A Signcryption Scheme Based On Integer Factorization

Ron Steinfeld

ron.steinfeld@infotech.monash.edu.au

Yuliang Zheng

yuliang.zheng@infotech.monash.edu.au

Laboratory for Information and Network Security School of Network Computing Monash University Frankston 3099, Australia http://www.netcomp.monash.edu.au/links/

Overview

- **#Introduction**
- **∺**Related Past Schemes
- **X**The New Signcryption Scheme
- ★Efficiency of New Scheme
- **Setup by Trusted Authority**
- **Security Analysis**
- **#**Conclusions

Introduction

- **#**Many applications need both:
 - △1. Message Confidentiality
- **#**Two-step Conventional approach:
 - Sign: Message originator produces digital signature on message

3

Signcryption

- ★Introduced by Y. Zheng in 1996
- #Achieves both confidentiality and authentication goals more economically than separate 'sign-then-encrypt'
- **Savings in Computation and Communication**

Related Past Schemes

#Schnorr Signature

- - \boxtimes (g,p,q) where p,q are prime, g has order q in Z_p^* .
- □ User Key Generation
 - $oxed{ imes}$ Secret key $s_A \in_R Z_q^*$, Public key $v_A = g^{-s_A} mod p$
- - $e = H(m, g^r \bmod p)$
 - Output (e,y) with
- Signature Verification for (m',e',y') \boxtimes Accept m' as signed by user A iff $e' = H(m', g^{y'} v_A^{e'} \mod p)$

Related Past Schemes

- # Girault (1991) Variant of Schnorr:

 - Base g of maximal order lcm(p-1,q-1)
 - Forgery provably as hard as factoring N
 - ightharpoonup Proof of security (Poupard and Stern, 1998) valid only for inefficient variants with secret key space size S >> \sqrt{N}
- # Pointcheval (2000) Variant of Girault:
 - Base g with order < S/2
 </p>

New Signcryption Scheme

#Setup by a Trusted Authority (TA)

□ Generate and publish 3 parameters:

- (1) Large RSA modulus N = pq (p,q primes)
- (2) Large secret key bound S (can be much less than \sqrt{N} for high efficiency).
- (3) Asymmetric basis g in Z_N*:
 - $Ord_p(g)$ and $Ord_q(g)$ have unequal 2-multiplicities
 - Ord_N(g)is large but less than S/2

7

New Signcryption Scheme

Setup by TA (cont)

- (1) one-way hash function $H_1(.)$ with large output length $|H_1|$ bits
- (or alternatively any one-to-one mapping over domain <g>).
- (2) Keyed collision-resistant one-way hash function KH(.,.) of large output length |KH| bits.
- (3) Secure Symmetric Encryption/Decryption algorithms (E, D) with D(key,E(key,m)) = m for all messages m.

New Signcryption Scheme

∺Key-Pair Generation by User Alice:

- (1) Pick random secret integer s_A in the interval $\{0,...,S-1\}$.
- (2) Compute and publish public key

$$v_A = g^{-s_A} \mod N$$

(

New Signcryption Scheme

- #Signcryption Algorithm by Alice the sender:
 - \triangle Alice= (s_A, v_A) to Bob= (s_B, v_B)
 - - (1) Pick random r in $\{0,...,R-1\}$ with $R/(2^{|KH|}S) >> 1$
 - (2) Get Bob's PK, compute $x = v_B^r \mod N$, and split x into two large 'pieces' $(x_1, x_2) = H_1(x)$
 - (3) Use x_1 to encrypt m into $c = E(x_1, m)$
 - (4) Use x_2 and own secret s_A to compute the pair $e = KH(x_2, m, bind)$ $y = r + e \cdot s_A$
 - (5) **Output** 'signcryptext' triple (c,e,y) to be sent to Bob.

New Signcryption Scheme

- #UnSigncryption Algorithm by Bob the receiver:
 - Bob receives (c',e',y') from "Alice"
 - (1) Get Alice's PK and use own secret s_B to compute , $x' = (g^{y'}v_A^{e'})^{-s_B} \mod N$ and split x' into two large 'pieces' $(x'_1, x'_2) = H_1(x')$
 - (2) Use X'_1 to decrypt \mathbf{c}' into $\mathbf{m}' = \mathbf{D}(x_1', \mathbf{c}')$
 - (3) Use x'_2 and decrypted message m' to test:

 Is it true that $e' = KH(x'_2, m', bind)$?

 If true, set b = 1 (accept authentic m' from Alice to Bob)

 Else, set b = 0 and m' = *(reject m' as erroneous/modified message).
 - (4) Output (m',b) recovered message and verify bit.

11

Efficiency of New Scheme

- **#Computation**
 - - On-Line: Very efficient 1 Hash, 1 Encryption and 1 integer add & multiply (no modular reduction)
 - ☑Off-Line: 1 modular exponentiation

Efficiency of New Scheme

#Communication Overhead

- Overhead larger than original Signcryption Scheme due to Lack of modular reduction in computation of $y = r + e \cdot s$

 - $oxed{ imes}$ To minimize leakage of the secret, the random committed integer r must be long compared with product $e \cdot s$
- ☐ But still much more efficient than the 'sign-then-encrypt' approach.

Setup by Trusted Authority

- - $\triangle N = pq$ is an RSA modulus
 - \triangle g has order $<<\sqrt{N}$ and must be asymmetric basis in Z_N^*
- ## Problem: Knowledge of (p,q) and factors of (p-1) and (q-1) is needed for generation Need for user trust in generator!
- # TA not needed after (g,N,S) have been generated
 - △TA need not manipulate user secret keys (users self-generation)
 - Much weaker constraint than factorization-based ID schemes (eg Fiat-Shamir).

17

Setup by Trusted Authority

- **#Possible Forms of Trusted Authority:**
 - - ☑Input: Secret key length |S| and Modulus size |N|
 - Output: (g,N) of desired properties
 - Generates primes p,q with (p-1) and (q-1) having known large prime divisors r_{p} and r_{q}
 - Uses Chinese Remainder Theorem (CRT) to compute random asymmetric basis g of order $2r_p r_q$
 - Destroys all traces in memory of (r_p, r_q, p, q)
 - □Group of Users in private distributed computation Problem of g generation.

Security Analysis

- **X**Theorem: The proposed scheme is
 - existentially unforgeable,
- **#**Stated factoring problem does not appear to be easier than standard factorization problem.

19

Security Analysis

- **#**Main Ideas of Proof:
 - Lemma 1: A non-zero multiple of Ord(g) in Z_N^* reveals factorization of N.
 - □ Using 'forking technique' (Pointcheval & Stern), an attacker can be used to efficiently extract a multiple L of Ord(g).
 - \boxtimes L is zero iff h(attacker view) = sender's secret key S_A
 - \boxtimes But what if L = 0? It cannot be used to factor N!
 - Lemma 2 (WI): If $R/(2^{|KH|}S) >> 1$, it is impossible to distinguish which secret key mapping to the public one is used by sender.
 - $igtherpoonup So if S_A$ is chosen uniformly, then since attacker has almost no information on the choice, L is non-zero with high probability!

Conclusions

- - Slightly worse off-line/overhead efficiency than original signcryption (but much better than 'sign-then-encrypt')
 - ightharpoonup Forgeability provably as hard as factoring N (in random-oracle model) knowing an asymmetric basis of order much less than \sqrt{N}

21

Conclusions

- ****Open problems:**
 - □ Proof of confidentiality with respect to:

 - or better, with respect to
 - **Exactorization**
 - - ☑Generate (g,N,S) of specified properties
 - ■No participant minority should learn factors of N
 - ☑ Reasonably Efficient

Conclusions

#Open problems (cont):

- □ Efficient signcryption scheme which has at least one of:

 - **区** Each user has a personal modulus