
HIDDEN POLYNOMIAL CRYPTOSYSTEMS

ILIA TOLI

Abstract. We propose public-key cryptosystems with public key
a system of polynomial equations, algebraic or differential, and
private key a single polynomial or a small-size ideal. We set up
probabilistic encryption, signature, and signcryption protocols.

1. Introduction

This paper focuses on Hidden Monomial Cryptosystems, a class of
public key cryptosystems (PK, PKC) first proposed by Imai and Mat-
sumoto [IM85]. In this class, the PK is a system of polynomial nonlin-
ear equations. The private key is the set of parameters that the user
chooses to construct the equations. Before we discuss our variations, we
review briefly a simplified version of the original cryptosystem, better
described in [Kob99]. The parties throughout this paper are:

• Alice who wants to receive secure messages;
• Bob who wants to send her secure messages;
• Eve, the eavesdropper.

Alice takes two finite fields Fq < K, q a power of 2, and β1, β2, . . . , βn

a basis of K as an Fq-vector space. Next she takes 0 < h < qn such
that h = qθ + 1, and gcd(h, qn − 1) = 1. Then she takes two generic
vectors u = (u1, . . . , un) and v = (v1, . . . , vn) upon Fq, and sets1:

(1) v = uqθ

u.

The condition gcd(h, qn − 1) = 1 is equivalent to requiring that the
map u 7−→ uh on K is 1↔1 ; its inverse is the map u 7−→ uh′ , where
h′ is the inverse multiplicative of h modulo qn − 1.

In addition, Alice chooses two secret affine transformations, ie, two
invertible matrices A = {Aij} and B = {Bij} with entries in Fq, and
two constant vectors c = (c1, . . . , cn) and d = (d1, . . . , dn), and sets:

(2) u = Ax + c and v = By + d.

1991 Mathematics Subject Classification. Primary: 11T71; Secondary: 12H05.
Key words and phrases. Public key, hidden monomial, HFE, differential algebra,

TTM, probabilistic encryption, signcryption, symmetric cryptography.
1We reserve boldface to the elements of K thought as vectors upon Fq in the

fixed private basis. They are considered vectors or field elements, as convenient,
without further notice. This shift in practice takes a Chinese Remainder Theorem.

1

MAILTO:TOLI@POSSO.DM.UNIPI.IT


2 ILIA TOLI

Recall that the operation of raising to the qk-th power in K is an

Fq-linear transformation. Let P (k) = {p(k)
ij } be the matrix of this linear

transformation in the basis β1, β2, . . . , βn, ie:

(3) βqk

i =
n∑

j=1

p
(k)
ij βj, p

(k)
ij ∈ Fq,

for 1 ≤ i, k ≤ n. Alice also writes all products of basis elements in
terms of the basis, ie:

(4) βiβj =
n∑

`=1

mij`β`, mij` ∈ Fq,

for each 1 ≤ i, j ≤ n. Now she expands the equation (1). Equalizing
to zero the coefficients of the βi, she obtains a system of n equations,
explicit in the v, and quadratic in the u. She uses now her affine
relations (2) to replace the u, v by the x, y. So she obtains n equations,
linear in the y, and of degree 2 in the x. Using linear algebra, she can
get n explicit equations, one for each y as polynomials of degree 2 in
the x. Alice makes these equations public.

Bob to send her a message (x1, x2, . . . , xn), substitutes it into the
public equations. So he obtains a linear system of equations in the y.
He solves it, and sends y = (y1, y2, . . . , yn) to Alice.

To eavesdrop, Eve has to substitute (y1, y2, . . . , yn) into the pub-
lic equations, and solve the nonlinear system of equations for the un-
knowns x.

When Alice receives y, she decrypts:

y1, y2, . . . , yn

⇓
v = By + d

⇓
v =

∑
viβi

⇓
u = vh′

⇓
x = A−1(u− c).

In Eurocrypt ′88 [IM89], Imai and Matsumoto proposed a digital
signature algorithm for their cryptosystem.

At Crypto ′95, Jacques Patarin [Pat95] showed how to break this

cryptosystem. He noticed that if one takes the equation v = uqθ+1,
raises both sides on the (qθ − 1)-th power, and multiplies both sides

by uv, he gets the equation uvqθ
= uq2θ

v that leads to equations in
the x, y, linear in both sets of variables. Essentially the equations
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do not suffice to identify uniquely the message, but now even an ex-
haustive search will be feasible. The system was definitively insecure
and breakable, but its ideas inspired a whole class of PKCs and digi-
tal signatures based on structural identities for finite field operations
[HFE, Kob99, Pat96a, Pat96b, GP].

The security of this class rests on the difficulty of the problem of
solving systems of nonlinear polynomial equations. This problem is
hard iff the equations are randomly chosen. If they really were random,
the problem is hard to Alice, too. So, all we try to do is to get systems
of equations that are not random, but appear to be the most possible.

Our paper is organized as follows. In the next Section we develop an
our own, new cryptosystem. Alice builds her PK by manipulations as
above, starting with a single bivariate polynomial. All of Alice’s ma-
nipulations are meant to hide from Eve this polynomial. It is the most
important part of the private key. Its knowledge reduces decryption to
the relatively easy problem of solving a single univariate polynomial of
a moderate degree. Encryption is probabilistic, in the sense that to a
given cleartext correspond zero, one, or more ciphertexts. Decryption is
deterministic, in the sense that if encryption succeeds, decryption does
succeed, too. Almost any bivariate nonlinear polynomial can give raise
to a PK. This plentitude of choices is an important security parameter.

In the Section 3 we discuss some security issues. In Section 4 we
compare the our cryptosystem to other known ones. In Section 5 we
provide our cryptosystem with a digital signature algorithm. In Sec-
tion 6 we provide a signcryption protocol, ie, a joint encryption and
signature protocol. In Section 7 we discuss some more variations. Es-
sentially, we replace the single bivariate polynomial by a small ideal.

In Section 8 we recall Shannon’s unconditionally secure cryptosys-
tems [Sti02]. Nowadays they are considered an exclusive domain of the
symmetric cryptography. This is due mostly to the unhappy state of
art of PKC. In Section 9 we extend our constructions to differential
fields of positive characteristic. They seem the suitable environment
for unconditionally secure PK (USPK) cryptosystems.

2. A New Cryptosystem

2.1. Key Generation. Alice chooses two finite fields Fq < K, and
a basis β1, β2, . . . , βn of K as an Fq-vector space. In practice, q = 2.
However, it can be any pr, for any p prime, and any r ∈ N. Next Alice
takes a generic (for now) bivariate polynomial:

(5) f(X, Y ) =
∑
ij

aijX
iY j

in K[X,Y ], such that she is able to find all its roots in K with respect
to X; ∀ Y ∈ K, if any. For the range of i employed, this is nowadays
considered a relatively easy problem. Besides, Alice may appeal to her
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own tricks such as polynomial composition, etc. in order to obtain
such suitable polynomials. The choice of f(X, Y ) is subject to other
few constraints, that we make clear at the opportune moment.

In transforming cleartext into ciphertext message, Alice will work
with two intermediate vectors, u = (u1, . . . , un) and v = (v1, . . . , vn);
u,v ∈ K. She sets:

(6)
∑
ij

aiju
ivj = 0.

For aij 6= 0, she sets somehow:

(7) i =

ni∑
k=1

qθik and j =

nj∑
k=1

qθjk ,

where θik, θjk, ni, nj, i, j ∈ N∗ = {0, 1, 2, . . . }.
Here somehow means that (7) may or may not be the q-ary repre-

sentation of i, j. Taking this freedom, we increase our range of choices,
whence the random-looking of the PK. In any fashion, what we are
dealing with, are nothing but identities.

Next Alice substitutes the (7) to the exponents in (6), obtaining:

(8)
∑
ij

(aijexp(u,

ni∑
k=1

qθik)exp(v,

n0∑
k=1

qθjk)) = 0;

that is:

(9)
∑
ij

(aij

ni∏
k=1

uqθik

nj∏
k=1

vq
θjk

) = 0.

Recall that the operation of raising to the qk-th power in K
is an Fq-linear transformation. Let P (k) = {p(k)

`m} be the matrix of
this linear transformation in the basis β1, β2, . . . , βn, ie:

(10) βqk

i =
n∑

j=1

p
(k)
ij βj, p

(k)
ij ∈ Fq;

for 1 ≤ i, j ≤ n. Alice also writes all products of basis elements in
terms of the basis, ie:

(11) βiβj =
n∑

k=1

mijkβk, mijk ∈ Fq;

for 1 ≤ i, j ≤ n.
Now she substitutes u = (u1, u2, . . . , un), aij = (aij1, aij2, . . . , aijn),

v = (v1, v2, . . . , vn), and the identities (10), (11) to (9), and expands.
So she obtains a system of n equations of degree t in the u, v, where:

(12) t = max {ni + nj : aij 6= 0}.
So, the total degree of uivj becomes ni + nj.
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Here we pause to give some constraints on the range of i, j in (6).
The aim of this Section is to generate a set of polynomials; linear in
a set of variables, and nonlinear in another one. For that purpose, we
relate (6) and (7): aij 6= 0 ⇒ {ni > 1, nj = 1}.

On the other side, the size of PK is O(nt+1). So, it grows polynomi-
ally with n, and exponentially with t. Therefore, we are interested to
keep t rather modest, e.g., t = 2, 3, or so. So, we have to choose i, j
in (5), (7) in order to keep t under a forefixed bound.

Next she takes c,d ∈ K, and sets:

(13) u = x + c and v = y + d,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) are vectors of variables.
Now she substitutes (13) to the equations in the u, v above, and

expands. So she obtains a system of n equations of degree t in the x,
y; linear in the y, and nonlinear in the x.

After the translations (13) each monomial XiYj expands into poly-
nomials with terms of each degree, from ni+nj to zero. So, they shuffle
better the terms coming from different monomials of (9). On the other
hand, they render the PK very dense, so increase drastically its size.

At this point, we are ready to define the cryptosystem.

2.2. The Protocol. With the notations adopted above, we define the
HPE Cryptosystem (Hidden Polynomial Equations) as the PKC
such that:

• The PK is:
– The system of equations in the x, y as above;
– The field Fq;
– The alphabet: a set of elements of Fq, or strings of them.

• The private key is:
– The polynomial (5);
– The identities (6) to (13);
– The field K (up to an isomorphism).

• Encryption: Bob substitutes the cleartext x = (x1, x2, . . . , xn)
in the PK, finds one solution y = (y1, y2, . . . , yn) of it, and sends
y to Alice. Each of solutions if any, are encryptions to the same
cleartext. We postpone the case when there are no solutions.

• Decryption: Alice substitutes v = y + d ∈ K > Fq in (6),
and finds all solutions within K. There is at least one. Indeed,
if x is Bob’s cleartext, u as in (13) is one. She represents all
solutions in the basis β1, β2, . . . , βn. It takes a Chinese Remain-
der Theorem. Next she sets: x = u− c. With probability ≈ 1,
all results but one, Bob’s (x1, x2, . . . , xn), are gibberish, or even
stretch out of the alphabet. We come back later at this point.

2.2.1. The main suspended question is that of the existence of solu-
tions. Well, Bob succeeds to encrypt a certain message x iff Alice’s
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equation (6) has solutions for u as in (13) for that x. Alice’s polyno-
mial (6) in v for a given u is a random one. It is a well-known fact from
algebra that the probability that a random polynomial with coefficients
upon a finite field has a root in it is 1 − 1

e
≈ 63.2% [Kob99, Mar97].

Now the remedy is probabilistic. Alice’s letters are sets of elements
of Fq, or of strings of them. Bob writes down a plaintext, and starts
encryption. If he fails, he substitutes a letter or a string of the cleartext
with another one of the same set, and retries. So, with the number s
of trials, the failure probability approxes to zero acceptably fast: 1

es .
If Bob finds more than one solution, each of them is encryption to

the same cleartext. So, the our cryptosystem is probabilistic: to a
single cleartext correspond zero, one, or more ciphertexts.

2.2.2. The other problem is that Alice may have to distinguish the
right solution among a great number of them. Here is a first remedy.
Her number of solution is bounded above by the degree in X of f . So,
it is beter to keep it moderate. Later we give other remedies, too.

3. Security Issues

The main data to Eve are PK and n. By brute force, she has to take
(y1, y2, . . . , yn), to substitute it in the PK equations, to solve within
the base field, and to take the sensate solution. Almost surely, there is
only one sensate solution among those that she finds. She has to find
it among tn of them. However, the main difficulty to her is just solving
the system. It will probably pass through the complete calculus of a
Gröbner basis. It is a well-known hard problem.

So, the complexity of the trapdoor is O(tn). On the other hand,
the size of the PK is O(nt+1). This fully suggests the values of the
parameters. It is better to take n huge. This diminishes the probability
that Alice confuses decryption, however close to zero, and, what is most
important, it renders Eve’s task harder. Bob will have to solve bigger
systems of linear equations.

If we take t big, it renders the size of the PK impractical. Actually,
n ≥ 100 and t = 2, 3, 4 are quite good sample values. If we only take
the monomials of f to be univariate, PK size is roughly the same as
HFE, and we have still a plethora of choices. In any case, later in
Section 7 we present better settings that all in one: moderate the size
of the PK, increase its randomness, and contain better the number of
undesired solutions.

There exist facilities [SCPK] to solve overdefined systems of equa-
tions. Unlike most of the rest, our PK is irrendundant, so it is not
subject to such facilities.

Now, by exhaustive search we mean that Eve substitutes the y in the
public equations, and tries to solve it by substituting values to the x. If
we have d letters each of them being represented by a single element of
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Fq, the complexity of an exhaustive search is O(dn). It is easy for Alice
to render exhaustive search more cumbersome than Gröbner attack.
The last one seems to be the only choice to Eve.

Affine multiple attack [Pat96b] is of no use in our settings.

4. HPE vs HFE

Patarin [Pat96b, Wol02] uses solving univariate polynomial equa-
tions, too. He takes a univariate polynomial:

f(x) =
∑
i,j

βijx
qθij +qϕij

+
∑

i

αix
qξi + µ0,

and with manipulations like ours, both the same as Imai-Matsumoto
[IM85], he gets his PK; a set of quadratic equations. He uses two
affine maps to shuffle the x, ie, two linear maps and two translations.
We claim that the linear maps add nothing to the security. Indeed,
to each matrix corresponds a linearized polynomial [LN83]. Applying
one-to-one linear maps is equivalent to composing f with permutation
linearized polynomials. So, they don’t increase card{f}. After a lin-
ear map we obtain a new polynomial that is itself eligible. Applying
right translations is equivalent to composing f with linear polynomi-
als. So, Eve knows that there exists a certain univariate polynomial F
such that F (x) = y,∀x,y cleartext and ciphertext. Given the several
restrictions already put on f and n, perhaps even an interpolation is
possible to recover such an F . Interpolation is polynomial in the num-
ber of monomials of F . The right translation makes F very dense and
increase card{f}. So, it is very useful. The left translation instead
does nothing but change the constant term. So, we skip it. Several
right translations are equal to a single one: their compositum. So, we
use them only once.

We can defend HPE from interpolation attacks by including in f
monomials of very high degree in Y . As n grows, we can include higher-
and higher-degree monomials containing Y . The upper bound is Y qn−1

,
and we are allowed to reach it. After a translation, Eve’s F becomes
very dense. So, in HPE the interpolation is exponential in n.

A major use of these classes of cryptosystems are the smartcards.
Given their fairly limited power of calculi, we are strongly interested to
contain calculi. This is a major reason to skip matrices. Another good
reason is that with the matrices we do not know how are the degrees of
f and F related, with polynomial composition instead, yes. This late
alone fully suffices to defend HFE too from interpolation attacks.

One may apply left compositions to f , and so on. Composing with
linearized p(Y ) does not seem of particular use. Instead, after each
composition one may add to the compositum random linearized uni-
variate polynomials in Y . In decryption s/he will have to subtract
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them opportunely. With opportune choices on PK, one can render
encryption and decryption one-to-one, . . . , howsomany-to-howsomany.

In HFE the bigger the degree of f is, the more the PK resembles
a randomly chosen set of quadratic equations. So, it is a security
parameter. On the other side, it slows down decryption, both by adding
a lot of undesired solutions, and by having to solve in private univariate
polynomials of higher degree. It is well-known that this late problem
requires exponential time on degree. To face the first problem, to the
PK are added other, randomly chosen, equations. This is its Achilles’
heel. It makes the PK overdefined, therefore subject to certain facilities
to solve [SCPK]. So, it weakens the trapdoor.

We do not add equations to discard undesired solutions. Indeed,
we take the degree in X rather modest, so we do not have so many
undesired solutions. Thus, we are not subject to attacks exploiting
overdefined equations. If in certain variations we ever do, we need to
add less equations, however.

What is most important, we have now a practically infinite range of
choices of f . This is not Patarin’s case. There the choices are bounded
below because of being easy to attack cases, and above because of being
impractical to the legitimate users. The only few constraints we put
on monomials of f aim to:

• keep PK equations linear in the y;
• have less undesired solutions in decryption process;
• keep the size of PK moderate;
• keep all PK equations nonlinear in the x.

This last constraint is the only must. Otherwise we render the Bezout
number of the system small. So we weaken the trapdoor problem.

We can take the degree in Y arbitrarily huge. It gives no trouble to
us. For now we only require PK to be linear with respect to the y. So,
Y i will be of the form Y qi

. Moreover, Y qn
= Y , Xqn

= X gives us the
upper bound of the values of i, j in (5).

Well, card{PK} = q2n · card{f}. Assume now that Alice decides to
keep PK quadratic in the x. Then, for q 6= 2 we have:

card{X i | ni ≤ 2} = bn2+1
2
c+ n, card{X iY j} = n(bn2+1

2
c+ n),

card{f} = 2qn·n(bn2+1
2

c+n), card{PK} = q2n2qnn(bn2+1
2

c+n).

For q = 2 we have one less in card{X i | ni ≤ 2}, and so on. Several
of the f are bad choices, but the good ones are still a plethora.

5. A Digital Signature Algorithm

For Bob to be able to sign messages, he builds a cryptosystem as
above with [KB : FqB

] = nB. Assume now that we are publicly given a
set of hash functions that send cleartexts to nB-tuples of FqB

.
Bob signs a message M as follows:
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• calculates H(M) = (y1, y2, . . . , ynB
) = yB, then vB = yB + dB;

• finds one solution (if any, otherwise see Section 2.2.1) uB of
fB(uB,vB) = 0 in KB.

• sets x = uB − cB;
• appends x = (x1, x2, . . . , xnB

) to M , encrypts, and sends it to
Alice. (x1, x2, . . . , xnB

) is a signature to M .

To authenticate, Alice first decrypts, then she calculates H(M) =
(y1, y2, . . . , ynB

). If (x1, x2, . . . , xnB
), (y1, y2, . . . , ynB

) is a solution of
Bob’s PK, she accepts the message; otherwise she knows that Eve has
been causing trouble.

If Eve tries to impersonate Bob and send to Alice her own mes-
sage with hash value y = (y1, y2, . . . , ynB

), then to find a signature
(x1, x2, . . . , xnB

), she may try to find one solution of Bob’s system of
equations for y. We trust on the hardness of this problem for the
security of authentication.

Actually, the hash functions play no role in this class of signatures.
They may as well output parts of the cleartext itself.

6. A Signcryption Protocol

Here is the shortest possible description. Let FA and FB be Alice’s
and Bob’s PK functions respectively. To send a message x to Alice, Bob
sends her a random element of FA(F−1

B (x)), that she can decrypt by
calculating FB(F−1

A (FA(F−1
B (x)))). So if FA(F−1

B (x)) 6= ∅. Otherwise,
the approach is probabilistic, as in Section 2.2.1.

Here is the extended description. Each letter (or some of them, only)
is represented by a set of few (two, e.g.) elements of the field, or strings
of them. For ease of explanation, assume that FqA

= FqB
and nA = nB.

Bob writes down the cleartext X, calculates vB = X + dB, and
finds one solution (if any, otherwise see Section 2.2.1) uB of his private
polynomial fB(X, Y ). Next he sets xB = uB − cB, that he encrypts as
above by means of Alice’s PK, and sends her the result.

Alice now first decrypts as in Section 2.2. Next, she substitutes the
x-es she finds into Bob’s PK variables x, and solves. There is at least
one solution, and at most few of them. One of them is Bob’s message.

By brute force attack, Eve now has to take the ciphertext, substitute
on Alice’s PK, find all solutions, substitute them all on Bob’s PK, and
take the sensate ones. The improvement on authentication matter
stands on the fact that we are allowed longer-bits signatures.

Let us assume that the letters are strings of a fixed length. For an
exhaustive search Eve now has to run throughout all the n-tuples of
all elements of Alice’s ground field; not just throughout n-tuples made
of letters. She sets up such n-tuples, checks whether they are solutions
of Alice’s PK for Bob’s ciphertext y substituted to the variables y. If
yes, she substitutes to Bob’s PK, and takes the sensate ones.
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So, Alice now has a full freedom on building alphabet. In decryp-
tion she discards a priori the solutions that contain non-letters. Now
practically the good solution is unique.

Apart all, we save the space and calculi of the signature.

7. Hidden Ideal Equations

Instead of a single bivariate polynomial, Alice may employ an ideal of
a very modest size. She separates the variables that she employs within
two sets, {Xi}, {Yj}; one for encryption, one for decryption. She may
leave one of her private equations of higher degree in the Yj after the
manipulations. This renders Bob’s task somehow harder, and increases
very much Alice’s choices. She obtains her PK with manipulations as
in Section 2.1 on all variables Xi, Yj. Her parameters are:

• n = [K : Fq];
• the number s1, s2 of variables Xi, Yj, respectively;
• the number r of private equations.

So, the number of PK equations is n · r, the number of the variables
xij is n · s1, and that of the ykl is n · s2.

Alice’s number of variables, the Xi, is insignificant so far, so she is
supposed to be able to appeal to Gröbner techniques in order to solve
her system of equations within the field of coefficients for Bob’s cipher-
text. What is most important here and throughout, if Bob succeeds to
encrypt, Alice does always succeed to decrypt.

Bob fails encryption for a certain cleartext (X1, . . . Xs1) iff Alice’s
private ideal has no solutions in the Y for such an (X1, . . . Xs1). Alice’s
private ideal is a random one. If she takes r ≤ s2, the probability that
it has no solutions is ≈ 0, and ≈ 1 for r > s2. So, it suffices that Alice
takes r ≤ s2. The rare critical cases that may supervene are faced
simply changing alphabet.

The other problem is that the solutions to Alice may be too many,
and in any case finitely many, as the base field is finite. The best remedy
to that is that Alice takes r = s1. So, the ideal that she obtains after
substitution of Bob’s ciphertext is zerodimensional (quite easy to cause
it happen), and the number of solutions is bounded above by the total
degree of the system. So, she can contain the number of solutions by
taking the total degree in the Xi modest.

Alice can take all equations of very low degree in the X, and then
transform that basis of the ideal they generate to another one of very
high degrees in the X. So she has a low Bezout number of the ideal,
and higher degrees in the X, and transformations as above can take
place. If she takes the first basis linear, the number of solutions of her
equations reduce to one: Bob’s cleartext. She can use in decryption
the most suitable of the bases of her private ideal.

As soon as r > s1, the PK becomes overdefined.
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Alice applies a permutation to the equations and a renumeration to
the variables before publishing her key, so Eve does not know how are
they related.

If s1 < s2, the size of the ciphertext is bigger than that of cleartext,
and nothing else wrong. By this case, encryption is practically always
probabilistic. Indeed, even when the equations are linear with respect
to the ykl, since there are more variables than equations, the solutions
exist, and are not unique.

Actually, Alice can take a big s2. She may choose to manipulate
some of the Yj within a subfield of K, rather than within K. Doing
so, she is allowed a big s2, and a contained size of the ciphertext. The
number of the variables ykl now is no more n · s2.

One can employ this protocol for signcryption. The sizes of cipher-
texts throughout are roughly equal to those of the plaintext ones. So,
one can use all the protocols we describe throughout for multiple en-
cryption as well. They seem suitable for symmetric cryptosystems,
too.

Now the size of the PK is O(s1(n)t+1), and the complexity of the
trapdoor is O(tn·s1).

Even though the size of PK throughout grows polynomially with n,
before n becomes interesting, the PK is already quite cumbersome. So,
opting for the choices of this Section we can employ much smaller n,
whence moderate a lot the size of the public key.

Actually, n ≥ 20 is quite good. We are allowed some more values of
t, too. Alice takes s1 as big as she can handle, e.g., s1 = 1, 2, 3, 4, 5, 6, 7,
or more, and n · s1 ≥ 100.

For ns1 fixed, the bigger s1 is, the exponentially less cumbersome
the PK is, and the exponentially harder becomes Eve’s task.

Generally speaking, Alice’s task becomes exponentially harder with
s1, too. In practice, it depends very much on whether does she have
any good basis of her private ideal, or not. In any case, the speeds of
becoming harder of tasks of Alice and Eve are quite different.

7.1. There are practically infinitely many other tricks we can use. In
a midstep Alice may leave the equations linear in some of the xij, then
compose with some opportune univariate polynomials, then again a
translation, then publish. She can compose with multivariate polyno-
mials as well, and so on.

Another topic of the security is that the PK appears always the same.
Eve is not aware on which of the huge amount of the tricks above did
Alice use.

7.2. There exist classes of ideals called with doubly exponential ideal
membership property [Swa]. These are the ideals for which the calculus
of a Gröbner basis requires doubly exponential time on the number of
variables. It is very interesting to know whether can we employ them
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in some fashion in this class of cryptosystems. In any fashion, this
is the theoretical limit for employing solving of polynomial systems of
equations in PK cryptography.

8. Some Considerations

The idea of PK was first proposed by Diffie and Hellman [DH76].
Since then, it has seen several vicissitudes [Odl91, Mora, Morb].

A trapdoor function is a map from cleartext units to ciphertext units
that can be feasibly computed by anyone having the PK, but whose
inverse function cannot be computed without its knowledge:

• either because (at present, publicly) there is no known way;
• or there are, but the amount of calculi is deterring.

Shannon [Sti02] called the cryptosystems with trapdoor functions of
the first class unconditionally secure.

In PKC one tries to render the trapdoor equivalent to time-honoured
hard problems. What does one really often succeed is to render that
hard the recovery of the PK. An eavesdropper may attack trying to
recover the PK, this is the case of RSA [RSA78] and ECDL [Kob99],
or may try a lot of other ways [Odl91, COU]. It is commonly assumed
that Eve has no particular crash on recovering PKs [TTM], and that
she is principally interested on recovering cleartexts.

The author is very fond of the idea of the PK, and believes howsoever
in new developments that will make it fully suffice for all purposes.

Actually, one tendency is that of investigating poor structures, ie,
structures with less operations, like groups, semigroups with cryptosys-
tems upon the word problem [AAFG01, Yam98, Hug02].

William Sit and the author are investigating rich structures. We are
investigating among other things effective USPK cryptosystems upon
differential fields of positive characteristic. We hope that cryptography
will arouse new interests on differential and universal algebra, too, as it
did in number theory and arithmetic geometry. One reason of optimism
is that in universal algebra one can go on further with new structures
and hard or undecidable problems forever. Recall that until now we
have appealed to only unary and binary arithmetic operations.

9. Generalizations on Differential Fields

Differential2 algebra [Kol73, Sit02, Rit50, Sad, Kap57] owes its exis-
tence mostly to the efforts of Ritt [Rit50] to handle differential equa-
tions by means of algebra.

A differential field is a field F endowed with a set of linear maps
θ : F −→ F called derivatives, such that: θ(ab) = aθ(b) + θ(a)b.

Kaplansky’s booklet is perhaps the best introduction in the topic.

2Several considerations given in this Section are suggestions of professor Sit
through private communications.
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The cryptosystems given throughout work as well in differential set-
tings. Take K to be a finite differential field extension of a differential
field F of positive characteristic3. Any such K is defined by a system
of linear homogeneous differential equations, and there are structural
constants defining the operations for the derivations (one matrix for
each derivation), as well for multiplication.

One can now replace (5) with a differential polynomial of higher order
and degree. Throughout Section 7, one can replace ideals with small
suitable differential ideals, too. The cryptosystems work verbatim.

The techniques given throughout for polynomials, if applied to dif-
ferential polynomials, will definitely make it much harder to attack any
protocol developed. Any affine transformation (by this is meant a lin-
ear combination of the differential indeterminates with not-necessarily
constant coefficients, and this linear combination is then substituted
differentially in place of the differential indeterminates) will not only
even out the degrees, but also the orders of the various partials, and
making the resulting differential polynomials very dense.

However, there is one thing to caution about: any time one specifies
these structural matrices, they have to satisfy compatibility equations.
In the algebraic case, it is the relations between P k = {pij

(k)} in (10)
and M` = {mij`} in (11). The P k are simply determined uniquely by
M`, given the choices implicitely defined in (11).

It is very interesting to know in the algebraic case whether Alice’s
PK is invariant under a change of basis, all the other settings being
equal. There is probably some group of matrices in GL(n, q) that can
do that. Such a knowledge would only weaken all cryptosystems based
on equations systems solving.

In the differential case there is a similar action called Loewy action,
or the gauge transformation. For ordinary differential equations, two
matrices A, B are Loewy similar if there is an invertible matrix K
such that A = δK ·K−1 + KBK−1. Using this action, one can classify
the different differential vector space structures of a finite dimensional
vector space. There is also a cyclic vector algorithm to find a special
basis, so that the differential linear system defining the vector space
becomes equivalent to a single linear ODE.

If no other problems arise for the differential algebraic cryptosys-
tems, there is however one caution more for them to be uncondition-
ally secure. We have to avoid the exhaustive search. For that, Alice
has to publish a finite alphabet where each letter is represented by
an infinite set, disjoint sets for different letters. This is possible in
proper differential fields, as they are infinite. Alice renders the sets
public parametrically, as differential algebraic functions of elements of
the base differential field, and parameters, e.g., in Z. Bob chooses a

3In zero characteristic numerical analysis tools seriously affect security, or at
least constrain us to more careful choices. We shall not dwell on this topic here.
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letter, gives random values to parameters, obtains one representant of
the letter, and proceeds as above. In any case, if µ is the order of public
equations, any two elements Ξ, Θ ∈ F such that (Ξ − Θ)(µ) = 0 must
represent the same letter, if any.

The main care for Alice is that the PK equations must not fall into
feasible cases by well-known means, such as linear algebra.

Now the size of the PK is O(nto+1), where o is the order of PK
equations. Quite explosive!!! One more reason to take q = 2, so some
more monomials reduce to zero.

Anyway, we do not have to increase parameters for better security.
The trapdoor is simply undecidable. Unlike the algebraic case, we can
split cleartext into small strings. Actually, quite good sample values
are: n = 20 and t, o = 2, 3, 4, or so. As of now, HDPE trapdoor seems
undecidable, and the cryptosystem effective.

Acknowledgments. I wish to thank Massimiliano Sala and Christo-
pher Wolf for many suggestions and fruitful discussions. I am particu-
larly indebted to William Sit for several comments and improvements
on earlier drafts, and to his advisor, Carlo Traverso.

References

[AAFG01] Iris Anshel, Michael Anshel, Benji Fisher, and Dorian Goldfeld. New
Key Agreement Protocol in Braid Group Cryptography. In Lecture
Notes in Comput. Sci., 2020, pages 13–27, Topics in cryptology—CT-
RSA 2001 (San Francisco, CA), 2001. Springer-Verlag.
http://www-cs.engr.ccny.cuny.edu/~csmma/MRLpap.pdf.

[COU] http://www.cryptosystem.net/ttm/.
[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.

In IEEE Trans. Information Theory, pages 644–654, 1976. http://www.
cs.jhu.edu/~rubin/courses/sp03/papers/diffie.hellman.pdf.

[GP] Louis Goubin and Jacques Patarin. Trapdoor one-way permuta-
tions and multivariate polynomials. http://citeseer.nj.nec.com/
patarin97trapdoor.html.

[GvzG99] Jürgen Gerhard and Joachim von zur Gathen. Modern Computer Alge-
bra. Cambridge University Press, 1999.

[HFE] http://www.minrank.org/hfe/ or http://www.hfe.info/.
[Hug02] James Hughes. A Linear Algebraic Attack on the AAFG1 Braid Group

Cryptosystem. In Lecture Notes in Comput. Sci., 2384, pages 176–189.
Springer-Verlag, 2002.
http://www.network.com/hughes/ACISP02.pdf.

[IM85] Hideki Imai and Tatsuo Matsumoto. Algebraic methods for construct-
ing asymmetric cryptosystems. In Algebraic Algorithms and Error-
Correcting Codes, Proceedings Third International Conference, pages
108–119, Grenoble, France, 1985. Springer-Verlag.

[IM89] Hideki Imai and Tatsuo Matsumoto. Public quadratic polynomial-
tuples for efficient signature-verification and message-encryption.
In Advances in Cryptology, Eurocrypt ’88, pages 419–453. Sprin-
ger-Verlag, 1989. http://link.springer.de/link/service/series/
0558/papers/0330/03300419.pdf.

MAILTO:TOLI@POSSO.DM.UNIPI.IT
http://www-cs.engr.ccny.cuny.edu/~csmma/MRLpap.pdf
http://www.cryptosystem.net/ttm/
http://www.cs.jhu.edu/~rubin/courses/sp03/papers/diffie.hellman.pdf
http://www.cs.jhu.edu/~rubin/courses/sp03/papers/diffie.hellman.pdf
http://citeseer.nj.nec.com/patarin97trapdoor.html
http://citeseer.nj.nec.com/patarin97trapdoor.html
http://www.minrank.org/hfe/
http://www.hfe.info/
http://www.network.com/hughes/ACISP02.pdf
http://link.springer.de/link/service/series/0558/papers/0330/03300419.pdf
http://link.springer.de/link/service/series/0558/papers/0330/03300419.pdf


HIDDEN POLYNOMIAL CRYPTOSYSTEMS 15

[Kap57] Irving Kaplansky. An Introduction to Differential Algebra. Hermann,
Paris, 1957.

[Kob99] Neal Koblitz. Algebraic Aspects of Cryptography. Springer, 1999.
[Kol73] Ellis R. Kolchin. Differential Algebra and Algebraic Groups. Accademic

Press, 1973. New York.
[LN83] R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of

Mathematics and its Applications. Addison-Wesley, 1983.
[Mar97] Daniel A. Marcus. Number Fields. Springer-Verlag New York, 1997.
[Mora] Teo Mora. De Nugis Groebnerialium 2: Applying Macaulay’s Trick

in order to easily write a Groebner basis. ftp://ftp.disi.unige.it/
person/MoraF/PUBLICATIONS/NG2y.ps.gz.

[Morb] Teo Mora. Why you cannot even hope to use Groebner Bases in Pub-
lic Key Cryptography. An open letter to a scientist who failed and a
challenge to those who have not yet failed. ftp://ftp.disi.unige.
it/person/MoraF/PUBLICATIONS/Crypto_Groebner.ps.gz.

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996.
http://www.cacr.math.uwaterloo.ca/hac/index.html.

[Odl91] Andrew M. Odlyzko. The rise and fall of knapsack cryptosystems.
In PSAM: Proceedings of the 42th Symposium in Applied Mathemat-
ics, American Mathematical Society, 1991. http://www.dtc.umn.edu/
~odlyzko/doc/arch/knapsack.survey.pdf.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai Public Key
Scheme of Eurocrypt’88. In Proc. of the 15th Annual International
Cryptology Conference on Advances in Cryptology - CRYPTO’95, pages
248–261, Santa Barbara, California, 1995. http://link.springer.de/
link/service/series/0558/papers/0963/09630248.pdf.

[Pat96a] Jacques Patarin. Asymmetric cryptography with a hidden monomial.
In Advances in Cryptology-CRYPTO’96, pages 45–60. Springer-Verlag,
1996. http://link.springer.de/link/service/series/0558/
papers/1109/11090045.pdf.

[Pat96b] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of
polynomials (IP): Two new families of asymmetric algorithms. Lecture
Notes in Computer Science, 1070:33–on, 1996.
http://www.minrank.org/hfe.pdf.

[Rit50] Joseph Fels Ritt. Differential Algebra. AMS colloquia, 1950.
http://www.ams.org/online_bks/coll33/.

[RSA78] Ron Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public key cryptosystems. In Communi-
cations of the ACM, 21, pages 120–126, 1978.
http://theory.lcs.mit.edu/~rivest/rsapaper.pdf.

[Sad] Brahim Sadik. http://www.medicis.polytechnique.fr/~brahim/.
[SCPK] Adi Shamir, Nicolas Courtois, Jacques Patarin, and Alexander Klimov.

Efficient algorithms for solving overdefined systems of multivariate poly-
nomial equations. http://www.minrank.org/xlfull.pdf.

[Sit92] William Y. Sit. An algorithm for solving parametric linear systems. J.
Symbolic Comput., 28:353–394, 1992.

[Sit02] William Y. Sit. The Ritt-Kolchin Theory for Differential Polynomials.
In DIFFERENTIAL ALGEBRA AND RELATED TOPICS. World Sci-
entific, 2002.

[Sti02] Douglas R. Stinson. CRYPTOGRAPHY, Theory and Practice. Chap-
man & Hall/CRC, second edition, 2002.

ftp://ftp.disi.unige.it/person/MoraF/PUBLICATIONS/NG2y.ps.gz
ftp://ftp.disi.unige.it/person/MoraF/PUBLICATIONS/NG2y.ps.gz
ftp://ftp.disi.unige.it/person/MoraF/PUBLICATIONS/Crypto_Groebner.ps.gz
ftp://ftp.disi.unige.it/person/MoraF/PUBLICATIONS/Crypto_Groebner.ps.gz
http://www.cacr.math.uwaterloo.ca/hac/index.html
http://www.dtc.umn.edu/~odlyzko/doc/arch/knapsack.survey.pdf
http://www.dtc.umn.edu/~odlyzko/doc/arch/knapsack.survey.pdf
http://link.springer.de/link/service/series/0558/papers/0963/09630248.pdf
http://link.springer.de/link/service/series/0558/papers/0963/09630248.pdf
http://link.springer.de/link/service/series/0558/papers/1109/11090045.pdf
http://link.springer.de/link/service/series/0558/papers/1109/11090045.pdf
http://www.minrank.org/hfe.pdf
http://www.ams.org/online_bks/coll33/
http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
http://www.medicis.polytechnique.fr/~brahim/
http://www.minrank.org/xlfull.pdf


16 ILIA TOLI

[Swa] Irena Swanson. On the embedded primes of the Mayr-Meyer ideals.
http://arxiv.org/pdf/math.AC/0209344.

[TTM] http://www.usdsi.com/TTMcryptosystem.html.
[Wol02] Christopher Wolf. “Hidden Field Equations” (HFE) - Variations and

Attacks. Master’s thesis, Universität Ulm, December 2002.
http://www.christopher-wolf.de/dpl.

[Yam98] Akihiro Yamamura. Public-key cryptosystems using the modular group.
In Lecture Notes in Comput. Sci., volume 1431, pages 203–216.
Springer, Berlin, 1998. http://link.springer.de/link/service/
series/0558/papers/1431/14310203.pdf.

Dipartimento di Matematica Leonida Tonelli, via F. Buonarroti 2,
56127 Pisa, Italy., toli@posso.dm.unipi.it

MAILTO:TOLI@POSSO.DM.UNIPI.IT
http://arxiv.org/pdf/math.AC/0209344
http://www.usdsi.com/TTMcryptosystem.html
http://www.christopher-wolf.de/dpl
http://link.springer.de/link/service/series/0558/papers/1431/14310203.pdf
http://link.springer.de/link/service/series/0558/papers/1431/14310203.pdf
mailto:toli@posso.dm.unipi.it

	1. Introduction
	2. A New Cryptosystem
	2.1. Key Generation
	2.2. The Protocol

	3. Security Issues
	4. HPE vs HFE
	5. A Digital Signature Algorithm
	6. A Signcryption Protocol
	7. Hidden Ideal Equations
	7.1. 
	7.2. 

	8. Some Considerations
	9. Generalizations on Differential Fields
	Acknowledgments

	Bibliography
	References

