
Identification, Signature and Signcryption Using
High Order Residues Modulo an RSA

Composite ?

Yuliang Zheng

LINKS - Laboratory for Information and Network Security
Monash University, McMahons Road, Frankston, VIC 3199, Australia

Email: yuliang.zheng@infotech.monash.edu.au
URL: www.netcomp.monash.edu.au/links/

Abstract. Signcryption is a public key cryptographic primitive that ful-
fills the functions of digital signature and public key encryption concur-
rently, with a cost smaller than that required by the traditional signature
followed by encryption method. The concept of signcryption, together
with an implementation based on the discrete logarithm problem, was
proposed in 1996. In this work, we demonstrate how to implement ef-
ficient signcryption using high order (power) residues modulo an RSA
composite. This contributes to the research of extending computational
underpinnings of signcryption schemes to problems related to integer
factorization. In the course of achieving our goal, we also show efficient
protocols for user identification, and fast and compact digital signature
schemes.

Keywords

High Order Residues, Public Key Encryption, RSA, Signature, Signcryption.

1 Introduction

The idea of using (power) residues in public key cryptography first appeared
in [5] where Goldwasser and Micali showed how to use quadratic residues in
randomized encryption in a bit-by-bit fashion. This early work was followed
by Benaloh and Yung’s paper [3] where it was proposed to use rth residues,
where r was a small 1 prime, to construct a more efficient randomized public
key encryption scheme. In [21] Zheng, Matsumoto and Imai proved that the
requirement of r being a small prime could be relaxed to a small odd integer. This
was further relaxed in [9] where Kurosawa and co-workers showed that r could

? Presented at PKC01.
1 By “small” one generally means that the relevant parameter is bounded from above

by a poly-logarithmic function of a security parameter. Likewise, a “large” parameter
is one bounded from above by a polynomial function of a security parameter.

take the form of a small even integer. In [2] (see also [14]), Benaloh observed that
one could employ the Chinese Remainder Theorem in decryption, which further
relaxed requirements of the number r — it could be a large odd integer, provided
that it contains only small and distinct prime factors. More recently, Pailier [15]
discussed how to construct probabilistic public key encryption schemes involving
nth residues modulo n2, where n is an RSA composite.

In all the public key encryption schemes presented in these successive papers,
except those special schemes proposed in [15], decryption involves exhaustive
search over a space whose size is dictated by a prime factor of r. This explains
why these randomized encryption schemes do not work when r has a large prime
factor.

While all the prior work on the use of rth residues had been mainly limited
to the construction of randomized public key encryption (requiring the number
r contains only small prime factors), the present work demonstrates applica-
tions of rth residues, with r being a large prime, in constructing efficient user
identification, digital signature and more important, signcryption schemes. 2

Signcryption was first proposed in [19] as an efficient public key cryptographic
primitive that achieves both message confidentiality and non-repudiation with a
much smaller cost than that required by digital signature followed by public key
encryption. The first implementation of signcryption was based on the discrete
logarithm problem over a finite field, which admitted a natural analogue on an
elliptic curve over a finite field [20]. The same observation applies also to other
sub-group based public key cryptosystems such as the XTR [12]. This early effort
left as an interesting research topic to find a signcryption scheme that relies for its
security on other computationally hard problems such as factoring large integers.
Progress in this line of research has been made recently in [17]. Results presented
in this paper represent yet another approach to building signcryption schemes
on the integer factorization problem.

Section 2 provides background knowledge on high order (power) residues.
Section 3 shows how to construct user identification protocols (also called pass-
port protocols) that are based on high order residues modulo an RSA composite.
This is followed by Section 4 where the identification protocols are converted into
efficient digital signature schemes. The usefulness of high order residues is high-
lighted in Section 5 where a signcryption scheme called HORSE is presented. Ef-
ficiency of the identification, signature and signcryption schemes, both in terms
of computation costs and expanded bits, is analyzed in Section 6. Finally the
paper is closed with a summary in Section 7.

2 Identification and signature schemes proposed in [10, 16] rely on properties of a sub-
group related to an RSA modulus, and hence appear to be technically different from
the present work. Furthermore, schemes in [10] work only when r is “small”, as they
require in their setting up stage the extraction of rth roots and search over a space
of r elements.

2 High Order (Power) Residues

The intension of this section is to summarize some of the core mathematical
background that is required in understanding the identification, signature and
signcryption schemes to be presented in this paper. Some useful further infor-
mation on higher order residuosity can be found in [21]

Let r and n be positive integers, and z be an integer relatively prime to
n (i.e., gcd(z, n) = 1). If there exists an integer x such that z = xr mod n, z
is said to be an rth (power) residue modulo n. Otherwise z is said to be an
rth nonresidue modulo n.

The set of integers [0, 1, . . . , n− 1] is denoted by ZZn, and the set of integers
in ZZn that are relatively prime to n is denoted by ZZ∗n.

We are interested in the case where r is a prime of at least 120 bits in size or
length in binary representation, and n is an RSA modulus, i.e., n = pq, where
both p and q are large (> 250 bits) primes. We further require that the three
primes r, p and q be related by

gcd(r, p− 1) = r, gcd(r, q − 1) = 1.

In practice, one may choose p and q in such a way that they take the form of

p = 2rp′ + 1, q = 2q′ + 1

where both p′ and q′ are primes that are different from r.
For r and n of the above forms, an element z ∈ ZZ∗n is necessarily an

rth residue modulo q, and it is an rth residue modulo p if and only if z(p−1)/r =
1 mod p. Thus z is an rth nonresidue modulo n if and only if

z(p−1)/r 6= 1 mod p.

As a consequence, when the factors p and q are known, one can quickly verify
whether or not z ∈ ZZ∗n is an rth residue modulo n.

Note that 1/r of the elements in z ∈ ZZ∗n are rth residues modulo n, and
the remaining (r − 1)/r of the elements are all rth nonresidues modulo n. This
makes easy the task of finding an rth nonresidue modulo n.

Definition 1. We say that three integers (r, n, h) are a good triplet if they fulfill
the following requirements:

1. r is a prime whose size (length in binary representation) is at least 120 bits.
2. n = pq is an RSA modulus of at least 512 bits, satisfying gcd(r, p − 1) = r

and gcd(r, q − 1) = 1.
3. h is an rth nonresidue modulo n, or equivalently, h(p−1)/r 6= 1 mod p.

It should be pointed out that there is a slightly more general version of a
good triplet (r, n, h) in which r is defined as an odd integer with distinct prime
factors r1, r2, . . ., rt. One of the prime factors of r must be large, say of 120
bits in binary representation. n and r are related in the same way as in the

above definition. The number h is an rth
i nonresidue modulo p for every factor

ri, i.e., h(p−1)/ri 6= 1 mod p for all i = 1, 2, . . . , t. The identification, signature
and signcryption schemes to be proposed in the forthcoming sections will all
work with respect to such a more general version of a good triplet, although our
discussions will be focused on the case where r is a large prime.

Fact 1 For a good triplet (r, n, h), every element x ∈ ZZ∗n can be presented as

x = hi · wr mod n

for a unique integer i ∈ ZZr, where ZZn = [0, 1, . . . , r − 1] and a not necessarily
unique w ∈ ZZ∗n. The number i is called the class-index of x.

Finding the class-index of x with respect to a good triplet appears to be
infeasible, even if one has the knowledge of the factors of n. Currently known
methods for solving the problem require the knowledge of p and q, and involve
search over ZZr. The average computation time required by such an algorithm
is in the order of r/2, which renders the algorithm ineffective when r is a large
prime. It should be pointed out that two of the classical methods for solving
the discrete logarithm problem in a group, namely Shank’s baby-step-giant-step
method and Pollard’s rho method (see [13]), do not appear to be applicable to
the class-index problem under consideration, although both methods run faster
than exhaustive search.

Another fact of importance is that the degree of difficulty in solving the
class-index finding problem is not effected in any way by the choice of h, as
the problem falls into a class of problems that share an interesting property
called random self-reducibility (with respect to h). (See [1] for more discussions
on random self-reducibility.) This fact will be used later in designing efficient
schemes.

These observations form the computational basis of our new identification,
digital signature and signcryption schemes to be presented in the coming sec-
tions.

3 Identification Using High Order Residues

3.1 Basic Protocol

At the setting up stage, a user Alice first chooses a good triplet (r, n, h). In
addition, she also chooses at random xa from ZZr = [0, 1, . . . , r − 1] and wa

from ZZ∗n. Namely xa ∈R ZZr and wa ∈R ZZ∗n, where ∈R indicates an element
is chosen uniformly at random from a set.

Alice then forms
ya =

1
hxa · wr

a

mod n

She keeps xa and wa as her important private key, and publishes the triplet
(r, n, h) and ya as her public key.

Later when Alice wishes to prove to another user Bob that she is indeed Alice,
she first forwards to Bob her (certified) public key. Bob verifies the authenticity
of Alice’s public key, and if he is satisfied with the verification, the two users
then engage in the protocol specified in Table 1. At the end of an execution of
the protocol, Bob would accept Alice’s claim if and only if the verification at
Step 4 is successful.

Table 1. Identification Using High Order Residues

Step Alice Channel Bob

Public key: r, n, h, ya

Private key: xa, wa

1

Alice chooses x ∈R ZZr and
u ∈R ZZ∗n. She then forms

y = hx · ur mod n

and sends y to Bob.

⇒ y ⇒

2 ⇐ b ⇐

Bob chooses

b ∈R ZZr

and forwards it to Alice as a
challenge.

3

Alice forms

s = x + b · xa

v = u · wb
a mod n

She then passes s and v over to
Bob. Note that no modular opera-
tion is involved in the calculation
of s.

⇒ s, v ⇒

4

Bob verifies whether or not

hs · vr · yb
a = y mod n

Bob accepts Alice if and only if the
equation passes the test.

3.2 Efficient Variants

A number of methods can be considered to improve the efficiency of the basic
identification protocol.

A Small h As was discussed earlier, the computational difficulty of the class-
index finding problem is not dependent on how h, an rth nonresidue modulo n,
is chosen. Thus a small h may be selected so that it uses less memory and helps
speed-up computations involving h. For a large r, an overwhelming majority
(r−1

r) of elements in ZZ∗n are rth nonresidues. Hence the smallest rth nonresidue
h can be easily identified by verifying whether

h(p−1)/r 6= 1 mod p

for h = 2, 3, 4, . . ., where p is a factor of n.

Shorter y and b In Step 1, Alice may choose to send a hashed value of hx ·
ur mod n to Bob, that is

y = H(hx · ur mod n)

where H is a one-way hashing function. Accordingly, the verification by Bob in
Step 4 should be modified to

H(hs · vr · yb
a mod n) = y

In Step 2, Bob may send Alice a shorter b, say of 60 bits, as a challenge.
These improvements will reduce the bandwidth of messages exchanged between
Alice and Bob.

Shorter wa and u As the generation of secure random bits may consume
substantial computational resources, Alice may choose to generate wa and u
from a smaller range, say ZZ280 = [0, 1, . . . , 280 − 1].

Generating wa and u deterministically Alice may choose to generate wa

and u in the following way:

wa = H(xa, r, n, h)
u = H(x, r, n, h)

where H is a one-way hash function. This will completely eliminate the need of
generating random bits for these two values.

Removing wa and u altogether A more efficient variant of the protocol is to
fix wa to 1, while choosing xa from a range greater than ZZr. More specifically,
Alice can choose

xa ∈R ZZ2` = [0, 1, . . . , 2` − 1]

where ` may be at least 40 bits longer than the size of r. Namely ` ≥ |r| + 40,
where | · | indicates the number of bits in the binary representation of an integer.
Interestingly, with this modification, the number r will be used only in the setting
up stage, but not in an identification process afterwards. Thus r no longer needs
to be made public.

At the setting up stage, Alice first chooses a good triplet (r, n, h). She then
chooses xa ∈R ZZ2` , and forms

ya =
1

hxa
mod n

Alice then keeps xa as her important private key, and publishes n, h and ya

as her public key. (Note that the use of the number r is now limited to the
generation of h.)

When Alice wishes to prove to another user Bob that she is indeed Alice, she
first forwards to Bob her (certified) public key. Bob verifies the authenticity of
Alice’s public key, and if he is satisfied with the verification, the two users then
engage in the protocol described in Table 2.

As xa ∈ ZZ2` and ` ≥ |r| + 40, xa can be expressed as xa = x′a + f · r for
some 0 ≤ x′a < r and f . From this it follows that

hxa mod n = hx′a · (hf)r mod n.

Thus the efficient protocol in Table 2 can be viewed as one obtained from the
protocol in Table 1 by letting hf mod n play the role of wa ∈ ZZ∗n.

Note that the protocol in Table 2 has also incorporated other ideas discussed
in this section, especially on shortening y and b. Also note that since the x chosen
in Step 1 essentially plays the role of “masking” the secret key xa in Step 3, it
should be sufficiently long, say |x| ≥ |xa|+ |b|+40. Assuming that |b| ≈ `/2 and
` ≥ 160, it would be adequate to have |x| = 1.75`.

4 Digital Signature Using High Order Residues

4.1 A General Signature Scheme

The identification protocol described in Table 1 can be converted to a digital
signature scheme by substituting the role of Bob with an one-way hash function.

Alice sets up all the required parameters (including both public and private
keys) in the same way as described in Section 3.1. Alice’s public key is composed
of ya and a good triplet (r, n, h). Her private key is a pair of numbers xa and
wa which are chosen, uniformly at random, from ZZr = [0, 1, . . . , r− 1] and ZZ∗n
respectively. The public and private keys are related by ya = 1

hxa ·wr
a

mod n.

Table 2. Identification Using High Order Residues — A More Efficient Version

Step Alice Channel Bob

Public key: n, h, ya

Private key: xa

1

Alice chooses x ∈R ZZ21.75` and
forms

y = H(hx mod n)

She then sends y to Bob.

⇒ y ⇒

2 ⇐ b ⇐

Bob chooses

b ∈R ZZ2`/2

and forwards it to Alice as a
challenge.

3

Alice forms

s = x + b · xa

and sends it to Bob. Note that no
modular operation is involved in
the calculation of s.

⇒ s ⇒

4

Bob verifies whether or not

H(hs · yb
a mod n) = y

Bob accepts Alice if and only if the
equation passes the test.

To sign a message m, Alice first chooses at random x from ZZr and u from
ZZ∗n, She then generates three numbers (b, j, v) as her signature on the message
m as follows:

b = H(hx · ur mod n,m)
s = x + b · xa

v = u · wb
a mod n

Here H is an one-way hash function, and the calculation of s does not involve a
modular operation.

Given m and (b, s, v), one uses Alice’s public key to verify the authenticity
of the signature by checking

H(hs · vr · yb
a mod n,m) = b

The signature is deemed authentic only if the equation holds.
We note that while our signature scheme bears some similarities to a scheme

proposed in [7], there is an important technical difference. Namely, the scheme
in [7] requires that p − 1 and q − 1, where p and q are the factors of an RSA
composite n, share a large common divisor f which is needed in the generation
of a signature.

4.2 A More Efficient Signature Scheme

Techniques for improving the efficiency of the identification protocol that have
been discussed in Section 3.2 can be employed to make the signature scheme
more efficient. To highlight the improvements, in the following we specify the
digital signature scheme that corresponds to the efficient identification protocol
presented in Section 3.2.

As in Section 3.2, Alice’s private key is xa ∈R ZZ2` , where ` ≥ |r|+ 40, and
her public key consists of three numbers n, h and ya. The public and private
keys are related by ya = 1

hxa mod n. There is no need to publish the number r,
hence it can be erased at the completion of the setting up stage.

To sign a message m, Alice first chooses x ∈R ZZ21.75` . She then forms her
signature on the message m, which is composed of two numbers (b, s), as follows:

b = H(hx mod n,m)
s = x + b · xa

The authenticity of Alice’s signature can be confirmed by verifying

H(hs · yb
a mod n,m) = b

Table 3 summarizes the two signature schemes. Note that with the efficient
version of the signature schemes, it is important that |x| is sufficiently large,
namely, |x| ≥ |xa|+ |b|+ 40. Once again assuming that |b| ≈ `/2 and ` ≥ 160, it
would suffice to have |x| = 1.75`.

Table 3. Signature Schemes Using High Order (Power) Residues

Signature
scheme

Generation
of signature

Verification of
signature

Length of
signature

General scheme

Public key:
r, n, h, ya

Private key:
xa, wa

m → (m, b, s, v) :

x ∈R ZZr

u ∈R ZZ∗n

b = H(hx · ur mod n, m)
s = x + b · xa

v = u · wb
a mod n

(m, b, s, v) :

y = hs · vr · yb
a mod n

accept only when
H(y, m) = b

2|H(·)|+ |r|+ |n|

Efficient scheme

Public key:
n, h, ya

Private key:
xa

m → (m, b, s) :

x ∈R ZZ21.75`

b = H(hx mod n, m)
s = x + b · xa

(m, b, s) :

y = hs · yb
a mod n

accept only when
H(y, m) = b

|H(·)|+ 1.75`

5 HORSE — An Efficient Hight Order Residue
Signcryption Engine

Using the technique for constructing signcryption schemes that was first devel-
oped in [19], the efficient signature scheme described in Table 3 can be used to
design a new signcryption scheme whose security is related to the hardness of
factoring large RSA moduli.

Like the signcryption schemes in [19], some of the parameters for HORSE are
required to be shared among all users. The only difference with [19] is that with
the present scheme, these shared parameters must be generated either by trusted
authorities, possibly in a distributed manner, or by a “black-box” computer
mimicking the function of trusted authorities.

To be more specific, the trusted authorities choose, on behalf of all users, a
good triplet (r, n, h). The authorities may also choose an integer ` so that it is at
least 40 bits longer than the size of r (in binary representation). Once (r, n, h)
and ` are chosen, the authorities publish h and n, as well as `. They then make
the prime factors of n, i.e., p and q, and the number r inaccessible to users.
Typically, this is done by erasing all the traces about p, q and r.

Alice must first set up her own pair of public and private keys ya and xa.
This is done by

xa ∈R ZZ2` ,

ya = hxa mod n

Alice publishes ya in a public key directory, while keeping xa as her matching
private key.

Likewise Bob must also set up his pair of public and private keys yb and xb:

xb ∈R ZZ2` ,

yb = hxb mod n

Table 4 summarizes the setting up of signcryption.
For Alice to signcrypt a message m to be sent to Bob, she carries out the

signcryption operations detailed in Table 5. On receiving a signcrypted message
from Alice, Bob can extract the original message by following the unsigncryp-
tion steps indicated in the same table. Note that in describing the signcryption
scheme, it is assumed that |KH·(·)| ≈ `/2 and ` ≥ 160. This results in the choice
of |x| = 1.75`, ensuring that |x| ≥ |xa|+ |b|+ 40.

Table 4. Setting up for the Signcryption Scheme HORSE

Parameters public to all:
n — a large RSA modulus (chosen by trusted authorities)

h — an rth nonresidue modulo n (chosen by trusted authorities)
` — size of a secret key (may be chosen by trusted authorities)
H — a one-way hash function with |H(·)| ≥ 128
KH — a keyed one-way hash function with |KH·(·)| ≥ 80
(E, D) — the encryption and decryption algorithms of a private key cipher

Alice’s keys:
xa — private key (xa ∈R ZZ2`)
ya — public key (ya = hxa mod n)

Bob’s keys:
xb — private key (xb ∈R ZZ2`)
yb — public key (yb = hxb mod n)

To close this section, we point out that the way public and private keys are
set up in the HORSE signcryption scheme also admits a system reminiscent to
the ElGamal public key encryption scheme [4].

When a user Cathy wishes to send to Bob a message m in a secure way,
she first chooses x ∈R ZZ2` , and computes k = H(yx

b mod n). Cathy then forms
c1 = Ek(m), and c2 = hx mod n, and forwards to Bob the pair (c1, c2) as a
ciphertext of m. Note that there is no need for Cathy to set up her public and
private keys.

On receiving (c1, c2) from Cathy, Bob can recover k by involving his private
key xb in the computation of k = cxb

2 mod n. He can then proceed to extract the
original message m from c1 by m = Dk(c1).

Table 5. The Signcryption Scheme HORSE

Signcryption by Alice the Sender:
m → (c, d, e)

1. Pick x ∈R ZZ21.75` , and let k = H(yx
b mod n).

2. Split k into k1 and k2 of appropriate size.
3. c = Ek1(m).
4. d = KHk2(m, bind info),

where bind info may contain, among other data, the public key (certificate)
of the recipient, and optionally the public key (certificate) of the sender.

5. e = x + d · xa.
6. Send to Bob the signcrypted text (c, d, e).

Unsigncryption by Bob the Recipient:
(c, d, e) → m

1. Recover k from d, e, h, n, ya and xb:
k = H((he · (1

ya
)d)xb mod n).

2. Split k into k1 and k2.
3. m = Dk1(c).
4. Accept m as a valid message originated from Alice only if

KHk2(m, bind info) is identical to d.

6 Efficiency of the Schemes

We examine the efficiency of the identification, signature and signcryption schemes
in terms of computational efforts invested and communication overhead required.
With a protocol or algorithm employing public key cryptography, the dominant
computation is modular exponentiations involving large integers. When comput-
ing the product of several modular exponentiations, we can use a very effective
technique that was discussed in Knuth’s book (see Exercise 27, Pages 465 and
637 of [8]; see also [18]). The same technique was later re-discovered by Shamir
(see the last part of [4]).

6.1 Efficiency of Identification

We focus on the more efficient protocol specified in Table 2. Messages commu-
nicated between Alice and Bob are very compact: |H(·)|+ 2` bits from Alice to
Bob and ` bits from Bob to Alice.

Alice needs to perform one modular exponentiation which can be pre-computed
well before the start of the protocol. Using the classical “square-and-multiply”

method, on average the exponentiation takes 1.5 · 1.75` = 2.625` modular mul-
tiplications.

Bob needs to compute the product of two modular exponentiations. The
size (or length) of the longer exponent s has 1.75` bits. Using the fast method
discussed in Knuth’s book, Bob can complete, once again on average, the com-
putation in (1 + 3/4)|s| = 1.752` ≈ 3` modular multiplications.

6.2 Efficiency of Signature

With the fast signature scheme (the second scheme) in Table 3, its signature is
significantly shorter than the RSA signature scheme. More specifically, the size
of our signature is |H(·)| + 1.75` bits. Assuming that |H(·)| = 80 and ` = 200,
the signature has only 430 bits.

The signing procedure requires one exponentiation, or 1.5 · 1.75` = 2.625`
modular multiplications on average. This is much faster than the generation of
an RSA signature which involves a full length exponent.

The verification of a signature will take more time than the RSA signature
scheme with a small public key, as it requires the computation of the product of
two exponentiations, with s being the longer exponent. On average, the product
takes (1 + 3/4)|s| = 1.752` ≈ 3` modular multiplications.

6.3 Efficiency of Signcryption

The communication overhead, measured in bits, of the signcryption scheme
HORSE specified in Table 5, is

|d|+ |e| = |KH·(·)|+ 1.75`

Recall that the communication overhead of the traditional RSA signature
followed by RSA encryption is

|na|+ |nb|
where na is Alice’s RSA modulus and nb Bob’s. Clearly HORSE represents an
significant improvement over RSA.

The computational cost for signcryption is

1.5 · 1.75` = 2.625`

modular multiplications on average. The unsigncryption operation involves the
computation of the product of two exponentiations. The two exponents are e ·xb

and d · xb. It is important to note that as φ(n), the Euler’s φ-function, is not
known to Bob, the size of the exponents cannot be reduced! Clearly, the longer
exponent is e · xb which has 2.75` bits. Thus on average unsigncryption takes

(1 + 3/4) · 2.75` ≈ 4.8`

modular multiplications.

Together, signcryption and unsigncryption take

7.4`

modular multiplications.
T compare HORSE with RSA signature followed by RSA encryption, we

assume that |n| = |na| = |nb|, that the size of r and the size of an output
of the key-ed hash function KH are related by |r| = 1.5|KH·(·)|, and that
` = |r|+ 0.5|KH·(·)| = 2|KH·(·)|.

We further assume that the Chinese Remainder Theorem is used in RSA de-
cryption and signature generation, achieving the theoretically maximum speedup.
Namely we assume that the average computational cost for RSA signature gen-
eration is 1.5

4 |na| = 0.375|na| modular multiplications, and for RSA decryption
it is 1.5

4 |nb| = 0.375|nb| modular multiplications. With RSA encryption and sig-
nature verification, to simplify our discussions we consider two cases, although
there are numerous other possible combinations for one to choose from in prac-
tice. These two cases are: (1) small public exponents (say of 10 bits or less), and
(2) `/2-bit public exponents,

In order to examine how signcryption outperforms the signature-then-encryption
approach, we define the advantages of signcryption as (1 − Csc/Cs+e), where
Csc indicates the cost of signcryption, while Cs+e the cost of signature-then-
encryption. More specifically, we have

advantage in average computational cost

=

{
1− 7.4`

0.375(|na|+|nb|) , for small public exponents
1− 7.4`

0.375(|na|+|nb|)+1.5` , for `/2-bit public exponents

advantage in communication overhead

= 1− |KH·(·)|+ 1.75`

|na|+ |nb|
Table 6 demonstrates the advantages with respect to various key sizes. While
the selection of parameter sizes in Table 6 is admittedly somewhat arbitrary, we
note that it is still more conservative than a table suggested in [11].

In some applications, one may wish to choose RSA public exponents that are
longer than `/2, or even of full size, while in some other applications the Chinese
Remainder Theorem may not be used in RSA decryption or signature generation.
Furthermore, one may choose to select key sizes by following the suggestions
in [11]. In all these situations, the signcryption scheme HORSE will demonstrate
even greater savings in computation time and communication overhead.

7 Concluding Remarks

We have demonstrated applications of rth power residues modulo an RSA com-
posite in constructing efficient identification protocols, digital signature and sign-
cryption schemes. A major difference between this work and prior research is that

Table 6. Advantage of Signcryption Scheme HORSE over RSA based Signature-Then-
Encryption

security parameters advantage in advantage in
average computational cost communication

|n| small public `/2-bit public overhead
(|na|, |nb|) ` |KH·(·)| [|r|] exponent exponent

1024 160 80 [120] -54.1% -17.5% 82.4%

1280 176 88 [132] -35.6% -6.4% 84.5%

1536 176 88 [132] -13.0% 8.0% 87.1%

1792 192 96 [144] -5.7% 13.0% 88.0%

2048 192 96 [144] 7.6% 22.1% 89.5%

2560 208 104 [156] 19.8% 31.0% 90.9%

3072 224 112 [168] 28.1% 37.2% 91.8%

4096 256 128 [192] 38.3% 45.2% 93.0%

5120 288 144 [216] 44.5% 50.1% 93.7%

8192 320 160 [240] 61.5% 64.3% 95.6%

10240 320 160 [240] 69.2% 71.0% 96.5%

here r is a large prime, or more generally an odd integer containing a large prime
factor. Efficiency of our schemes is analyzed and compared with some existing
solutions. Of particular interest to a practitioner in public key cryptography is
the fact that the signcryption scheme HORSE is significantly more advantageous
over the traditional “signature followed by encryption” approach using the RSA
signature and encryption schemes, both in terms of computational and commu-
nication overhead. A formal analysis of the security of the protocols and schemes
presented in this paper remains a challenging topic for future research.

To close this paper, we summarize in Table 7 the main variants of signcryption
known currently.

Table 7. Currently Known Variants of Signcryption

Computational Foundation Reference

1 discrete logarithm on a finite field Zheng, CRYPTO’97 [19]

2 discrete logarithm on an elliptic curve Zheng, CRYPTO’97 [19],
Zheng & Imai, IPL (1998) [20]

3 factoring / residuosity Steinfeld & Zheng, ISW2000 [17],
Zheng, PKC’01

4 other sub-groups (e.g., XTR) Gong & Harn, IEEE-IT (2000) [6],
Lenstra & Verheul, CRYPTO2000 [12],
Zheng, CRYPTO’97 [19]

Acknowledgment

Thanks to Ron Steinfeld for various discussions on selecting security parameters
for the schemes. Thanks also to PKC2001 Program Committee members for
their helpful comments.

References

1. M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle.
Journal of Computer and System Sciences, 39:21–50, 1989.

2. J. Benaloh. Dense probabilistic encryption. In Workshop on Selected Areas in
Cryptography (SAC’94), pages 120–128, Ontario, Canada, 1994. Queen’s Univer-
sity.

3. J. Benaloh and M. Yung. Distributing the power of a government to enhance the
privacy of voters. In Proceedings of the 5-th ACM Symposium on Principles of
Distributed Computing, pages 52–62, 1986.

4. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, 1985.

5. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

6. G. Gong and L. Harn. Public-key cryptosystems based on cubic finite field exten-
sions. IEEE Transactions on Information Theory, 45(7):2601–2605, 2000.

7. S. J. Kim, S. J. Park, and D. H. Won. Convertible group signatures. In Advances in
Cryptology - ASIACRYPT’96, volume 1163 of Lecture Notes in Computer Science,
pages 311–321, Berlin, New York, Tokyo, 1996. Springer-Verlag.

8. D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Pro-
gramming. Addison-Wesley, 2 edition, 1981.

9. K. Kurosawa, Y. Katayama, W. Ogata, and S. Tsujii. General public key residue
cryptosystems and mental poker protocols. In Advances in Cryptology - EURO-
CRYPT’90, volume 473 of Lecture Notes in Computer Science, pages 374–388,
Berlin, New York, Tokyo, 1990. Springer-Verlag.

10. B. Lee, S. Kim, and D. Won. ID-based multisignature scheme based on the high
residuosity problem. In Proceedings of 1997 Joint Workshop on Information Se-
curity and Cryptography (JW-ISC’97), pages 227–230, Seoul, Korea, 1997. KIISC
(Korea).

11. A. Lenstra and E. Verheul. Selecting cryptographic key sizes. In Public Key
Cryptography — The Third International Workshop on Practice and Theory in
Public Key Cryptography (PKC2000), volume 1751 of Lecture Notes in Computer
Science, pages 446–465, Berlin, New York, Tokyo, 2000. Springer-Verlag.

12. A. Lenstra and E. Verheul. The XTR public key system. In Advances in Cryptology
- CRYPTO2000, volume 1880 of Lecture Notes in Computer Science, pages 1–19,
Berlin, New York, Tokyo, 2000. Springer-Verlag.

13. A. K. Lenstra and H. W. Lenstra. Algorithms in Number Theory, volume A of
Handbook in Theoretical Computer Science, chapter 12, pages 673–715. Elsevier
and the MIT Press, 1990.

14. D. Naccache and J. Stern. A new public key cryptosystem based on higher residues.
In Proceedings of the 5th ACM Conference on Computer and Communications
Security, pages 59–66. ACM Press, 1998.

15. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology - EUROCRYPT’99, volume 1592 of Lecture Notes in
Computer Science, pages 399–416, Berlin, New York, Tokyo, 1999. Springer-Verlag.

16. D. Pointcheval. The composite discrete logarithm and secure authentication. In
Public Key Cryptography — The Third International Workshop on Practice and
Theory in Public Key Cryptography (PKC2000), volume 1751 of Lecture Notes in
Computer Science, pages 113–128, Berlin, New York, Tokyo, 2000. Springer-Verlag.

17. R. Steinfeld and Y. Zheng. A signcryption scheme based on integer factorization.
In Information Security — Proceedings of 2000 Information Security Workshop
(ISW2000), Lecture Notes in Computer Science, Berlin, New York, Tokyo, 2000.
Springer-Verlag. (to appear).

18. S.-M. Yen, C.-S. Laih, and A. K. Lenstra. Multi-exponentiation. IEE Proceedings
- Computers and Digital Techniques, 141(6):325–326, 1994.

19. Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption)
<< cost(signature) + cost(encryption). In Advances in Cryptology - CRYPTO’97,
volume 1294 of Lecture Notes in Computer Science, pages 165–179, Berlin, New
York, Tokyo, 1997. Springer-Verlag.

20. Y. Zheng and H. Imai. How to construct efficient signcryption schemes on elliptic
curves. Information Processing Letters, 68:227–233, 1998.

21. Y. Zheng, T. Matsumoto, and H. Imai. Residuosity problem and its applications
to cryptography. Transactions of IEICE, E71(8):759–767, August 1988.

