← G1, a, b ← Z
2
q and Q ∈ G2, decide if

Q = e(g , g)a/b.

To see where the above assumption comes into play, think of ga as gbk for
some k ∈ Zq . Now, consider the second-level ciphertext c = (ga, mQ) encrypted
for public key gb for message m. If Q = e(g , g)a/b = e(g , g)bk/b = e(g , g)k ,
then c is a proper encryption of m; otherwise, it is an encryption of some other
message m′ �= m. Thus, an adversary that can break the above decisional
assumption can easily be made into an adversary that breaks the semantic

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 13

security of this scheme. Recently, the above assumption was proven hard in the
generic group model by Dodis and Yampolskiy [2005]. (Indeed, Dodis and Yam-
polskiy address a stronger version called q-Decisional Bilinear Diffie–Hellman
Inversion (q-DBDHI) where for a random g ∈ G1, x ∈ Zq , and Q ∈ G2, given
(g , g x , g x2

, . . . , g xq
, Q), it is hard to decide if Q = e(g , g)1/x or not.)

However, the security of the above scheme also appears to rely on the assump-
tion that given (g , ga), the value a cannot be derived from seeing the ath root
of a polynomial set of random values. (This appears necessary to generate the
appropriate re-encryption keys). Although this assumption seems plausible in
a group of prime order, by making a few alterations to this core idea we are able
to provide a solution, which makes fewer (and more standard) assumptions.

3.3 Third Attempt

The global system parameters (g , Z) remain unchanged.

� Key Generation (KG). A user A’s key pair is of the form pka = (Z a1 , ga2)
and ska = (a1, a2). (A user can encrypt, sign, and delegate decryption rights
all under Z a1 ; if the value ga2 is present, it signifies that the user is willing
to accept delegations.)

� Re-encryption Key Generation (RG). A user A delegates to B publish-
ing the re-encryption key rkA→B = ga1b2 ∈ G1, computed from B’s public
information.

� First-Level Encryption (E1). To encrypt a message m ∈ G2 under pka
in such a way that it can only be decrypted by the holder of ska, output
ca,1 = (Z a1k , mZ k) (to achieve proxy invisibility output ca,2 = (Z a2k , mZ k)).

� Second-Level Encryption (E2). To encrypt a message m ∈ G2 under pka
in such a way that it can be decrypted by A and her delegatees, output ca,r =
(gk , mZ a1k).

� Re-encryption (R). Anyone can change a second-level ciphertext for A into a
first-level ciphertext for B with rkA→B = ga1b2 . From ca,r = (gk , mZ a1k), com-
pute e(gk , ga1b2) = Z b2a1k and publish cb,2 = (Z b2a1k , mZ a1k) = (Z b2k′

, mZ k′
).

� Decryption (D1, D2). To decrypt a first-level ciphertext ca,i = (α, β) with se-
cret key ai ∈ ska, compute m = β/α1/ai for i ∈ {1, 2}. To decrypt a second-level
ciphertext ca = (α, β) with secret key a1 ∈ ska, compute m = β/e(α, g)a1 .

Discussion of Scheme. This scheme is similar to the previous one, except
to accept delegations, a user must store two secret keys. If Bob and the proxy
collude, they cannot decrypt first-level encryptions intended for Alice. Indeed,
they can recover only the weak secret ga1 that can only be used to decrypt
second-level encryptions (which Bob and the proxy can already open anyway).

As in our previous scheme, both encryption and decryption operations are
similar to those of plain Elgamal, and thus very efficient, while the pairing
computation is performed only by the proxy.

The security of this scheme relies on an extension of the Decisional Bilinear
Diffie-Hellman (DBDH) assumption [Boneh and Franklin 2003; Cheon and Lee
2001]; the proof of Boneh and Franklin [2003] that the DBDH problem is hard

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

14 • G. Ateniese et al.

in generic groups, in the sense of Shoup [1997], can be extended to include this
problem as well. When no delegations are made, original first-level ciphertexts
of the form (Z a1k , mZ k) are exactly like Elgamal [Elgamal 1984] and thus their
external security only depends on DDH in G2.

THEOREM 3.1. The above scheme is correct and secure assuming the extended
Decisional Bilinear Diffie–Hellman (eDBDH) that for random g ← G1, a, b, c ←
Z

3
q, and Q ∈ G2, given (g , ga, gb, gc, e(g , g)bc2

, Q) it is hard to decide if Q =
e(g , g)abc (standard security) and the discrete logarithm assumption (master
secret security).

More precisely, any adversary that can break the standard security of this
scheme with probability (1/2 + ε) can be used to break the eDBDH problem in
(G1, G2) with probability (1/2 + ε/2). Any adversary that can break the master
secret security of this scheme with probability ε can be used to break the discrete
logarithm problem in G1 with probability ε.

PROOF. Our security definition quantifies over all encryption algorithms
Ei ∈ �E; in this case, we have two algorithms E1, E2, where an E1 ciphertext
takes the form (Z a1k , mZ k). This construction is equivalent to that of the form
(Z k , mZ a1k) [Elgamal 1984]. Now, it is clear if the E2 ciphertext of the form
(gk , mZ a1k) is secure, then so are the E1 versions, since E2 ciphertexts reveal
strictly more information (i.e., gk ∈ G1). Thus, it suffices to argue the security
of the E2 ciphertexts only.

3.4 Standard Security

Suppose A distinguishes encryptions of E2 with non-negligible probability, we
simulate an adversary S that decides eDBDH as follows:

1. On eDBDH input (y , ya, yb, yc, e(y , y)bc2

, e(y , y)d), the simulator sets up a
proxy re-encryption world for the adversary A with the goal of using A to
decide if d = abc or not. To begin, the simulator outputs the global parame-
ters for the system (g , Z). Here, for reasons we will later see, the simulator
sets g = yc, Z = e(g , g) = e(y , y)c2

. Next, the simulator sends to adversary
A the target public key pkB = (e(y , y)bc2 = Z b, (yc)t = gt), where t is ran-
domly selected from Zq by the simulator. Thus, we can think of (b, t) as the
secret key of the target user.

2. Next, for i = 1 up to poly(k), A can request:

a. rkx→B, a delegation to B from a party corrupted by A. A can generate
these delegations for as many corrupted users as it likes internally by

running (pkx , skx) ← KG(1k) and computing rkx→B = (gt)sk(x,1) , where
skx = (sk(x,1), sk(x,2)).

b. rkB→h, a delegation from B to an honest party h. The simulator randomly
selects two values r(h,1), r(h,2) ← Zq , sets rkB→h = (yb)r(h,2) = gb(r(h,2)/c) and
pkh = (Z r(h,1) , yr(h,2) = gr(i,2)/c), and sends (pkh, rkB→h) to A. The corre-
sponding secret key is skh = (r(h,1), (r(h,2)/c)).

c. rkh→B, a delegation to B from an honest party h. The simulator uses
either the recorded value r(h,1) from the previous step if the honest party

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 15

already exists, or generates fresh random values for a new party, and
computes rkh→B = (gt)r

(h,1).

3. Eventually, A must output a challenge (m0, m1, τ), where m0 �= m1 ∈ M and
τ is its internal state information. The simulator randomly selects s ∈ {0, 1},
computes the ciphertext cs = (ya, mse(y , y)d) = (ga/c, mse(g , g)d/c2

), sends
(cs, τ) to A, and waits for A to output s′ ∈ {0, 1}.

4. If s = s′, then S guesses “d = abc”; otherwise S guesses “d �= abc”.

First, we observe that if d = abc, then the simulation is perfect; that is, the
ciphertext output is of the proper form (ga/c, mbZ (abc)/c2 = mbZ b(a/c)) for the
user with sk(B,1) = b. However, if d �= abc, then mb is information-theoretically
hidden from A, since d was chosen independently of a, b, c. Thus, if A suc-
ceeds with probability 1/2+ε, then S succeeds with probability (1/2+ε) (when
d = abc) and probability exactly 1/2 (when d �= abc), for an overall success
probability of (1/2 + ε/2). This contradicts the eDBDH assumption when ε is
non-negligible.

3.5 Master Secret Security

Suppose an adversary A can recover the secret key of a targeted user B (i.e.,
skB = (sk(B,1), sk(B,2))) with non-negligible probability ε by interacting with B
according to the second part of definition 2.3, then we can build an adversary
S that takes discrete logs in G1 with probability ε. Let us focus our attention
on recovering only the value sk(B,1) (which is arguably the most valuable of the
two). Our simulator S works as follows:

1. On input (g , ga) in G1, output the global parameters (g , Z = e(g , g)) and

the target public key pkB = (e(g , ga), gsk(B,2)), where sk(B,2) is chosen at
random from Zq . We can think of sk(B,1) = a.

2. Next, for i = 1 up to poly(k), A can request:

a. rkB→x , a delegation from B to a party corrupted by A. S randomly selects
r(x,1), r(x,2) ← Zq , sets rkB→x ← gar(x,2) , pkx = (Z r(x,1) , gr(x,2)), and skx =
(r(x,1), r(x,2)), and sends (pkx , skx , rkB→x) to A.

b. rkx→B, a delegation to B from a party corrupted by A. A can generate these
delegations internally by running (pkx , skx) ← KG(1k) and computing

rkx→B = (gsk(B,2))sk(x,1) .

3. Eventually, A must output a purported secret key for B of the form (α, β).
The simulator returns the value α.

The simulation is perfect; thus A must not be able to recover the master secret
key of B, despite accepting and providing numerous delegations to B, because
otherwise, S can efficiently solve the discrete logarithm problem in G1.

3.6 Temporary Unidirectional Proxy Re-encryption

In this section, we improve our temporary unidirectional proxy re-encryption
scheme over the conference version of this paper [Ateniese et al. 2005], by

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

16 • G. Ateniese et al.

a slight alteration in the first-level encryption, which does not increase the
running time, but allows us to prove the scheme’s security under a more
standard assumption.

In addition to the global parameters (g , Z), suppose there is a trusted server
that broadcasts a random value hi ∈ G1 for each time period i ≥ 1 for all users
to see. Let Zi = e(g , hi) ∈ G2. We enable Alice to delegate to Bob only for time
period i, say, while she is on vacation, as follows.

� Key Generation (KG). A user A’s key pair is of the form pka =
(ga0 , gar), ska = (a0, ar), (plus a temporary secret ai for time period i which
will be generated in RG).

� Re-Encryption Key Generation (RG). A user A publicly delegates to B
during time period i as follows: (1) B chooses and stores a random value bi ∈
Zq , and publishes hbi

i ; then, (2) A computes and publishes rki
A→B = har bi/a0

i .
� First-Level Encryption (E1). To encrypt m ∈ G2 under pka during time

period i in such a way that it can only be decrypted by A, compute Z ar k
i =

e(gar , hi)
k and output ca,r = (Z ar k

i , mZ k
i).

� Second-Level Encryption (E2). To encrypt m ∈ G2 under pka during time
period i in such a way that it can be decrypted by A and her delegatees,
compute Z ar k

i = e(gar , hi)
k , and output ca,i = (ga0k , mZ ar k

i).
� Re-Encryption (R). Anyone can change a second-level ciphertext for A

into a first-level ciphertext for B with rkA→B,i = har bi/a0

i . On input ca,i =
(ga0k , mZ ar k

i), compute Z biar k
i = e(ga0k , rkA→B) and then publish cb,i =

(Z biar k
i , mZ ar k

i) = (Z bik′
i , mZ k′

i).
� Decryption (D1, D2). To decrypt a first-level ciphertext ca, j = (α, β) with

secret key aj ∈ {ar , a1, a2, . . . } (corresponding to a re-encryption from the
j th time period or a first-level original ciphertext with permanent key ar),
compute m = β/α1/aj . To decrypt a second-level ciphertext ca, j = (α, β) with
secret key (a0, ar), compute m = βa0/e(α, h j)

ar .

Discussion of Scheme. A single global change can invalidate all previous
delegations without any user needing to change their public key.

THEOREM 3.2. The above scheme is correct and secure assuming the Deci-
sional Bilinear Diffie–Hellman (DBDH) that for random g ← G1, a, b, c ← Z

3
q

and Q ∈ G2, given (g , ga, gb, gc, Q) it is hard to decide if Q = e(g , g)abc (stan-
dard security) and the discrete logarithm assumption (master secret security).

More precisely, any adversary that can break the standard security of this
scheme with probability (1/2 + ε) can be used to break the DBDH problem in
(G1, G2) with probability (1/2 + ε/2). Any adversary that can break the master
secret security of this scheme with probability ε can be used to break the discrete
logarithm problem in G1 with probability ε.

PROOF. Our security definition quantifies over all encryption algorithms
Ei ∈ �E; in this case, we have two algorithms E1, E2 which produce dif-
ferent types of ciphertexts. Our security proof will address both styles of
ciphertexts.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 17

3.6.1 Standard Security. Let T be the maximum number of time periods.
Suppose A distinguishes E1 ciphertexts with non-negligible probability (we
will address E2 shortly), we simulate an adversary S that decides DBDH as
follows:

1. On input (g , ga, gb, gc, Z d), the simulator sends A the global parameters
(g , Z), where Z = e(g , g), and the target public key pkB = (gt , ga), where t
is randomly selected from Zq , and the corresponding secret key is skB = (t, a).
The simulator also honestly generates and publishes the public keys of all
other parties.

2. For j = 1 up to T time periods, the simulator publishes the public delegation
parameter for that time period h j = g x j , where x j is randomly selected from
Zq . The simulator also publishes the delegation acceptance value D(U, j) =
hz(U, j)

j for all users U , including B, where z(U, j) is randomly selected from Zq .
a. Next, for i = 1 up to poly(k), A can request:

i. rkx→B, a delegation to B from a party corrupted by A. A can generate
these delegations internally by running (pkx , skx) ← KG(1k), where

skx = (sk(x,0), sk(x,r)), and computing rkx→B = Dsk(x,r)/sk(x,0)

(B, j) .

ii. rkB→h, a delegation from B to an honest party h with delegation
acceptance value D(h, j) for time period j . S computes and sends
rkB→h ← (ga)x j z(h, j)/t = Da/t

(h, j) to A.

iii. rkh→B, a delegation to B from an honest party h with secret key skh =
(sk(h,0), sk(h,r)). S trivially computes rkh→B = Dsk(h,r)/sk(h,0)

(B, j) .

3. Eventually, during the last time period, A must output a challenge
(m0, m1, τ), where m0 �= m1 ∈ M and τ is its internal state informa-
tion. The simulator randomly selects s ∈ {0, 1}, computes the ciphertext
cs = (Z d , e(gb, gc)ms), sends (cs, τ) to A, and waits for A to output s′ ∈ {0, 1}.

4. If s = s′, then S guesses “d = abc”; otherwise S guesses “d �= abc”.

First, we observe that if d = abc, then the simulation is perfect; that is, the
ciphertext output is of the proper form (Z abc, Z bcms) for the user with sk(B,r) = a.
However, if d �= abc, then ms is information-theoretically hidden from A. Thus,
if A succeeds with probability 1/2 + ε at distinguishing E1 ciphertexts, then S
succeeds with probability (1/2 + ε) (when d = abc) and probability exactly 1/2
(when d �= abc), for an overall probability of (1/2 + ε/2). This contradicts the
DBDH assumption when ε is non-negligible.

Now, suppose that A distinguishes E2 ciphertexts with non-negligible prob-
ability, we simulate a different adversary S that decides DBDH as follows:

1. On input (g , ga, gb, gc, Z d), the simulator sends A the global parameters
(y = gc, e(y , y) = e(g , g)c2

) and the target public key pkB = (y1/c =
g , ya/c = ga/c) and the corresponding secret key is skB = (1/c, a/c). The
simulator also honestly generates and publishes the public keys of all other
parties.

2. For j = 1 up to T time periods, the simulator publishes the public delegation
parameter for that time period h j = yx j = (gc)x j , where x j is randomly
selected from Zq . The simulator also publishes the delegation acceptance

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

18 • G. Ateniese et al.

value D(U, j) = hz(U, j)/c

j = g x j z(U, j) for all users U , including B, where z(U, j) is
randomly selected from Zq . The simulator pretends to give the temporary
secret (z(U, j)/c) to each honest party (it cannot actually do so, since it does
not know the value 1/c). These acceptance values are generated without the
1/c term for all corrupted users.

a. Next, for i = 1 up to poly(k), A can request:

i. rkx→B, a delegation to B from a party corrupted by A. A can generate
these delegations internally by running (pkx , skx) ← KG(1k), where

skx = (sk(x,0), sk(x,r)), and computing rkx→B = Dsk(x,r)/sk(x,0)

(B, j) .

ii. rkB→h, a delegation from B to an honest party h with delegation
acceptance value D(h, j) for time period j . S computes and sends

rkB→h = Dsk(B,r)/sk(B,0)

(h, j) = yx j z(h, j)(a/c)/(1/c) = (ga)x j z(h, j) .

iii. rkh→B, a delegation to B from an honest party h. S computes and sends

rkh→B = Dsk(h,r)/sk(h,0)

(B, j) to A.

3. Eventually, during the last time period, A must output a challenge
(m0, m1, τ), where m0 �= m1 ∈ M and τ is its internal state informa-
tion. The simulator randomly selects s ∈ {0, 1}, computes the ciphertext
cs = (gb, ms(Z d)x j) = (yb/c, mse(y , h j)

d/c2

), sends (cs, τ) to A, and waits for
A to output s′ ∈ {0, 1}.

4. If s = s′, then S guesses “d = abc”; otherwise S guesses “d �= abc”.

Now, we observe that if d = abc, then the simulation is perfect; that is,

the challenge ciphertext is of the proper form (ysk(B,0)b, mse(y , h j)
sk(B,r)b). How-

ever, if d �= abc, then ms is information-theoretically hidden from A. Thus, if
A succeeds with probability 1/2 + ε at distinguishing E2 ciphertexts, then S
succeeds with probability (1/2 + ε) (when d = abc) and probability exactly 1/2
(when d �= abc), for an overall probability of (1/2 + ε/2). This contradicts the
DBDH assumption when ε is non-negligible.

3.6.2 Master Secret Security. Let T be the maximum number of time pe-
riods. Suppose an adversary A can recover the secret key of a targeted user B
(i.e., skB = (sk(B,1), sk(B,2))) with non-negligible probability by interacting with
B according to the second part of definition 2.3, then we can build an adversary
S that takes discrete logs in G1. Let us focus our attention on recovering only
the value sk(B,2). Our simulator S works as follows:

1. On input (g , ga) in G1, output the global parameters (g , Z = e(g , g)) and

the target public key pkB = (gsk(B,0) , ga), where sk(B,0) is chosen randomly
from Zq . We can think of sk(B,r) = a.

2. For j = 1 up to T time periods, the simulator publishes the public delegation
parameter for that time period h j = g x j , where x j is randomly selected from
Zq . The simulator also publishes the delegation acceptance value hz(U, j)

j for
all users U , including B, where z(U, j) is randomly selected from Zq .

3. Next, for i = 1 up to poly(k), A can request:

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 19

a. rkB→U , a delegation from B to a party corrupted by A. Let j be the

current time period. S sets rkB→U = (ga)x j z(U, j)/sk(B,0) = haz(U, j)/sk(B,0)

j =
hsk(B,r)z(U, j)/sk(B,0)

j .
b. rkU→B, a delegation to B from a party corrupted by A. A can generate

these delegations internally using the public information of B.

4. Eventually, A must output a purported secret key for B of the form (α, β).
The simulator returns the value β.

The simulation is perfect; thus A must not be able to recover the master secret
key of B, despite accepting and providing numerous delegations to B, because
otherwise, S can efficiently solve the discrete logarithm problem in G1.

4. ENCRYPTED FILE STORAGE

In this section we describe a file system that uses an untrusted access control
server to manage access to encrypted files stored on distributed, untrusted block
stores. We use proxy re-encryption to allow for access control without granting
full decryption rights to the access control server. To our knowledge, our imple-
mentation represents the first experimental implementation and evaluation of
a system using proxy re-encryption.

4.1 Overview

In our file system, end users on client machines wish to obtain access to
integrity-protected, confidential content. A content owner publishes encrypted
content in the form of a many-reader, single-writer file system. The owner en-
crypts blocks of content with unique, symmetric content keys. A content key is
then encrypted with an asymmetric master key to form a lockbox. The lockbox
resides with the block it protects.

Untrusted block stores make the encrypted content available to everyone.
Users download the encrypted content from a block store, then communicate
with an access control server to decrypt the lockboxes protecting the content.
The content owner selects which users should have access to the content and
gives the appropriate delegation rights to the access control server.

4.2 Access Control Using Proxy Cryptography

We propose an improvement on the access control server model that reduces
the server’s trust requirements by using proxy cryptography. In our approach,
the content keys used to encrypt files are themselves securely encrypted under
a master public key, using a unidirectional proxy re-encryption scheme of the
form described in this work. Because the access control server does not possess
the corresponding secret key, it cannot be corrupted so as to gain access to the
content keys necessary to access encrypted files. The secret master secret key
remains offline, in the care of a content owner who uses it only to generate the
re-encryption keys used by the access control server. When an authorized user
requests access to a file, the access control server uses proxy re-encryption to
directly re-encrypt the appropriate content key(s) from the master public key
to the user’s public key.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

20 • G. Ateniese et al.

This architecture has significant advantages over systems with trusted ac-
cess control servers. The key material stored on the access control server cannot
be used to access stored files, which reduces the need to absolutely trust the
server operator, and diminishes the server’s value to attackers. The master se-
cret key itself is only required by a content owner when new users are added to
the system, and can therefore be stored safely offline where it is less vulnerable
to compromise. Finally, the schemes in Section 3 are unidirectional and nonin-
teractive, meaning that users do not need to communicate or reveal their secret
keys in order to join the system. This allows content owners to add users to the
system without interaction, simply by obtaining their public key. Because this
system works with users’ long-term keys (rather than generating ephemeral
keys for the user), there is an additional incentive for users not to reveal their
decryption keys.

The proposed design fundamentally changes the security of an access control
server storage system. In this new model, much of the security relies on the
strength of a provably-secure cryptosystem, rather than on the trust of a server
operator for mediating access control. Because the access control server cannot
successfully re-encrypt a file key to a user without possessing a valid delegation
key, the access control server cannot be made to divulge file keys to a user who
has not been specifically authorized by the content owner, unless this attacker
has previously stolen a legitimate user’s secret key.

4.3 Chefs

We implemented our file system on top of Chefs [Fu 2005], a confidentiality-
enabled version of the SFS read-only file system [Fu et al. 2002]. Chefs is
a single-writer, many-reader file system that provides decentralized access
control in integrity-protected content distribution. A content owner creates a
signed, encrypted database from a directory tree of content. The database is
then replicated on untrusted hosts (e.g., volunteers). A client locates a replica,
then requests the encrypted blocks. We chose the Chefs architecture because
it allowed us to experiment with different granularities of encryption (per-
file and per-block) while providing a transparent file system interface for our
experiments.

Chefs tags each content block with a lockbox. In the original Chefs design, the
lockbox contains a 128-bit AES key, itself encrypted with a shared group AES
key. Chefs assumes an out-of-band mechanism for content owners to distribute
group keys to users.

4.4 Design and Implementation

To implement our proposed design, we modified Chefs to include an access con-
trol server. Every block in a Chefs database is encrypted with a 128-bit AES
content key in CBC mode. Depending on the granularity of the encryption,
a content key can be shared across all of the blocks in a particular file, di-
rectory or database, or unique keys can be used for each block. Content keys
are themselves encrypted under a system master public key using the “Third
Attempt” bilinear Elgamal scheme from Section 3.1. This encryption results in a

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 21

Fig. 1. Operation of the proxy reencryption file system. The user’s client machine fetches encrypted

blocks from the block store. Each block includes a lockbox encrypted under a master public key.

The client then transmits lockboxes to the access control server for re-encryption under the user’s

public key. If the access control server possesses the necessary re-encryption key, it re-encrypts the

lockbox and returns the new ciphertext. The client can then decrypt the re-encrypted block with

the user’s secret key.

set of lockboxes stored with the file data, either in file or directory inodes (per-file
and per-directory encryption) or within the blocks themselves (per-block
encryption). The parameters of the proxy re-encryption scheme causes a sealed
lockbox to expand to several hundred bits, although the underlying plaintext
is a 128-bit AES key.

When a client encounters a block for which it does not possess a content
key, it asks the access control server to re-encrypt the lockbox from the master
key to the client’s public key. If the access control server possesses an appro-
priate re-encryption key from the master key to the client’s key, it performs
the appropriate proxy re-encryption and returns the resulting ciphertext to the
client, which can then decrypt the lockbox under its own secret key. Figure 1
illustrates this procedure.

Each re-encryption call necessarily results in a round-trip network request,
in addition to the proxy re-encryption and client-side decryption of the re-
encrypted ciphertext. Thus, the choice of encryption granularity greatly affects
the number of re-encryption calls made from the client to the access control
server, which, in turn, affects the end-to-end performance of the system.

4.5 Experimental Results

In implementing a proxy re-encryption file system, we had two goals in mind.
First, we wished to show that proxy re-encryption could be successfully incorpo-
rated into a basic cryptographic file system. Second, we sought to prove that the
additional security semantics provided by a proxy re-encrypting access control
server came at an acceptable cost to end-to-end performance.

To achieve this second goal, we conducted a number of benchmarks using
the proxy-enabled Chefs file system using various granularities of content key
usage (per-block and per-file). Along with these experiments, we conducted
microbenchmarks of the proxy re-encryption functions used in our imple-
mentation, as well as application-level benchmarks measuring file system
performance. To provide a standard of comparison, we conducted the same
experiments on an unmodified Chefs configuration with no access control
server or proxy re-encryption, using only a single preset AES key to secure the
contents of the database.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

22 • G. Ateniese et al.

Table II. Average Operation Times (in msec) for 100 Runs of the “Third Attempt” Bilinear

Elgamal Proxy Re-encryption Scheme on our Client and Servera

Parameter Decrypt Decrypt

Size Machine Encrypt (by original recipient) Re-encrypt (by delegatee)

*256-bit Client 3.1 8.7 8.6 1.5

Server 3.3 8.8 8.7 1.5

512-bit Client 7.8 22.5 22.0 3.4

Server 9.3 26.5 26.7 4.1

aAll operations refer to re-encryptable “second-level” ciphertexts.

4.5.1 Experimental Setup.. For the purposes of our testing, we used two
machines to benchmark the proxy-enabled Chefs file system. The client ma-
chine consisted of an AMD Athlon 2100+ 1.8 GHz with 1 Gbyte RAM and
an IBM 7200 RPM, 40 Gbyte, Ultra ATA/100 hard drive. The server machine
was an Intel Pentium 4 2.8 GHz with 1 Gbyte RAM and a Seagate Barracuda
7200 RPM, 160 Gbyte, Ultra ATA/100 hard drive. Both systems were running
Debian testing/unstable with the Linux 2.6.8 kernel. The client and the server
were situated in different cities, representing a distributed file system scenario.
We measured the round-trip latency between the two machines at 13 msec and
the maximum sustained throughput of the network link at 7 Mbit/sec. We imple-
mented the cryptographic primitives for the “Third Attempt” bilinear Elgamal
scheme using version 4.83 of the MIRACL cryptographic library [Scott 2005],
which contains efficient implementations of the Tate pairing, as well as fast
modular exponentiation and point multiplication.

4.5.2 Cryptographic Benchmark. Table II presents average times over 100
runs of the cryptographic operations in the bilinear proxy re-encryption scheme
(the third one from Section 3.1). The measurements provide some basis for un-
derstanding the impact of the proxy re-encryption on overall file system perfor-
mance. These results indicate that re-encryption is the one of the most time-
consuming operations in our file system.

We were surprised that our 1.8 GHz AMD Athlon 2100 performed better
than our 2.8 GHz Intel Pentium 4 server in the microbenchmarks. We attribute
this advantage to modular arithmetic routines in MIRACL that perform faster
on the Athlon. The MIRACL library provides many hints for selecting assem-
bly code optimizations. Because other benchmarks, such as the OpenSSL RSA
“speed” test, run faster on our server, we suspect that the Intel server would
perform better with proper selection of optimizations in MIRACL.

We conducted our remaining benchmarks using various encryption granu-
larities, including per-block and per-file. For each measurement, we report the
median result of five samples. In all measurements, the server has a warm block
cache and the client has a cold block cache. Our microbenchmarks, presented in
Figures 2 and 3, include runs of the small-file and large-file test from the LFS
suite of file system performance tests [Rosenblum and Ousterhout 1991]. We
use the read phases of the LFS test to measure the fundamental performance
of our system.

The first test reads several small files. The second test consists of a sequen-
tial read of a large file. These two tests capture common workloads in a typical

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 23

Fig. 2. Small-file microbenchmark from LFS suite. We perform a complete read on 1000 1 Kbyte

files dispersed in 10 directories.

Fig. 3. Large-file microbenchmark from LFS suite. We perform a sequential read on a 40-Mbyte

file in 8-Kbyte blocks.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

24 • G. Ateniese et al.

file system. For each of these tests, we experimented with different encryp-
tion granularities, including per-block and per-file content keys. The small file
benchmark, in particular, is a worst-case scenario for a proxy-enabled file sys-
tem, as it requires a large number of lockbox re-encryptions relative to the
amount of data read. On the other hand, the large-file workload tends to ex-
hibit exactly the opposite effect, as the ratio of re-encryptions to data read is
much smaller. In general, all per-block encryption scenarios tend to be the least
efficient (and least practical) when proxy re-encryption is enabled.

4.5.3 Small-File Benchmark. The SFSRO and Chefs benchmarks each
generate 2022 RPCs to fetch content from the block store (1000 files, 10 di-
rectories, and 1 root directory—each generating two RPCs: one for the inode,
one for the content).

Note that Chefs adds virtually no discernible overhead, although the client
decrypts every content fetch with 128-bit AES in CBC mode. With the round-trip
time accounting for at least 26 sec of the measurement, the network overshad-
ows the cost of cryptography.

The proxy re-encryption file system first makes 2022 fetches of content, just
like Chefs. With per-file granularity of content keys, the small-file benchmark
generates 1011 re-encryption RPCs. The proxy re-encryption file system takes
44 sec longer than Chefs. The 44 sec corresponds exactly to the 13 msec round-
trip time, 26.7 msec re-encryption time on the server, and 3.4 msec delegatee
decryption time on the client for each of the 1,011 re-encryption RPCs (see
Table II).

With per-block granularity, the small-file benchmark generates 2022 re-
encryption RPCs. A file or directory consists of an inode and data block, thus
each read now generates two re-encryptions. The proxy re-encryption file sys-
tem takes 87 sec longer than Chefs. Since the per-block re-encryption generates
twice as many re-encryption RPCs as the per-file scenario, the results concur
with our expectations.

4.5.4 Large-File Benchmark. The large-file benchmark generates 5124
RPCs to fetch 40 Mbytes of content from the block store (two RPCs for the
root directory, two for the file, and 5120 for the file data). In the SFSRO and
Chefs experiments, the 7 Mbit bandwidth largely dominates the throughput.

The measurement of Chefs demonstrates that the cost of adding confiden-
tiality to SFSRO comes at no cost to throughput when fetching data across the
Internet. Chefs runs slightly faster than SFSRO, initially causing us to ques-
tion the validity of the measurements. We conducted further measurements to
ensure confidence in our results. We verified that both SFSRO and Chefs issue
the same type and number of RPCs. The responses to content fetching RPCs
in SFSRO are 8200 bytes. The responses in Chefs are 8244 bytes, because of
PKCS#7 padding overhead with AES-CBC encryption. We suspect that byte
alignment and fortuitous interleaving of asynchronous RPCs allowed Chefs to
slightly outperform SFSRO. In a run of the large-file benchmark, SFSRO en-
countered locking contention 16,054 times (when a callback encounters a locked
cache). Chefs encountered only slightly less locking contention—15,981 times.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 25

Because the large-file workload involves only a single file, the per-file proxy
re-encryption has no discernible cost. There are a mere two proxy re-encryption
RPCs (one for the root and one for the file). The per-block proxy re-encryption
generates 5124 re-encryption RPCs, thus we expect a significant degradation
of throughput because of the 13 msec network round-trip time.

The cost of per-block re-encryption is prohibitively expensive for large files.
We expect that per-file granularity or per-file-system granularity will be much
more common than per-block granularity. For instance, we do not expect users
to grant access to portions of a single file. Rather, we expect users would share
access-controlled content in collections of files—similar to a collection of Web
pages or a directory subtree.

Note that the large file benchmark in this extended document differs from
that of previous versions of this paper. Our original file system clients uninten-
tionally prefetched file content. Furthermore, a race condition had the potential
to generate unnecessary RPCs to fetch content. The race condition did not af-
fect measurements in the original paper; the correct function always won the
race. In later unpublished measurements, the race generated twice as many
RPCs as necessary to fetch content. Removing the unintentional prefetching
and fixing the race condition with a locking protocol slightly reduced the base-
line throughput for sequential reads.

4.5.5 Application-Level Benchmark. Our application-level benchmark
consists of an Emacs version 21.3 compilation. The source code is stored in
our file system, while the resulting binaries are written to a local disk. We
first run configure, then compile with make. This CPU-intensive workload re-
quires access to approximately 300 files. The results of this test are presented in
Figure 4, and show that the per-file and even per-block proxy cryptography adds
negligible overhead for this application workload. We believe the cost is nom-
inal for the additional security semantics of proxy re-encryption. The original
paper did not take into account the time to run configure. Therefore, the new
timings are slightly longer for all tests.

4.5.6 Scalability. We also measured how well the access control server per-
forms under a heavy load. Figure 5 shows that our proxy re-encryption server
can scale up to 1000 pending requests before exhibiting signs of stress. We re-
played a trace of proxy re-encryption RPCs. This required no computation on the
client side, but caused the server to perform proxy re-encryption. We start by is-
suing a single request, waiting for the response before issuing another request.
To simulate many simultaneous clients, we gradually increase the window size
of outstanding RPCs. Our server is able to sustain 100 re-encryptions/sec until
reaching about 1000 outstanding requests. The server coped with up to 10000
outstanding re-encryption requests, but quickly spiraled downward thereafter.

4.6 Discussion

Our access control server acts like a credentials download service. For instance,
PDM [Perlman and Kaufman 2001] stores encrypted credentials on a server.
A user decrypts the credentials with a password. PDM works fine when an

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

26 • G. Ateniese et al.

Fig. 4. Application-level benchmark. We record the time to compile Emacs version 21.3.

Fig. 5. Aggregate access control server throughput. The server can tolerate 1000 simultaneous

re-encryption requests before showing signs of saturation.

encrypted credential is available to a single individual. However, our file system
supports group access control. We could use PDM instead of our access control
server, but this would reduce the key distribution problem to that of sharing a
password with all group members.

We selected a single-writer, many-reader file system rather than a gen-
eral purpose file system to experiment with proxy re-encryption in content

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 27

distribution. This eliminates problems not directly related to proxy re-
encryption, such as fork consistency [Li et al. 2004].

In practice, an organization’s data may consist of many distinct file sets
or equivalence classes, access to each of which should be limited to a sub-
set of the organization’s members. For instance, a large company with sev-
eral departments might wish to keep data from individual departments confi-
dential within the originating department. However, an access control server
shared with other departments would have advantages in reliability and log-
ging. This can easily be achieved by using many different master keys, each
of which encrypts content keys for files owned to a different group. The
corresponding secret keys can be held by different content owners, whose
only operational responsibility is to generate re-encryption keys for new
users.

Because there is no fundamental difference in format between a master pub-
lic key and a user’s public key, individual users can use their own public keys
as master keys, allowing users to act as content owners of their own personal
file sets. Additional possibilities can be achieved if multiple file keys are used
to encrypt single files, allowing for files that are available only to users who
belong to multiple groups simultaneously.

We believe that our experimental results demonstrate the practicality of
proxy re-encryption in protecting stored content. Though proxy re-encryption
adds a level of overhead to file system, this overhead is not extreme, and can
be worth the additional security that comes from using a centralized, semi-
trusted access control server. Various system choices, such as parameter sizes
and encryption granularity can greatly affect the efficiency of the system; we
have selected the ones we believe to be most promising.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we explored proxy re-encryption from both a theoretical and
practical perspective. We outlined the characteristics and security guaran-
tees of previously known schemes, and compared them to a suite of improved
re-encryption schemes we present over bilinear maps. These pairing-based
schemes realize important new features, such as safeguarding the master se-
cret key of the delegator from a colluding proxy and delegatee. One of the most
promising applications for proxy re-encryption is giving proxy capabilities to
the key server of a confidential distributed file system; this way the key server
need not be fully trusted with all the keys of the system and the secret storage
for each user can also be reduced. We implemented this idea in the context of
the Chefs file system, and showed experimentally that the additional security
benefits of proxy re-encryption can be purchased for a manageable amount of
run-time overhead. We leave open the theoretical problem of finding a proxy
re-encryption scheme that does not allow further delegations; that is, Bob (plus
the proxy) cannot delegate to Carol what Alice has delegated to him. Another
challenging problem is to find unidirectional re-encryption schemes that allow
ciphertexts to be re-encrypted in sequence and multiple times. We also leave
open the practical problems of finding more efficient implementations of secure

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

28 • G. Ateniese et al.

proxy re-encryption schemes, as well as conducting more experimental tests in
other applications.

As future work, we plan to explore definitions of proxy re-encryption to
achieve CCA2 security in a multiuser setting. This requires careful considera-
tion of the secrets involved, including those held by the proxy and delegatees
themselves. One promising direction is to deploy a variation of certain standard
transformations, such as the one proposed by Fujisaki–Okamoto in Fujisaki
and Okamoto [1999], that allow to transform the ciphertext so that the non-
malleability of the encrypted message is guaranteed while allowing the public
key of the intended recipient to be changed.

Source code for our proxy re-encryption library and file system is available
upon email request.

ACKNOWLEDGMENTS

We are grateful to Srinath Anantharaju, Jan Camenisch, Russ Cox, Eu-Jin
Goh, Frans Kaashoek, Mahesh Kallahalla, Ronald L. Rivest, and the anony-
mous reviewers for helpful comments and discussions. This work was partially
supported by an NDSEG Graduate Research Fellowship, an Intel PhD Fellow-
ship, and a NSF grant.

REFERENCES

104TH UNITED STATES CONGRESS. 1996. Health Insurance Portability and Accountability Act of

1996 (HIPPA). http://aspe.hhs.gov/admnsimp/pl104191.htm; Last access: August 16, 2004.

ADYA, A., BOLOSKY, W., CASTRO, M., CHAIKEN, R., CERMAK, G., DOUCEUR, J., HOWELL, J., LORCH, J.,

THEIMER, M., AND WATTENHOFER, R. 2002. Farsite: federated, available, and reliable storage for

an incompletely trusted environment. SIGOPS Oper. Syst. Rev. 36, SI. 1–14.

AN, J. H., DODIS, Y., AND RABIN, T. 2002. On the security of joint signature and encryption. In

Proceedings of Eurocrypt ’02. Vol. 2332 of LNCS. 83–107.

ATENIESE, G., FU, K., GREEN, M., AND HOHENBERGER, S. 2005. Improved proxy re-encryption schemes

with applications to secure distributed storage. In Proceedings of the 12th Annual Network and
Distributed System Security Symposium. Internet Society, 29–44.

BAEK, J., STEINFELD, R., AND ZHENG, Y. 2002. Formal proofs for the security of signcryption. In

Proceedings of Public Key Cryptography ’02. Vol. 2274 of LNCS. 80–98.

BLAZE, M. 1993. A cryptographic file system for UNIX. In ACM Conference on Computer and
Communications Security. 9–16.

BLAZE, M., BLEUMER, G., AND STRAUSS, M. 1998. Divertible protocols and atomic proxy cryptogra-

phy. In Proceedings of Eurocrypt ’98. Vol. 1403. 127–144.

BONEH, D. AND FRANKLIN, M. 2003. Identity-based encryption from the Weil Pairing. SIAM Journal
of Computing 32, 3, 586–615.

BONEH, D., SHACHAM, H., AND LYNN, B. 2001. Short signatures from the Weil pairing. In Proceedings
of Asiacrypt ’01. Vol. 2248. 514–532.

BONEH, D., GENTRY, C., LYNN, B., AND SHACHAM, H. 2003. Aggregate and verifiably encrypted sig-

natures. In Proceedings of Eurocrypt ’03. Vol. 2656 of LNCS. 416–432.

BRESSON, E., CATALANO, D., AND POINTCHEVAL, D. 2003. A simple public-key cryptosystem. In

Proceedings of Asiacrypt ’03. Vol. 2894 of LNCS. 37–54.

CHEON, J. H. AND LEE, D. H. 2001. Diffie-Hellman problems and bilinear maps. Cryptology ePrint
Archive: Report 2002/117.

CRAMER, R. AND SHOUP, V. 2002. Universal hash proofs and a paradigm for adaptive chosen cipher-

text secure public-key encryption. In Proceedings of Eurocrypt ’02. Vol. 2332 of LNCS. 45–64.

DODIS, Y., FRANKLIN, M. K., KATZ, J., MIYAJI, A., AND YUNG, M. 2003. Intrusion-resilient public-key

encryption. In Proceedings of CT-RSA ’03. Vol. 2612 of LNCS. 19–32.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

Proxy Re-encryption Schemes with Applications to Secure Distributed Storage • 29

DODIS, Y., FRANKLIN, M. K., KATZ, J., MIYAJI, A., AND YUNG, M. 2004. A generic construction for

intrusion-resilient public-key encryption. In Proceedings of CT-RSA ’04. Vol. 2964 of LNCS. 81–

98.

DODIS, Y. AND IVAN, A. 2003. Proxy cryptography revisited. In Proceedings of the Tenth Network
and Distributed System Security Symposium.

DODIS, Y. AND YAMPOLSKIY, A. 2005. A verifiable random function with short proofs an keys. In

Public Key Cryptography. Vol. 3386 of LNCS. 416–431.

DODIS, Y., KATZ, J., XU, S., AND YUNG, M. 2002. Key-insulated public key cryptosystems. In

Proceedings of Eurocrypt ’02. Vol. 2332 of LNCS. 65–82.

ELGAMAL, T. 1984. A public key cryptosystem and a signature scheme based on discrete loga-

rithms. In Proceedings of Crypto ’84. 10–18.

FIAT, A. AND SHAMIR, A. 1986. How to prove yourself: Practical solutions to identification and

signature problems. In Proceedings of Crypto ’86. Vol. 263 of LNCS. 186–194.

FU, K. 1999. Group sharing and random access in cryptographic storage file systems. M.S. thesis,

Massachusetts Institute of Technology, Cambridge, MA.

FU, K. 2005. Integrity and access control in untrusted content distribution networks. Ph.D. the-

sis, Massachusetts Institute of Technology, Cambridge, MA.

FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. 2002. Fast and secure distributed read-only file system.

ACM Trans. Comput. Systems 20, 1, 1–24.

FUJISAKI, E. AND OKAMOTO, T. 1999. Secure integration of asymmetric and symmetric encryption

schemes. In Proceedings of Crypto ’99. Vol. 1666 of LNCS. 537–554.

GALBRAITH, S. D., HARRISON, K., AND SOLDERA, D. 2002. Implementing the Tate pairing. In Proceed-
ings of the Algorithmic Number Theory Symposium. Vol. 2369 of LNCS. 324–337.

GOH, E.-J., SHACHAM, H., MODADUGU, N., AND BONEH, D. 2003. SiRiUS: Securing remote untrusted

storage. In Proceedings of the Tenth Network and Distributed System Security Symposium. 131–

145.

GOLDWASSER, S. AND MICALI, S. 1984. Probabilistic encryption. Journal of Computer and System
Sciences 28, 2, 270–299.

GOLLE, P., JAKOBSSON, M., JUELS, A., AND SYVERSON, P. F. 2004. Universal re-encryption for mixnets.

In Proceedings of CT-RSA ’04. Vol. 2964 of LNCS. 163–178.

HARRINGTON, A. AND JENSEN, C. 2003. Cryptographic access control in a distributed file system.

In Proceedings of 8th ACM Symposium on Access Control Models and Technologies (SACMAT
2003). ACM, Villa Gallia, Como, Italy.

JAKOBSSON, M. 1999. On quorum controlled asymmetric proxy re-encryption. In Proceedings of
Public Key Cryptography. 112–121.

JOUX., A. 2000. A one-round protocol for tripartite Diffie-Hellman. In Proceedings of ANTS-IV
conference, Lecture Notes in Computer Science. Vol. 1838. 385–394.

KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG, Q., AND FU, K. 2003. Plutus: scalable secure

file sharing on untrusted storage. In Proceedings of the Second USENIX Conference on File and
Storage Technologies.

LI, J., KROHN, M. N., MAZIÈRES, D., AND SHASHA, D. 2004. Secure untrusted data repository

(SUNDR). In Proceedings of the 6th Symposium on Operating Systems Design and Implementa-
tion. San Francisco, CA, 91–106.

MAMBO, M. AND OKAMOTO, E. 1997. Proxy cryptosystems: Delegation of the power to decrypt

ciphertexts. IEICE Trans. Fund. Electronics Communications and Computer Science E80-A/1,

54–63.

PERLMAN, R. AND KAUFMAN, C. 2001. PDM: A new strong password-based protocol. In Proceedings
of the 10th USENIX Security Symposium.

REED, D. AND SVOBODOVA, L. 1981. Swallow: A distributed data storage system for a local network.

In Local Networks for Computer Communications, A. West and P. Janson, Eds. North-Holland,

Amsterdam, 355–373.

ROSENBLUM, M. AND OUSTERHOUT, J. 1991. The design and implementation of a log-structured file

system. In Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP).
Pacific Grove, CA. 1–15.

SCHNORR, C.-P. 1991. Efficient signature generation by smart cards. Journal of Cryptography 4,

161–174.

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

30 • G. Ateniese et al.

SCOTT, M. 2005. MIRACL library. Indigo Software. http://indigo.ie/∼mscott/#download.

SHOUP, V. 1997. Lower bounds of discrete logarithms and related problems. In Proceedings of
Eurocrypt ’97. Vol. 1233 of LNCS. 256–266.

ZHENG, Y. 1997. Signcryption and its applications in efficient public key solutions. In Proceedings
of ISW ’97. Vol. 1396 of LNCS. 291–312.

ZHOU, L., MARSH, M. A., SCHNEIDER, F. B., AND REDZ, A. 2004. Distributed blinding for ElGamal

re-encryption. Tech. Rep. 2004–1924, Cornell Computer Science Department, Ithaca, NY.

Received February 2005; revised August 2005; accepted September 2005

ACM Transactions on Information and System Security, Vol. 9, No. 1, February 2006.

