Efficient and Unforgeable Multicast Conference Key Establishment
without Relying on a Key Distribution Center

*

Yuliang Zheng

Abstract
tion superhighway which uses ATM or Asynchronous Trans-
fer Mode for data transmission, compactness and efficiency
have emerged as critical factors that have to be taken into
account in a cryptographic session key establishment pro-
tocol. Our earlier work shows that by using recently in-
vented “signcryption” schemes, key establishment with the
following properties can be achieved: (1) each message ex-
changed between two participants can be transferred in a
short packet such as an ATM cell whose payload has only
384 bits, and (2) messages that carry key materials are un-
forgeable and non-repudiatable without the involvement of
a trusted key distribution center. The main contribution of
this paper is to extend our previous key establishment pro-
tocols, which have been designed for single recipients, to
multicast conference key establishment in which a multiple
number of recipients are involved.

With the rapid deployment of the informa-

Keywords— Cryptography, Key Establishment, Multi-
cast, Network Security, Signcryption

1 Introduction

A key establishment protocol is a sequence of speci-
fied steps between two or more participants whereby
the participants can agree on a shared secret value.
The shared secret value is called a session key, due to
the fact that it is usually used for a single communica-
tion session and hence lives for only a relatively short
period of time. A major motivation behind session
key establishment is to cryptographically eliminate cor-
relations across different communication connections,
which would minimize security exposure when a par-
ticular session key is compromised. Cryptographic in-
dependence of communication sessions would also sig-
nificantly reduce the risk of replay attacks by an active
attacker who has recorded past communication sessions
and tries to compromise a current communication ses-
sion by inserting into it, or replacing (part of) it with,
(part of) past sessious. The attack may have or have
not compromised the contents of past communication
sessions.

Organization of the rest of this paper: Section 2
presents a example implementation of signcryption
that will be used in key establishment. Section 3 in-
troduces our previous work on key establishment for a

* Peninsula School of Computing, Monash University, McMa-

hons Road, Frankston, Melbourne, Victoria 3199, Australia.
URL: http://wwu-pscit.fcit.monash.edu.au/ yuliang/
E-mail: yuliang@mars.fcit.monash.edu.au

T Institute of Industrial Science, University of Tokyo, 22-1,
Roppongi 7-chome, Minatoku, Tokyo, 106 Japan.
E-mail: imai@imailab.iis.u-tokyo.ac.jp

Hideki Imai |

single recipient, and Section 4 shows how to extend the
work to multicast conference key establishment.

2 Signcryption

A signeryption scheme is a cryptographic method that
fulfills both the functions of secure encryption and digi-
tal signature, but with a cost smaller than that required
by signature-then-encryption.

Next we show an example implementation of sign-
cryption based on the infeasibility of computing dis-
crete logarithm over a large finite field. The example
signcryption scheme is called SCS1. The reader is di-
rected to [1, 2] for other example implementations of
signcryption.

In describing our method, we will use £ and D to
denote the encryption and decryption algorithms of a
private key cipher. Encrypting a message m with a
key k, typically in the cipher block chaining (CBC) or
output feedback (OFB) mode, is indicated by Ey(m),
while decrypting a ciphertext ¢ with k is denoted by
Dy (c). Note that in the OFB mode, the encryption al-
gorithm effectively serves as a cryptographically secure
pseudo-random sequence generator. In addition we use
K Hy(m) to denote hashing a message m with a keyed
hash function/algorithm K H under a key k.

Assume that Alice also has chosen a private key x4
from [1,...,¢—1], and made public her matching public
key 4o = ¢ mod p. Similarly, Bob’s private key is z;
and his matching public key is y, = ¢** mod p.

As shown in Table 1, the signcryption and unsign-
cryption algorithms are remarkably simple. The sign-
crypted version of a message m is composed of three
parts ¢, 7 and s from which the recipient can recover
the original message. Note that in the table, € indi-
cates an operation that chooses an element uniformly
at random from among a set of elements.

With the signcryption algorithm described in the
left column of the table, the output of the one-way hash
function hash used in defining (k1, k2) = hash(yf mod
p) should be sufficiently long, say of at least 128 bits,
which guarantees that both &k, and ks have at least 64
bits. Also note that in practice, (k1, k2) can be defined
in a more liberal way, such as (k1,ks) = yf mod p and
(k1,k2) = fd(yf mod p), where fd denotes a folding
operation.

The unsigncryption algorithm works by taking ad-
vantages of the property that ¢® mod p can be recovered
from r, s, g, p and y, by Bob.

Signcryption schemes can also be derived from

Signcryption
by Alice the Sender

Unsigncryption
by Bob the Recipient

z€R|l,...,q—1]
(k1, k2) = hash(yy mod p)
c= By, (m) -
r = K Hy,(m)
s=ux/(r+ zq)mod ¢

= m = Dy, (c)

(k1,k2) = hash((ys - ¢")* "t mod p)

Accept m only if KHy,(m)=r

Table 1: An Example Implementation of Signcryption (SCS1)

ElGamal-based signature schemes built on other ver-
sions of the discrete logarithm problem such as that on
elliptic curves.

3 Key Establishment for a Single Re-
cipient

Now we are ready to describe our earlier work [3] on
how to establish fresh random session keys between two
participants Alice and Bob, in such a way that all mes-
sages exchanged between the two participants are short
and computational costs involved are minimized.

In the following discussions, we assume that sys-
tem parameters that are common to all participants,
and the public and private keys of both Alice and Bob
have all been properly set up. In addition, there is a
trusted certification authority (CA) that has already
issued a public key certificate to each participant. A
participant’s public key certificate may comply with
X.500 certificate format that contains such information
as certificate serial number, validity period, the ID of
the participant, the public key of the participant, the
ID of the CA, the public key of the CA, etc. It would
be pointed out that the digital signature scheme used
by the CA in creating public key certificates does not
have to be one based on ElGamal signature scheme.

Furthermore, we assume that prior to an execution
of a key establishment protocol, both participants have
already obtained the other participant’s public key and
its associated certificate issued by the CA, and have
checked and are satisfied with the validity of the cer-
tificates. The participants may have done so either
because they both keep a list of frequently used certifi-
cates, or they have obtained and verified the certificates
for previous communication sessions.

In describing a key establishment protocol, key €g
{0,1}** indicates that key is an f;-bit number chosen
uniformly at random. Similarly NC, €r {0,1}% is
a nonce chosen by Bob. And TS is a current time-
stamp. Typically £ > 64, £, > 40, and the number
of bits in T'S may be decided by the accuracy of clock
synchronization, as well as by the life span of a message
containing the time-stamp. Finally a 64-bit authenti-
cation tag would be long enough for the purpose of key
confirmation in most practical applications.

A key transport protocol may use either a nonce

or a time-stamp in guaranteeing freshness. The pro-
tocol may also transport key materials either directly
or indirectly. So there are in total four possible com-
binations. Table 2 describes two direct key transport
protocols that are relevant to this work. The reader is
directed to [3] for other protocols.

The etc part may contain data known to both Al-
ice and Bob. Such data may include the participants’
names, public keys, public key certificates, protocol se-
rial number, and so on. It may also contain system
control information. Note that one of the purposes of
sending tag is for key confirmation, namely for a par-
ticipant (Bob) to show the other (Alice) that he does
know the new session key. For a less critical applica-
tion, the time-stamp T'S may be transmitted to Bob in
clear to further improve the computational efficiency of
the protocols.

As can be seen in the tables, protocols that rely on
a nouce require one more message than protocols that
rely on a time-stamp.

4 Multicast Conference Key Establish-
ment

The two protocols for direct transport of key materi-
als described in Section 3 can be extended to confer-
ence key establishment where Alice wishes to establish
a common session key with ¢ recipients Ry, Ro, ..., R;.
Such a protocol is very useful in multicast communi-
cations. A major difference between a single recipient
protocol and a multiple recipient one, both based on
sigucryption, lies in the length of messages. As shown
in previous sections, messages in a key establishment
protocol for a single recipient are all compact and can
be accommodated in small data packets such as ATM
cells. With a protocol for multiple recipients, some
messages may be too long to fit in a single ATM cell.
Therefore one of our design goals will be use as a small
number of cells as possible in transporting key materi-
als.

We assume that each recipient R; has a unique iden-
tifier I D;, and that the private key of R; is z; €g
[1,...,q9 — 1], and his matching public key is y; =
g mod p. Two basic multicast conference key trans-
port protocols are shown in Table 3. The main part of
these protocols is a multicast message containing key

Direct Key Transport Using a Nonce (Protocol DKTUN)

Alice Bob
< NG, <« NC, € {0,1}%"
key €r {0,1}%
z€R[l,....,q—1] (k1,k2) = hash((ya - g")" " mod p)
(k1,k2) = hash(y; mod p) o key = Dy, (c)
¢ = Ey, (key) = ens = Accept key only if
r = KHy,(key, NCy, ctc) KHy,(key, NCy,etc) =r
s==z/(r + z,)mod q
. < tag <« _
verify tag (optional) tag = MACy.,(NCy)

Alice

Direct Key Transport Using a Time-Stamp (Protocol DKTUTS)

Bob

key €r {0,1}%
x €r[l,...,q—1]
(k1,k2) = hash(y; mod p)

(k1,k2) = hash((ya - g")° “* mod p)
(key, TS) = Dy, (¢)

Get a current time-stamp TS = c¢,rs = Accept key only if
¢ = Ey, (key,TS) TS is fresh and
r = KHy, (key, TS, etc) KHy,(key, TS)=r
s=xz/(r+ z,)mod q
" < tag <« .
verity tag (optional) tag = MACke,(TS)

Table 2: Direct Key Material Transport for a Single Recipient

materials from Alice to all ¢ recipients Ry, Ro, ..., R;.
The data format for the multicast message is adapted
from a signcryption scheme for multiple recipients pro-
posed in [2].

An interesting property of these protocols is that
after an successful run of the protocols, all recipients
are assured that session keys in their hands are con-
sistent. In other words, all recipients recover an iden-
tical session key from their copies of a multicast mes-
sage, which would prevent a particular recipient from
being excluded from the multicast group by a dishon-
est Alice. This property on session key consistency is
achieved through the use of two techniques: (1) key, a
session key, is encrypted together with the hashed value
h = K Hy(key, TQ, etc), namely ¢ = Ey(key, h), where
TQ can be either a time-stamp (TS) or a nonce (NC)
and etc may contain Alice’s public key certificate, a
multicast group identifier and other data. (2) key and &
are both involved in the generation of r; and s; through
ri = K Hy, ,(h, etc;), where etc; may contain R;’s pub-
lic key certificate and other data.

There are two potential problems with these basic
protocols. The first problem is that multicasting tag;
(and NC;) by each R; may flood a network in a situa-
tion where the number of recipients is large and/or the
network is already too congested. The second problem
is that the process of verifying all confirmation tags
may pose a computational burden on a recipient R;.

These two potential problems may be solved using
a randomization technique.

1. With the first protocol that involves nonces, in-
stead of always generating and multicasting NCj,
each R; may first flip a (biased or unbiased)

coin and then according the outcome of the coin-
tossing, decide whether or not generating and
multicasting NC;.

2. With both protocols, R; may decide, in a prob-
abilistic fashion, whether or not generating and
multicasting tag;.

3. With both protocols, Alice and each R; may ran-
domly choose a subset of the key confirmation
tags received for verification, rather than going
through the process of checking every tag arrived.

Clearly there is a trade-off between the number of con-
firmation tags generated/verified and the level of con-
fidence in key confirmation.

References

[1] Y.

Digital signcryption or how to achieve cost(signature

Zheng.

& encryption) << cost(signature) + cost(encryption).
In Advances in Cryptology - CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages
165-179, Berlin, New York, Tokyo, 1997. Springer-
Verlag. (The latest version of the paper is available at
http://www-pscit.fcit.monash.edu.au/"yuliang/).

[2] Y. Zheng. Signcryption and its applications in efficient
public key solutions. In Proceedings of 1997 Information
Security Workshop (ISW’97), Lecture Notes in Com-
puter Science, Berlin, New York, Tokyo, 1997. Springer-
Verlag.

[3] Y. Zheng and H. Imai. Secure and anthenticated key

establishment in a single ATM cell. Technical Report of
IEICE ISEC97-24, IEICE, Tokyo, Japan, 1997.

Conference Key Establishment Using a Nonce

Alice and AN 1Dy, NCy v Each R.. i = 1 ts
each R;, 1 =1,...,t — : — N(“e/li(lll}/.””
pa— : /i R B n
NC=NC,®---®NC; e ID,, NC, AN
Alice:
kl(')y €R {072'}[' Each R.::
k €R {071} : 1. = R
h= KHg(key, NC, etc) Ejyd th)(c, Cis Tis 81)
¢ = Ey(key, h ¢ s M2 NS
i(key, h) €1,71, 81 / = h,ash(((y)a - g™) % mod p)
- i — . - — k= Dy, (¢
foreachz=1,... % N (hey. h) = Dy(c)
v €r[l,....q—1] ,
e N v; Ci, Tt St Accept key only if
ki1, ki) = hash(y;* mod p) K Hy(key, NC, etc) = h and
o= Eki’l (]v) KH;. ,,(h,. 617(1,;) =7
T, = KH]“’Z(}L, CtCi) 52 ?
si = vi/(r; + z4)mod ¢
IDy, tag
Alice verifies all tag,, ..., tags; N\ . /
Each R; verifies tag~/f0r each 7 - : - Each Ri:
i j T .
with j #iand 1< j <t 4 IDy. tag, N tag; = M ACy.,(NC, NC;)
(optional)

Conference Key Establishment Using a Time-Stamp

Alice:
for eachz=1,...,t:
V; €ER [17(]_1]

_ v; Each Ri,’t.:].,...,tt

(ki1 kiz2) = hash(y;* mod p) Find out (¢, ¢;, 74, 85)

. P (ki kiz)
key €r {0, i} c = hash((yq - ¢"*)**mod p)
ker{0,1}7 1,71, 8 / ‘

. 171,91 k:Dk(C’L)

Get a current time-stamp T'S — — (ke T,g'l h) = Dy(c)
h = K Hy(key, TS, etc) N A/c;ye'/pt key (;lly];f

_ Ct,Tt, 8
¢ = Ey(key, TS, h) po TS is fresh,
foreachz =1,...,t: gg;(k;}y,?;s, PT_P)Z frand

C; = Eki,l (l") Fue " (11) -

ri = KHy, ,(h, etc;)

si = vi/(r; + z4)mod ¢

IDy,tag
Alice verifies all tagy, ..., tags; N\ . :
Each R; verifies tag‘/for cach 7 - : - Each R;:
ach fvy J T .
with j £7and 1 < j <t 4 1Dy, tag; N tagi = MACe, (TS, 1D;)
(optional)

Table 3: Key Establishment for Multicasting (Basic Protocol)

