
Compact and Unforgeable Key Establishment over an ATM Network

Yuliang Zheng
Monash University, Australia, Email: yzheng@fcit.monash.edu.au

Hideki Imai
The University of Tokyo, Japan, Email: imai@imailab.iis.u-tokyo.ac.jp

March 1998

Abstract Authenticated session key establishment is a
central issue in network security. This paper addresses a
question on whether we can design a compact, efficient and
authenticated key establishment protocol that has the fol-
lowing two properties: (1) each message exchanged between
two participants can be transferred in a short packet such
as an ATM cell whose payload has only 384 bits, and (2)
messages that carry key materials are unforgeable and non-
repudiatable without the involvement of a trusted key distri-
bution center. We discuss why the answer to this question
is negative if one follows the currently standard approach to
key establishment, namely employing secret/public key en-
cryption and, possibly, digital signature. We then present
a number of protocols that represent a positive answer to
the question. Our protocols are all based on a recently in-
troduced cryptographic primitive called “signcryption” that
fulfills both the functions of digital signature and public key
encryption with a cost far smaller than that required by “dig-
ital signature followed by encryption”.
Key Words: ATM Networks, Cryptography, Key Estab-
lishment, Multicast, Network Security, Signcryption

1 Introduction

A key establishment protocol is a sequence of specified steps
between two or more participants whereby the participants
can agree on a shared secret value. The shared secret value is
called a session key, due to the fact that it is usually used for
a single communication session and hence lives for only a rel-
atively short period of time. A major motivation behind ses-
sion key establishment is to cryptographically eliminate cor-
relations across different communication connections, which
would minimize security exposure when a particular session
key is compromised. Cryptographic independence of commu-
nication sessions would also significantly reduce the risk of
replay attacks by an active attacker who has recorded past
communication sessions and tries to compromise a current
communication session by inserting into it, or replacing (part
of) it with, (part of) past sessions. The attack may have or
have not compromised the contents of past communication
sessions.

A key establishment protocol falls into one of two types.
Protocols in the first type rely on shared static keys and use

secret key (or symmetric) cryptosystems to ensure the con-
fidentiality of message contents. Although such protocols
are generally very efficient, potential problems with them in-
clude those associated with the generation and management
of static keys. In contrast, protocols in the second type em-
ploy public key (or asymmetric) cryptographic techniques.
These protocols do not have the problems with static keys,
but are not as efficient as those based on secret key cryp-
tosystems.

We are particularly interested in key establishment meth-
ods that (1) are efficient, i.e., of a low computational cost,
(2) are compact so that a message can be fitted into a small
data packet such as a single ATM cell which is composed of
a 5-byte header and a 48-byte payload field, and (3) offer
message unforgeability and non-repudiation, without the in-
volvement of a trusted key distribution center. To the best
knowledge of these authors, none of the public key based
protocols in the literature satisfies all the three conditions.
A major contribution of this paper is represented by a set of
concrete key establishment protocols that all fulfill the three
requirements. We also show how to extend the protocols
to multicast conference key establishment in which a partici-
pant wishes to agree on a common secret key with a multiple
number of recipients. We envisage that all these protocols
will find applications not only in high speed network layer se-
curity solutions, but also in less demanding application layer
solutions. The full version of this paper is located at

http://www-pscit.fcit.monash.edu.au/~yuliang/

2 Various Dimensions

There has been an extremely large body of research in the
area of key establishment since the publication of the land-
mark paper by Diffie and Hellman [1], which has resulted in
a situation where one may find numerous protocols in the
literature, each of which may have different properties. A
primary reason behind the emergence of such a large num-
ber of key establishment protocols can perhaps be attributed
to the many different dimensions of key establishment.

Security — A session key established by an execution of
a protocol should be known only to the two participants in-
volved, and also to a KDC or key distribution center if the

protocol involves the KDC. Security of the session key should
not be compromised under all the possible attacks that might
be encountered in a particular environment where the pro-
tocol will be employed. Typical attacks include (1) inferring
a session key via (passive) eavesdropping, (2) replaying past
messages, (3) interleaving messages from one protocol execu-
tion with another, (4) deducing a session key with a known
past session key.

Authentication — Entity authentication is a process by
which a participant is convinced of the identity of another
participant. Entity authentication can be unilateral (one-
way) or mutual (two-way). In a mutual authentication pro-
tocol, both participants wish to be convinced that the other
participant is indeed who he/she claims to be.

A concept that is closely related to and often confused
with entity authentication is identification. While the aim
of identification is similar to entity authentication, namely
for one participant, say Alice, to convince another partici-
pant, say Bob, of her identity, identification satisfies a more
stringent requirement: no participant other than Alice can
prove that he or she is Alice, even to him or herself. The
difference between entity authentication and identification is
made clear by examining a protocol based on a shared static
key between Alice and Bob. Alice and Bob can mutually
authenticate each other using the static key in three moves
or flows [2]. However, such a protocol is not an identification
protocol, since whatever produced by Alice using the shared
key can also be created by Bob, and vice versa.

Unforgeability and Non-repudiation — In some ap-
plications, a participant may require that his or her messages
cannot be forged by other participants. Symmetrically, the
recipient of a message, especially of one that contains key
materials, may require that the sender of the message can-
not repudiate at a later stage the fact that he or she is the
originator of the message. We envisage that in electronic
commerce, non-repudiation and unforgeability of key mate-
rials and actual communication sessions that employ a key
derived from the key materials may be of particular impor-
tance.

Transport v.s. Exchange — We distinguish between
two types of key establishment protocols: key (material)
exchange protocols and key (material) transport protocols.
Note that key exchange protocols are also called key agree-
ment protocols by some researchers. With a key exchange
protocol, a shared session key is derived from joint key ma-
terials from both participants. Such a protocol requires both
participants involved to exchange key materials. In contrast,
with a key transport protocol, key materials from which a
session key is derived are created by one participant and
transferred to the other. A key exchange protocol may be
preferred to a key transport protocol in certain applications
where a session key is required to be “fair”, in that it is de-
pendent on both participants’ key materials. However, one
should distinguish between key material exchange and shared
generation of random numbers as achieved in threshold cryp-
tography [3]. In particular, with a key exchange protocol a
participant who is in a position to see, prior to producing

his key materials, those from the other participant may con-
trol the resultant session key by carefully choosing his key
materials. In this sense, a key (material) exchange protocol
is essentially the same as a key (material) transport proto-
col. In general, truly “fair” session key generation cannot be
achieved without the involvement of computationally expen-
sive bit/sequence commitment, and hence in these authors’
view it should not be set as a goal of key establishment.

Secret v.s. Public Key Cryptosystems — Prior to
the execution of a key establishment protocol, two partici-
pants may or may not have shared static keys in their hands.
In the case of having a shared static key, the most efficient
way for them to establish a fresh session key is to use a key
establishment protocol built on a secret key (or symmetric)
cryptosystem.

On the other hand, if the two participants do not have a
shared static key, they may have to use a public key cryp-
tosystem which is not as efficient as a secret key cryptosys-
tem, unless they can ask for help from a key distribution
center with whom both participants have a separately shared
static key.

Efficiency — Each application may have its own set of
requirements on the efficiency of a key establishment proto-
col. For example, secure mobile communications generally
require a “light-weight” protocol, as a mobile device is usu-
ally computationally less powerful than a wired one. As a
second example, a network layer security application has far
more stringent requirements on the efficiency of key estab-
lishment than does an upper layer application.

Factors that contribute to the efficiency of a key estab-
lishment protocol include (1) the number of moves (or flows,
passes) of messages between two participants, (2) the length
of messages communicated between the participants (mea-
sured in bits), (3) the computational cost invested by both
participants, (4) the size of secure storage, (5) the degree of
pre-computation (which is especially important if the pro-
tocol is intended to be used with computationally weak de-
vices), and so on. One of the challenges that face a protocol
designer is to arrive at a key establishment protocol that
would not only minimize the first four factors but also maxi-
mize the fifth factor, while maintaining the goals the protocol
should achieve.

3 Goals and Motivation

The main goals of this research are to design authenticated
key establishment protocols that (1) do not rely on a trust
key distribution center or KDC, (2) have a low computational
cost, (3) are compact so that the length of each message
exchanged is as short as possible, and (4) offer unforgeability
and non-repudiation.

A practical application that has motivated this research
is key establishment at the network layer over an ATM net-
work. As mentioned earlier, only 48 out of the 53 bytes in an
ATM cell can be used for transmitting data, as the remaining
5 bytes are reserved for carrying control information. Trans-

mitting a data item of more 384 bits over an ATM network
would require two or more ATM cells. While ATM networks
are significantly faster than most networks widely used to-
day, transmitting a data item across two or more cells would
result in a delay that may not be tolerable in certain high
speed applications, primarily due to the necessity of data
packetization, buffering, and re-assembling. Therefore, ide-
ally one would like to transmit encrypted key materials in a
single ATM cell without the need of splitting data.

In many key transport protocols that rely on secret key
cryptosystems, such as those proposed in [4, 5], messages
communicated between Alice and Bob are all compact and
can be easily fitted into single ATM cells. Some of these pro-
tocols do not offer unforgeability or non-repudiation, while
the others do so only with the help of a KDC. In other words,
these protocols are not suitable for an application where un-
forgeability and non-repudiation are to be satisfied without
relying on a KDC.

Key establishment using public key cryptosystems does
not rely on a KDC in achieving unforgeability and non-
repudiation. With all currently known public key based key
establishment protocols, however, a single payload field of
48 bytes, or of 384 bits, cannot be used to carry unforgeable
key materials. To see why this is the case, we take the RSA
cryptosystem as an example. In order to maintain a mini-
mal level of security, it is widely believed that the size of an
RSA composite should be of at least 512 bits. Thus merely
encrypting key materials will result in an expanded outcome
that has as many bits as in the RSA composite. (See [6]
for a discussion on various data formats for key transport
using RSA.) If, in addition, digital signature is involved to
achieve unforgeability, the outcome will be even longer. A
similar problem occurs with public key cryptographic tech-
niques based on the ElGamal encryption scheme that relies
on the discrete logarithm over finite fields.

The ElGamal encryption scheme built on an elliptic curve
over a finite field, say GF (2160), deserves special attention.
With this scheme, a point on the elliptic curve can be com-
pressed so that it occupies only 160 + 1 = 161 bits. Thus a
single ATM cell may be used to transmit un-authenticated
key materials of up to about 384− 161 = 223 bits. However,
a field of 223 bits is too small to carry a key and a time-
varying quantity together with a signature. In other words,
elliptic curve based public key cryptography does not pro-
vide a solution to the problem of compact and unforgeable
key establishment.

In the following sections, we show how a recently proposed
cryptographic primitive called signcryption can be used to
achieve the seemingly impossible goal, namely, to transmit
secure and unforgeable key materials in a single ATM cell.

4 Signcryption

A signcryption scheme is a cryptographic method that fulfills
both the functions of secure encryption and digital signature,
but with a cost smaller than that required by signature-then-

encryption.
An example implementation of signcryption based on the

infeasibility of computing discrete logarithm over a large
finite field is described below. The example signcryption
scheme is called SCS1 and it uses a shortened version of
the Digital Signature Standard [7]. The reader is directed
to [8, 9] for other example implementations of signcryption.

Let p be a large prime, q a large prime factor of p− 1, and
g an integer with order q modulo p chosen randomly from
[1, . . . , p − 1]. In addition, we will use E and D to denote
the encryption and decryption algorithms of a private key
cipher, hash a one-way hash function, and KHk(m) a keyed
hash function/algorithm KH under a key k.

Assume that Alice also has chosen a private key xa from
[1, . . . , q − 1], and made public her matching public key
ya = gxa mod p. Similarly, Bob’s private key is xb and his
matching public key is yb = gxb mod p.

The example implementation is described in Table 1.
Advatages of the signcryption scheme over signature-then-
encryption based on RSA are outlined in Table 2.

5 Basic Ideas

Having introduced an example implementation of signcryp-
tion in the previous section, now we show how such an im-
plementation allows transportation of key materials in an
efficient and compact way. Messages exchanged are so com-
pact that they can all be carried by a single block whose size
is smaller than |p|. We present two possible data formats for
Alice to transport key materials to Bob, one carrying directly
while the other indirectly key materials.

Direct Transport of Key Materials — The following
data format follows from a suggestion made in [8, 9]. We
consider a possible combination of parameters: |p| ≥ 512,
|q| = 160, and |KH·(·)| = 80. For such a choice of pa-
rameters, we can transport highly secure and unforgeable
key materials of up to 144 bits, in a single ATM cell (48
byte payload + 5 byte header). The actual data from Al-
ice to Bob consist of c, r and s, where c = Ek1(key, TQ),
r = KHk2(key, TQ, other) and s = x/(r + xa)mod q, where
the key part contained in (key, TQ) may be used directly as
a random session key, TQ may contain a time-varying quan-
tity such as a nonce or a time-stamp or both, and other may
be composed of the participants’ identifiers, public key cer-
tificates and other supplementary information. It is prefer-
able for E to act as a length-preserving encryption function
so that (key, TQ) and c = Ek1(key, TQ) are of the same
length.

Note that if key has 64 bits in length, and that TQ requires
32 bits, then c = Ek1(key, TQ) is of 96 bits, and (c, r, s) can
be fitted even in a payload that has only 96+80+160 = 336
effective bits for data transport. Furthermore, if the quantity
TQ is already known to Bob the recipient, then it may be
dropped from c = Ek1(key, TQ) to save more positions for
transferring key materials.

Indirect Transport of Key Materials — In certain

Signcryption of m
by Alice the Sender

Unsigncryption of (c, r, s)
by Bob the Recipient

x ∈R [1, . . . , q − 1]
(k1, k2) = hash(yx

b mod p)
c = Ek1(m)
r = KHk2(m)
s = x/(r + xa)mod q

⇒ c, r, s ⇒
(k1, k2) = hash((ya · gr)s·xb mod p)
m = Dk1(c)
Accept m only if KHk2(m) = r

Table 1: An Example Implementation of Signcryption (SCS1)

security parameters advantage in advantage in
|p|(= |na| = |nb|) |q| |KH·(·)| average comp. cost comm. overhead

512 144 72 0% 78.9%

1024 160 80 32.3% 88.3%

2048 192 96 59.4% 93.0%

4096 256 128 72.9% 95.0%

8192 320 160 83.1% 97.0%

Table 2: Advantage of Signcryption over RSA based Signature-Then-Encryption

applications, part of a ATM cell payload may be used for
other purposes, which leaves no room to accommodate both
a random session key and a time-varying quantity. With
such a payload structure, we can transport (part of) key
materials indirectly. In particular, we may define (c, r, s) as
c = Ek1(TQ), r = KHk2(TQ, other), and s = x/(r+xa)mod
q. The actual session key may be derived from (k1, k2) and
other materials, through, for instance, the application of a
keyed hash function.

Now assume that TQ has 32 bits. Then we can accom-
modate (c, r, s) using only 32 + 80 + 160 = 272 bits. In the
case where TQ is already known to Bob, the creation and
transmission of the c part can be skipped.

Finally we note that a long TQ, say of 56 bits, may need
not be encrypted. However, encryption is mandatory for a
short TQ, say of ≤ 40 bits, in order to reduce the risk of
replay attacks.

6 Proposals

Now we are ready to describe in full details how to establish
fresh random session keys between two participants Alice and
Bob, in such a way that all messages exchanged between the
two participants are short and computational costs involved
are minimized.

6.1 Assumptions

In the following discussions, we assume that system parame-
ters that are common to all participants, and the public and
private keys of both Alice and Bob have all been properly
set up. In addition, there is a trusted certification author-
ity (CA) that has already issued a public key certificate to
each participant. A participant’s public key certificate may

comply with X.500 certificate format that contains such in-
formation as certificate serial number, validity period, the
ID of the participant, the public key of the participant, the
ID of the CA, the public key of the CA, etc. It would be
pointed out that the digital signature scheme used by the
CA in creating public key certificates does not have to be
one based on ElGamal signature scheme.

Furthermore, we assume that prior to an execution of a
key establishment protocol, both participants have already
obtained the other participant’s public key and its associated
certificate issued by the CA, and have checked and are sat-
isfied with the validity of the certificates. The participants
may have done so either because they both keep a list of fre-
quently used certificates, or they have obtained and verified
the certificates for previous communication sessions.

In describing a key establishment protocol, key ∈R {0, 1}`k

indicates that key is an `k-bit number chosen uniformly at
random. Similarly NCb ∈R {0, 1}`n is a nonce chosen by
Bob. And TS is a current time-stamp. Typically `k ≥ 64,
`n ≥ 40, and the number of bits in TS may be decided by
the accuracy of clock synchronization, as well as by the life
span of a message containing the time-stamp. Finally a 64-
bit authentication tag would be long enough for the purpose
of key confirmation in most practical applications.

We consider key establishment both through key material
transport and exchange.

6.2 Key Transport Protocols

A key transport protocol may use either a nonce or a time-
stamp in guaranteeing freshness. The protocol may also
transport key materials either directly or indirectly. So there
are in total four possible combinations. Table 3 describes two
direct key transport protocols, while Table 3 the correspond-
ing two indirect key transport protocols.

The etc part may contain data known to both Alice and
Bob. Such data may include the participants’ names, public
keys, public key certificates, protocol serial number, and so
on. It may also contain system control information. Note
that one of the purposes of sending tag is for key confirma-
tion, namely for a participant (Bob) to show the other (Alice)
that he does know the new session key. For a less critical ap-
plication, the time-stamp TS may be transmitted to Bob in
clear to further improve the computational efficiency of the
protocols.

As can be seen in the tables, protocols that rely on a nonce
require one more message than protocols that rely on a time-
stamp.

6.3 Key Exchange

In the key transport protocols described above, messages
from Bob are not involved the creation of a session key.
If one wishes that the session key is generated jointly by
Alice and Bob, there are a few different ways that can
be used to accomplish this. Here are some examples: (1)
key∗ = KHkey(NCb), (2) key∗ = KHkey(IDb), and (3)
key∗ = KHkey(NCb, IDb), where NCb is a nonce generated
by Bob, IDb is Bob’s identifier, and key∗ denotes a session
key that is jointly determined by information from both Alice
and Bob.

Two common properties shared by the four protocols are:
(1) Alice identifies herself to Bob (her message to Bob is fresh
and unforgeable even by Bob), (2) Bob authenticates himself
to Alice if the last response message tag is sent (tag is fresh
and unforgeable by any third party). The protocols can be
modified to achieve mutual identification: Alice sends to Bob
fresh and unforgeable key materials and vice versa.

For two-way communications, Alice and Bob may need to
agree upon a pair of random session keys key1 and key2.
A simple technique is to employ a pseudo-random number
generator or a good hashing function to “extend” key into
(key1, key2).

7 Analysis and Comparison

As our key establishment protocols described in Tables 3
and 4 are essentially message transport schemes using sign-
cryption, security of key materials are guaranteed by the
security of the signcryption scheme against chosen message
attacks [8, 9]. After the successful establishment of a session
key, Alice convinces Bob of her identify (the message from
Alice is fresh and unforgeable even by Bob). In contrast,
Bob can authenticate himself to Alice by sending a response
message tag which is fresh and unforgeable by a third party
(but can be generated by Alice). The four protocols can be
modified to achieve mutual identification, at the expense of
more computation and message exchanges. Details will be
provided in the full version of the paper.

Freshness of a session key is assured through the use of a
nonce or a time-stamp. When tag is sent, both Alice and Bob
are assured that the other participant does know the fresh

random session key. The protocols do not rely on a KDC.
In addition, key materials transported from Alice to Bob
are unforgeable, even by Bob the recipient. The materials
are also non-repudiatable by Alice. In an event when Alice
denies the fact that she was the person who created certain
key materials, Bob can ask for help from a third party called
a judge. Bob and the judge may follow a zero-knowledge
protocol in settling the dispute [8, 9]. Similar discussions on
non-repudiation are applicable to Bob for a modified protocol
with mutual identification.

Every message in the key transport protocols proposed in
this paper is compact and can be carried by a single ATM
cell. In terms of computational cost, it takes one modular
exponentiation on Alice’s side, and two modular exponentia-
tions on Bob’s side which can be reduced to 1.17 exponentia-
tions (on average) when Shamir’s method for fast evaluation
of the product of several exponentials with the same modulo
(see [10]). As for pre-computation, the exponentiation by
Alice, yx

b mod p, can be done prior to the start of an execu-
tion of a protocol, only if Alice knows beforehand that she is
going to communicate with Bob at a later time.

Among the key transport protocols based on public key
cryptosystems, the one that is most relevant to our proto-
cols is an efficient proposal by Beller and Yacobi [11]. It is
assumed that public key certificates have already been trans-
ferred prior to an execution of the protocol. In Beller-Yacobi
protocol, Alice the sender is assumed to be computation-
ally less powerful than Bob the receiver. Alice uses ElGamal
signature scheme to sign a message, and cubic RSA to en-
crypt the message before delivering it to Bob. Bob holds the
matching cubic RSA decryption key and hence can extract
the message. The number of modular exponentiations done
by Alice is one (for signature generation), and by Bob is four
(one for decrypting cubic RSA and three for verifying Alice’s
digital signature). Shamir’s technique for fast evaluation of
the product of several exponentials with the same modulo
can also be used to reduce two of the exponentiations on
Bob’s side to 1.17. It is important to note that since the
decryption operation for the cubic RSA on Bob’s side in-
volves an exponentiation with a full size exponent, it can be
very time-consuming, especially when the RSA composite is
large. An advantage of Beller-Yacobi protocol over the key
transport protocols proposed in this paper is that the modu-
lar exponentiation on Alice’s side can be fully pre-computed.
Table 5 summarizes the comparison between our protocols
and Beller-Yacobi protocol.

Next we consider a proposed standard related to security
in ATM. The current version of Phase I ATM Security Spec-
ification [12] contains two key material exchange protocols.
One involves three and the other two moves or flows of mes-
sages (see Sections 6.1.1 and 6.1.2 of [12]). These two proto-
cols have been largely based on X.509 [13]. Examining the
Specification, we can see that both protocols follow the tra-
ditional signature-then-encryption approach, when they are
implemented in public key cryptography. As is expected,
our protocols based on signcryption are significantly more
efficient than the two proposals in the Specification, both in

terms of computational cost and message overhead. A de-
tailed comparison will be included in the full version of this
paper.

8 Multicast Conference Key Estab-
lishment

The two protocols for direct transport of key materials de-
scribed in Section 6.2 can be extended to conference key
establishment where Alice wishes to establish a common ses-
sion key with t recipients R1, R2, . . ., Rt. Such a protocol
is very useful in multicast communications. A major dif-
ference between a single recipient protocol and a multiple
recipient one, both based on signcryption, lies in the length
of messages. As shown in previous sections, messages in a
key establishment protocol for a single recipient are all com-
pact and can be accommodated in small data packets such
as ATM cells. With a protocol for multiple recipients, some
messages may be too long to fit in a single ATM cell. There-
fore one of our design goals will be use as a small number of
cells as possible in transporting key materials.

We assume that each recipient Ri has a unique identifier
IDi, and that the private key of Ri is xi ∈R [1, . . . , q − 1],
and his matching public key is yi = gxi mod p. A multi-
cast conference key transport protocol using nonces is shown
in Table 6. The nonces can be replaced with time-stamps,
which results in a two-move protocol. A detailed comparison,
together with strategies for further improving the efficiency
of a multicast conference key transport protocol through ran-
domization, will be included in the full version of this paper.

9 Conclusion

We have presented a number of compact and authenticated
key establishment protocols. These are the first protocols
based on public key cryptography whose messages can all be
carried in very small data packets such as single ATM cells.
Our protocols have all been built on the signcryption primi-
tive which fulfills both the functions of signature and encryp-
tion in an efficient way. A detailed analysis and comparison
has shown that the overall computational cost of these pro-
tocols is significantly smaller than all other currently known
protocols that are based on public key cryptography.

Acknowledgment

Part of this work was completed while the first author was
on sabbatical leave at the University of Tokyo.

References

[1] W. Diffie and M. Hellman, “New directions in cryptog-
raphy,” IEEE Transactions on Information Theory, vol.
IT-22, no. 6, pp. 472–492, 1976.

[2] P. Janson, G. Tsudik, and M. Yung, “Scalability
and flexibility in authentication services: The Kryp-
toKnight approach,” in Proceedings of INFOCOM’97.
1997, IEEE.

[3] Y. Desmedt, “Threshold cryptography,” European
Transactions on Telecommunications, vol. 5, no. 4, pp.
449–457, 1994.

[4] M. Bellare and P. Rogaway, “Entity authentication
and key distribution,” in Advances in Cryptology -
CRYPTO’93, Berlin, New York, Tokyo, 1993, vol. 773
of Lecture Notes in Computer Science, pp. 232–249,
Springer-Verlag.

[5] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten,
R. Molva, and M. Yung, “The KryptoKnight fam-
ily of authentication and key distribution protocols,”
IEEE/ACM Transactions on Networking, 1995.

[6] D. Johnson and S. Matyas, “Asymmetric encryption:
Evolution and enhancements,” CryptoBytes, vol. 2, no.
1, pp. 1–6, 1996, (available at http://www.rsa.com/).

[7] National Institute of Standards and Technology, “Digi-
tal signature standard (DSS),” Federal Information Pro-
cessing Standards Publication FIPS PUB 186, U.S. De-
partment of Commerce, May 1994.

[8] Y. Zheng, “Digital signcryption or how to achieve
cost(signature & encryption) << cost(signature) +
cost(encryption),” in Advances in Cryptology -
CRYPTO’97, Berlin, New York, Tokyo, 1997, vol. 1294
of Lecture Notes in Computer Science, pp. 165–179,
Springer-Verlag,

[9] Y. Zheng, “Signcryption and its applications in ef-
ficient public key solutions,” in Proceedings of 1997
Information Security Workshop (ISW’97), Berlin, New
York, Tokyo, 1997, Lecture Notes in Computer Science,
Springer-Verlag.

[10] T. ElGamal, “A public key cryptosystem and a signa-
ture scheme based on discrete logarithms,” IEEE Trans-
actions on Information Theory, vol. IT-31, no. 4, pp.
469–472, 1985.

[11] M. Beller and Y. Yacobi, “Fully-fledged two-way pub-
lic key authentication and key agreement for low cost
terminals,” Electronic Letters, vol. 30, pp. 999–1001,
1993.

[12] The ATM Forum, “Phase I ATM security specification
(draft),” July 1997, ATM Forum BTD-SECURITY-
01.03.

[13] ITU, “Information technology - open systems inter-
connection - the directory: Authentication framework,”
Recommendation X.509, International Telecommunica-
tions Union, 1993.

Direct Key Transport Using a Nonce (Protocol DKTUN)
Alice Bob

⇐ NCb ⇐ NCb ∈R {0, 1}`n

key ∈R {0, 1}`k

x ∈R [1, . . . , q − 1]
(k1, k2) = hash(yx

b mod p)
c = Ek1(key)
r = KHk2(key, NCb, etc)
s = x/(r + xa)mod q

⇒ c, r, s ⇒
(k1, k2) = hash((ya · gr)s·xb mod p)
key = Dk1(c)
Accept key only if

KHk2(key, NCb, etc) = r

verify tag
⇐ tag ⇐

(optional)
tag = MACkey(NCb)

Direct Key Transport Using a Time-Stamp (Protocol DKTUTS)
Alice Bob

key ∈R {0, 1}`k

x ∈R [1, . . . , q − 1]
(k1, k2) = hash(yx

b mod p)
Get a current time-stamp TS
c = Ek1(key, TS)
r = KHk2(key, TS, etc)
s = x/(r + xa)mod q

⇒ c, r, s ⇒

(k1, k2) = hash((ya · gr)s·xb mod p)
(key, TS) = Dk1(c)
Accept key only if

TS is fresh and
KHk2(key, TS) = r

verify tag
⇐ tag ⇐

(optional)
tag = MACkey(TS)

Table 3: Direct Key Material Transport with Signcryption

Indirect Key Transport Using a Nonce (Protocol IKTUN)
Alice Bob

⇐ NCb ⇐ NCb ∈R {0, 1}`n

x ∈R [1, . . . , q − 1]
(k1, k2) = hash(yx

b mod p)
key = k1

r = KHk2(key, NCb, etc)
s = x/(r + xa)mod q

⇒ r, s ⇒
(k1, k2) = hash((ya · gr)s·xb mod p)
key = k1

Accept key only if
KHk2(key, NCb, etc) = r

verify tag
⇐ tag ⇐

(optional)
tag = MACkey(TS)

Indirect Key Transport Using a Time-Stamp (Protocol IKTUTS)
Alice Bob

x ∈R [1, . . . , q − 1]
(k1, k2) = hash(yx

b mod p)
Get a current time-stamp TS
c = Ek1(TS)
r = KHk2(TS, etc)
s = x/(r + xa)mod q

⇒ c, r, s ⇒

(k1, k2) = hash((ya · gr)s·xb mod p)
TS = Dk1(c)
Accept (k1, k2) only if

TS is fresh and
KHk2(TS, etc) = r

key = KHk1,k2(TS)
verify tag

⇐ tag ⇐
(optional)

key = KHk1,k2(TS)
tag = MACkey(TS, 1)

Table 4: Indirect Key Material Transport with Signcryption

Protocols
Comp. Cost
of exp.

Pre-Comp.
by Alice

Longest Message
(typical example)

Beller-Yacobi 1 + 2.25∗ Yes
≥ |nB | bits
(≥ 512 bits)

DKTUN &
DKTUTS

1 + 1.17 Yes+
≤ 384 bits

(< 384 bits)

IKTUN 1 + 1.17 Yes+
< 384 bits
(240 bits)

IKTUTS 1 + 1.17 Yes+
< 384 bits
(280 bits)

∗ Including an RSA decryption with a full size exponent.
+ Only when Alice knows whom to communicate with.

Table 5: Comparison with Beller-Yacobi Protocol

Conference Key Establishment Using a Nonce

Alice and
each Ri, i = 1, . . . , t:

NC = NC1 ⊕ · · · ⊕NCt

↖
←
↙

ID1, NC1

...
IDt, NCt

↙
←
↖

Each Ri, i = 1, . . . , t:

NCi ∈R {0, 1}`n

Alice:

key ∈R {0, 1}`1

k ∈R {0, 1}`2

h = KHk(key, NC, etc)
c = Ek(key, h)
for each i = 1, . . . , t:

vi ∈R [1, . . . , q − 1]
(ki,1, ki,2) = hash(yvi

i mod p)
ci = Eki,1(k)
ri = KHki,2(h, etci)
si = vi/(ri + xa)mod q

→

c
c1, r1, s1

...
ct, rt, st

↗
→
↘

Each Ri:
Find out (c, ci, ri, si)
(ki,1, ki,2)

= hash((ya · gri)si·xi mod p)
k = Dki,1(ci)
(key, h) = Dk(c)
Accept key only if

KHk(key, NC, etc) = h and
KHki,2(h, etci) = ri

Alice verifies all tag1, . . ., tagt;
Each Ri verifies tagj for each j
with j 6= i and 1 ≤ j ≤ t.

↖
←
↙

ID1, tag1

...
IDt, tagt

↙
←
↖

(optional)

Each Ri:
tagi = MACkey(NC, NCi)

Table 6: Key Establishment for Multicasting (Basic Protocol)

