

Signcryption -- an example (SCS1)

$$m \longrightarrow (c,r,s)$$
 $(c,r,s) \longrightarrow m$
• Signcrypt by Alice
 $\Leftrightarrow k = hash (y_b^x \mod p)$
where $x \in_R \{1, \dots, q-1\}$
 $\Leftrightarrow k \longrightarrow k_1$
 $\& k \longrightarrow k_1$
 $\& r = KH_{k_2}(m)$
 $\Leftrightarrow s = \frac{x}{r+x_a} \mod q$
 $c = E_{k_1}(m)$
 $\Leftrightarrow \text{ output } (c,r,s)$
 $e = 0 \text{ unsigncrypt by Bob}$
 $\Leftrightarrow k = hash ((y_a \cdot g^r)^{sx_b} \mod p)$
 $\Leftrightarrow k \longleftarrow k_1$
 $\& k \longrightarrow k_1$
 $\& m = D_{k_1}(c)$
 $\Leftrightarrow \text{ output } (c,r,s)$
 $m = r KH_{k_2}(m)$

Cost of Signature-then-Encryption v.s. Cost of Signcryption A simplistic comparison:				
Cost Schemes	Comp Cost (No. of exp)	Comm Overhead (bits)		
RSA based sig-then-enc	2 + 2	n _a + n _b		
DL based Schnorr sig + ElGamal enc	3 + 2.17 (3 + 3)	hash + q + p		
DL based Signcryption	1 + 1.17 (1 + 2)	KH + q		
© 1998 by Yuliang Zheng			23	

Signcryption v.s. Schnorr Sig + ElGamal Enc (cnt'd)				
p	q	KH	saving in comp cost	saving in comm overhead
512	144	72	58 %	70.3 %
768	152	80	58 %	76.8 %
1024	160	80	58 %	81.0 %
1536	176	88	58 %	85.3 %
2048	192	96	58 %	87.7 %
3072	224	112	58 %	90.1 %
4096	256	128	58 %	91.0 %
5120	288	144	58 %	92.0 %
8192	320	160	58 %	94.0 %
10240	320	160	58 %	96.0 %

Ę	Signcryption v.s. RSA				
	$ \mathbf{p} = \mathbf{n}_a $	q	KH	saving in	saving in
	= n _b			comp cost	comm overhead
	512	144	72	0 %	78.9 %
	768	152	80	14.2 %	84.9 %
	1024	160	80	32.3 %	88.3 %
	1536	176	88	50.3 %	91.4 %
	2048	192	96	59.4 %	93.0 %
	3072	224	112	68.4 %	94.0 %
	4096	256	128	72.9 %	95.0 %
	5120	288	144	75.6 %	96.0 %
	8192	320	160	83.1 %	97.0 %
	10240	320	160	86.5 %	98.0 %
© 1998 by Yuliang Zheng 25					

	4 Key Trai	ls	
Time-v Quanti	parying ity		
Nonce	nonce based direct (3 moves)	nonce based indirect (3 moves)	
Time stamp (+nonce)	time-stamp based direct (2 moves)	time-stamp based indirect (2 moves)	Transport
© 1998 by Yuliang Zheng	direct	indirect	Mode

Dire	Direct key transport using a nonce (for unicast)		
Alice $c = E_{k_1}(key)$ $r = KH_{k_2}(key, NC_b, etc)$ $s = x/(r+x_a) \mod q$	<= NC _b <= => c, r, s =>	Bob Pick a nonce <i>NC_b</i> unsigncrypt	
© 1998 by Yuliang Zheng	<= tag <= (optional)	$tag = MAC_{key}(NC_b)$	

Dire ti	Direct key transport using a time-stamp (for unicast)		
Alice		Bob	
$c = E_{k_1}(key, TS)$ $r = KH_{k_2}(key, TS, etc)$ $s = x/(r + x_a) \mod q$	=> c, r, s =>	unsigncrypt, and check the freshness of TS	
verify <i>tag</i>	<= tag <= (optional)	tag = MAC _{key} (TS)	
© 1998 by Yuliang Zheng		34	

	Compa	arison wit	:h
	Beller-Ya	acobi prot	.ocol
Attributes protocols	Comp. Cost (# of exp)	Longest Msg	Pre comp.
Beller-	1 + 2.25	>= 512	Yes
Yacobi	(1 + 4)	bits	
Our	1 + 1.17	< = 384	Yes*
protocols	(1 + 2)	bits	
* Only when Alice knows whom to communicate with			

Direct multicas	t key transpor	t using a nonce
Alice & each R_{ij} $I=1,,t$ $NC = NC_{I} + + NC_{t}$ Alice: $key \in_{R} \{0,1\}^{l_{1}}, k \in_{R} \{0,1\}^{l_{2}}$	$<= \frac{NC_1}{\dots} <= NC_t$	Each R_b , $I=1,,t$ Pick a nonce NC_b
$h = KH_{k}(key, NC, etc)$ $c = E_{k}(key, h)$ for each $i = 1,, t$ $v_{i} \in_{R} [1,, q - 1]$ $(k_{i,1}, k_{i,2}) = hash(y_{i}^{v_{i}} \mod p)$ $c_{i} = E_{k_{i,1}}(k)$ $r_{i} = KH_{k_{i,2}}(h, etc_{i})$	c $=> \frac{c_{l}, r_{l}, s_{l}}{\dots} => c_{p} r_{p} s_{t}$	Each R_{ij} $I=1,,t$ finds out (c, c_{ij}, r_{ij}, s_i) & unsigncrypt it
$s_{i} = \frac{v_{i}}{r_{i} + x_{a}} \mod q$ Alice & each R_{i} , $I=1,,t$ verify $tag_{I,,t}ag_{t}$	tag ₁ <= <= tag _t (optional)	Each R_{i} , $I=1,,t$ $tag_i = MAC_{key}(NC_i)$

