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Introduction

Many applications need both:
1. Message Confidentiality
2. Message Origin Non-Repudiatable
Verifiability

Two-step Conventional approach:

Sign: Message originator produces digital
signature on message

Encrypt: Originator encrypts signed message
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Signcryption

Introduced by Y. Zheng in 1996

Achieves both confidentiality and
authentication goals more economically
than separate ‘sign-then-encrypt’

Savings in Computation and
Communication

Based on Discrete logarithm problem
DLP(p,q) in the subgroup of order q in the
multiplicative group Zp* (p and g prime). ,




Related Past Schemes

Schnorr Signature
Common Parameters

*

(9,p,q) - where p,q are prime, g has order q inZP.
User Key Generation

*

—  Sa
Secret key 52 €r Za | public key Vy=g " modp
Signature Genrergtion on message m
S
Pick random
e=H(m,g"mod p) y=r+es,modq
Output (e,y) with and

Signature Verification for (m’,e’,y’)

. _,.&=H(m',g”v; mod p)
Accept m’ as signed by user A iff
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Related Past Schemes

Girault (1991) Variant of Schnorr:

Composite RSA Modulus N=pq
Base g of maximal order Ilcm(p-1,9-1)
Forgery provably as hard as factoring N

Proof of security (Poupard and Stern, 1998) valid only-for
inefficient variants with secret key space size S >>

Pointcheval (2000) Variant of Girault:
Base g with order < S/2

Forgery provably af/lﬁ'ird as factoring N even for efficient
version with S <<




New Signcryption Scheme

Setup by a Trusted Authority (TA)

Generate and publish 3 parameters:
(1) Large RSA modulus N = pq (p,q primes)

(2) Large secret key bound S
(can be much less thany/N for high efficiency).

(3) Asymmetric basis g in Z_N*:
Ord,(g) and Ord,(g) have unequal 2-multiplicities
Ord, (g)is large but less than S/2

New Signcryption Scheme

Setup by TA (cont)

Publish algorithms for:

(1) one-way hash function H,(.) with large output length |[H,|
bits

(or alternatively any one-to-one mapping over domain <g=).

(2) Keyed collision-resistant one-way hash function KH(.,.) of
large output length |KH| bits.

(3) Secure Symmetric Encryption/Decryption algorithms (E, D)
with D(key,E(key,m)) = m for all messages m.




New Signcryption Scheme

Key-Pair Generation by User Alice:

(1) Pick random secret integer Sa in the interval
{0,...,S-1}.

(2) Compute and publish public key

V,=0 *modN

New Signcryption Scheme

Signcryption Algorithm by Alice the sender:
Alice=(s.,V,) to Bob=(sg.Vs)

on Message m
(1) Pick random r in {0,...,R-1} with R/(2""'S)>>1
(2) Get Bob’s PK, compute x =v; mod N , and split x into two
large ‘pieces’ (X;,%,) = H,(x)
(3) Use X; to encrypt m into ¢ = E( X;,m)
(4) Use X, and own secret S, to compute the pair
e = KH(X, ,m,bind)
y=r+e.S
(5) Output ‘signcryptext’ triple (c,e,y) to be sent to Bob.
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New Signcryption Scheme

UnSigncryption Algorithm by Bob the receiver:

Bob receives (c’,e’,y’) from “Alice”
(1) Get Alice’s PK and use own secret S; to compute
X'=(g"'Vv)* mod N
and split X" into two large ‘pieces’ (x';,x’,)=H,(x")
(2) Use X'; to decrypt ¢’ into m’ = D(x,',c)
(3) Use X'2 and decrypted message m’ to test:
Is it true that e’ = KH(X',,m’,bind)?
If true, set b = 1 (accept authentic m’ from Alice to Bob)
Else, setb=0and m' = *
(reject m’ as erroneous/modified message).

(4) Output (m’,b) - recovered message and verify bit.
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Efficiency of New Scheme

Computation

By Sender (Signcryption)
On-Line: Very efficient - 1 Hash, 1 Encryption and
1 integer add & multiply (no modular reduction)
Off-Line: 1 modular exponentiation

By Receiver (UnSigncryption)
Product of 2 exponentials with common modulus

(only ~17% more expensive than 1 modular exponential)

1 Hash
1 Decryption
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Total Computation: Comparison

2.5+ —

B SCF
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Total Bit Operations
(Normalized to SCF)
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Modulus Length (bits)
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Online Computation: Comparison

10000000

- P
” 1000000+ =
c
Ne) J T
S & 100000 —
= 0
g = 100001 |
O o B SCF
e X 10001 |
g £ 10041 -
=2 . SCS
o> 10+
1 o W o B o W o W o B
1024 2048 4096 8192 10240

Modulus Length (bits)
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Efficiency of New Scheme

Communication Overhead

Overhead larger than original Signcryption
Scheme due to Lack of modular reduction in
computation of y=r+e-s
Unreduced product/sum is longer
To minimize leakage of the secret, the random
commited integer r must be long compared with
product e-s
But still much more efficient than the ‘sign-
then-encrypt’ approach.
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Communication Overhead: Comparison
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14
1024 2048 4096 8192 10240

Modulus Length (bits)
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Setup by Trusted Authority

Need to generate common parameters (g,N,S) to set up
a users ‘community’

N = pq is an RSA modulus

g has order <<+/N and must be asymmetric basis in Zy
Problem: Knowledge of (p,q) and factors of (p-1) and
(9-1) is needed for generation - Need for user trust in
generator!
TA not needed after (g,N,S) have been generated

TA need not manipulate user secret keys (users self-generation)

Much weaker constraint than factorization-based ID schemes
(eg Fiat-Shamir).

17

Setup by Trusted Authority

Possible Forms of Trusted Authority:

Sealed Black-Box Algorithm
Input: Secret key length |S| and Modulus size |N|

Output: (g,N) of desired properties
Generates primes p,q with (p-1) and (g-1) having known
large prime divisorsl, and I,
Uses Chinese Remainder Theorem (CRT) to compute
random asymmetric basis g of order 2r,T,
Destroys all traces in memory of (f,.%, p.d)

Group of Users in private distributed
computation - Problem of g generation.
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Security Analysis

Theorem: The proposed scheme is
existentially unforgeable,
under adaptive chosen message attacks,
in the random-oracle model,

subject to the assumption that:
factoring N, given (g,N,S), is ‘hard’.

Stated factoring problem does not appear to be
easier than standard factorization problem.
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Security Analysis

Main ldeas of Proof:

Lemma 1: A non-zero multiple of Ord(g) in Z\ reveals
factorization of N.

Using ‘forking technique’ (Pointcheval & Stern), an attacker can
be used to efficiently extract a multiple L of Ord(g).

L is zero iff h(attacker view) = sender’s secret key S,

But what if L = 0? - It cannot be used to factor N!
Lemma 2 (WI): If R/(2*"'s)>>1, it is impossible to distinguish
which secret key mapping to the public one is used by sender.

So if Sa is chosen uniformly, then since attacker has almost no

information on the choice, L is non-zero with high probability!
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Conclusions

New Signcryption Scheme
Very low on-line computation

Slightly worse off-line/overhead efficiency
than original signcryption (but much better
than ‘sign-then-encrypt’)

Forgeability provably as hard as factoring N
(in random-oracle model) knowing an
asymmetric basis of order much less than+/N
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Conclusions

Open problems:

Proof of confidentiality with respect to:
Diffie-Hellman Problem in <g>

or better, with respect to
Factorization

Private Distributed key generation protocol
Generate (g,N,S) of specified properties
No participant minority should learn factors of N
Reasonably Efficient
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Conclusions

Open problems (cont):
Efficient signcryption scheme which has at
least one of:

Provably as hard to break as standard
factorization problem

Each user has a personal modulus
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