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Unconditionally Secure Authenticated Encryption
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SUMMARY In this paper, we formally define and analyze the security
notions of authenticated encryption in unconditional security setting. For
confidentiality, we define the notions, APS (almost perfect secrecy) and NM
(non-malleability), in terms of an information-theoretic viewpoint along
with our model where multiple senders and receivers exist. For authenticity,
we define the notions, IntC (integrity of ciphertexts) and IntP (integrity of
plaintexts), from a view point of information theory. And then we combine
the above notions to define the security notions of unconditionally secure
authenticated encryption. Then, we analyze relations among the security
notions. In particular, it is shown that the strongest security notion is the
combined notion of APS and IntC. Finally, we formally define and analyze
the following generic composition methods in the unconditional security
setting along with our model: Encrypt-and-Sign, Sign-then-Encrypt and
Encrypt-then-Sign. Consequently, it is shown that: the Encrypt-and-Sign
composition method is not always secure; the Sign-then-Encrypt composi-
tion method is not always secure; and the Encrypt-then-Sign composition
method is always secure, if a given encryption meets APS and a given sig-
nature is secure.
key words: unconditional security, encryption, authenticated encryption,
signcryption

1. Introduction

Confidentiality (secrecy) and authenticity are currently fun-
damental cryptographic functions, and encryption and sig-
nature are usually used for providing confidentiality and au-
thenticity, respectively. Although encryption and signature
have been mainly studied in the separate context, there are
many applications where both are needed. A cryptographic
technique which provides both confidentiality and authen-
ticity is often called authenticated encryption, and we also
use this term in this paper. In order to study the authen-
ticated encryption, it is important to have a formal notion
of what a secure authenticated encryption scheme is, and to
construct an authenticated encryption which can be proven
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to be secure in the formal notion. In this paper, we formally
define and analyze the security notions of authenticated en-
cryption in unconditional security setting.

1.1 Related Works

Computational Security: Joint signature and encryption
is studied in the public-key setting in [20] with the aim of
achieving greater efficiency than simply carrying out signa-
ture and encryption separately. We remark that in [20] the
term signcryption is introduced to represent the notion of
joint signature and encryption instead of authenticated en-
cryption. Recently, the proofs for the security of signcryp-
tion are provided in [2].

Very recently, in [1] the notions of joint encryption
and signature are formally studied in the public-key setting.
The paper [1] formally defines confidentiality and authen-
ticity for authenticated encryption (signcryption) and an-
alyzes the security of authenticated encryption (signcryp-
tion) designed by three types of generic compositions based
on the use of a public-key encryption and a digital signa-
ture: Encrypt-then-Sign, Sign-then-Encrypt, and Commit-
then-Encrypt-then-Sign.

On the other hand, in [4] and [15], joint notions of
confidentiality and authenticity for symmetric encryption
schemes are considered. In particular, in [4] formal defini-
tions of secrecy and authenticity for symmetric encryption
schemes are presented, and relations among the notions are
revealed. In addition, the paper [4] analyzes the security of
authenticated encryption schemes designed by three types
of generic compositions based on the use of a symmetric
encryption scheme and a MAC: Encrypt-and-MAC, MAC-
then-Encrypt, and Encrypt-then-MAC.
Unconditional Security: In unconditional security setting,
cryptographic schemes which provide both authenticity and
confidentiality have been studied (for example, see [6], [7],
[16], [19]). The security notions for authenticity are mainly
impersonation and substitution (spoofing). However, as
shown in [12], [18], there exist stronger security notions and
it is not enough to only consider impersonation and substi-
tution (spoofing) if we require strong security for authen-
ticity. On the other hand, the security notion for confi-
dentiality under consideration in existing authenticated en-
cryption schemes is mainly the perfect secrecy introduced
by Shannon [17]. However, in addition to the notion, we
should also consider the notion of non-malleability from an
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information-theoretic viewpoint if we require strong secu-
rity for confidentiality as in computational security.

1.2 Our Results

In this paper, as mentioned before, we formally define and
analyze the security notions of authenticated encryption in
unconditional security setting.

For confidentiality, we introduce the notions, APS (al-
most perfect secrecy) and NM (non-malleability), in terms
of an information-theoretic viewpoint along with our model
where multiple senders and receivers exist. The notion of
APS is a straightforward relaxed notion of prefect secrecy
by Shannon [17]. The notion NM is newly defined in the
context of unconditional security based on the idea of NM in
computational security [3], [4], [8], [9]. On the other hand,
for authenticity, we define the notions, IntC (integrity of
ciphertexts) and IntP (integrity of plaintexts), from a view
point of information theory along with our model. The no-
tions, IntC and IntP, are newly defined in the context of un-
conditional security based on the idea of that of computa-
tional security setting [4].

Next, we combine the above notions of confidentiality
and authenticity to define the security notions of uncondi-
tionally secure authenticated encryption. And, we analyze
relations among the security notions under consideration.
As a result, in particular, it is shown that the strongest se-
curity notion is the combined notion of APS and IntC.

Finally, we formally define and analyze the following
generic composition methods in the unconditional security
setting along with our model: Encrypt-and-Sign, Sign-then-
Encrypt and Encrypt-then-Sign. Consequently, it is shown
that: the Encrypt-and-Sign composition method is not al-
ways secure; the Sign-then-Encrypt composition method is
not always secure; and the Encrypt-then-Sign composition
method is always secure, if a given encryption meets APS
and a given signature is secure.

The rest of this paper is organized as follows: in Sect. 2,
we formally define cryptographic models and formalize se-
curity notions from information-theoretic viewpoints. In
particular, we define the model of authenticated encryp-
tion with unconditional security, and formalize the secu-
rity notions, APS, NM, IntC and IntP, for authenticated en-
cryption in unconditional security setting; in Sect. 3, we
analyze relations among the security notions for authenti-
cated encryption, and show that the strongest security no-
tion is the combined notion of APS and IntC; and finally,
in Sect. 4, we formally define and analyze the generic com-
position methods, Encrypt-and-Sign, Sign-then-Encrypt and
Encrypt-then-Sign. In particular, we show that Encrypt-and-
Sign and Sign-then-Encrypt methods are not always secure
while Encrypt-then-Sign method is always secure, if a given
encryption meets APS and a given signature is secure.

2. The Model

In this section, we consider cryptographic models and for-

malize security notions in terms of information theory.
In this paper, we use the following notations: For a fi-

nite set X, let X be a random variable which takes on the
set X with probability distribution PrX . Here, the probabil-
ity that X takes a value x ∈ X is denoted by PrX(x) and
briefly Pr(x) if X and X are clear in the context. Also, let
X1 (resp. X2) be a random variable which takes on the finite
set X1 (resp. X2) with probability distribution PrX1 (resp.
PrX1 ). Then, the conditional probability that X1 = x1 (∈ X1)
given X2 = x2 (∈ X2) is denoted by PrX1 |X2 (x1|x2) and briefly
Pr(x1|x2) if X1, X2, X1 and X2 are clear in the context.

2.1 A Model of Encryption and Authenticated Encryption
Schemes with Unconditional Security

In this subsection, we describe a model of encryption and
authenticated encryption with unconditional security, and
introduce formal definitions of security.

First, we start with the following model of uncondition-
ally secure encryption where multiple senders and receivers
exist.

Definition 1: (Encryption) An encryption scheme Π con-
sists of
(U, TA, M, C, E, D, GEN, ENC, DEC):

1. Notation:

• U := {S 1, S 2, . . . , S n1 ,R1,R2, . . . ,Rn2 } is a finite
set of users, where S i(1 ≤ i ≤ n1) are senders
and Ri(1 ≤ i ≤ n2) are receivers. Let US :=
{S 1, S 2, . . . , S n1 } and UR := {R1,R2, . . . ,Rn2}. We
also use S i (resp. Rj) as S i’s (resp. Rj’s) identity.

• TA is a trusted authority.
• M = {Mk}k∈N is a sequence of finite sets of pos-

sible plaintexts. Here, k is a security parameter
and Mk ⊂ {0, 1}lM (k), where lM(k) is a polynomial
of k.

• C = {Ck}k∈N is a sequence of finite sets of possible
ciphertexts. Here, Ck ⊂ {0, 1}lC (k), where lC(k) is a
polynomial of k.

• E = {Ek}k∈N is a sequence of finite sets of possi-
ble encryption-keys. Here, Ek ⊂ {0, 1}lE (k), where
lE(k) is a polynomial of k.

• D = {Dk}k∈N is a sequence of finite sets of possi-
ble decryption-keys. Here, Dk ⊂ {0, 1}lD(k), where
lD(k) is a polynomial of k.

• GEN is a key generation algorithm which outputs
encryption-keys and decryption-keys.

• ENC : E ×M ×UR −→ C is an encryption algo-
rithm,

• DEC : D × C ×US −→ M∪ {⊥} is a decryption
algorithm.

2. Key Generation and Distribution by TA: The TA
generates an encryption-key ei ∈ E for each sender
S i, and a decryption-key d j ∈ D for each receiver
Rj using the key generation algorithm GEN. Here
GEN is a probabilistic algorithm which produces,
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on input 1k, where k is a security parameter, keys
(e1, e2, . . . , en1 , d1, d2, . . . , dn2 ) of matching encryption
and decryption keys, where ei ∈ Ek for 1 ≤ i ≤ n1

and dj ∈ Dk for 1 ≤ j ≤ n2. Then, TA transmits the
encryption-key ei to the sender S i and the decryption-
key dj to the receiver Rj via a secure channel. After
delivering these keys, the TA may erase the keys from
his memory. Each sender keeps secret his encryption-
key, and each receiver keeps secret his decryption-key.

3. Encryption: For a plaintext m ∈ Mk, the sender S i

generates a ciphertext c = ENC(ei,m,Rj) ∈ Ck which
will be sent to the receiver Rj by using his encryption-
key ei in conjunction with the encryption algorithm
ENC.

4. Decryption: On receiving a ciphertext c from a
sender S i, the receiver Rj recovers a plaintext using
his decryption-key dj and the decryption algorithm
DEC. More precisely, if DEC(dj, c, S i) = ⊥, Rj

regards the received ciphertext c as invalid. Other-
wise, Rj recovers the plaintext m = DEC(dj, c, S i)
as valid ciphertext from S i. Here, we require that
DEC(dj, ENC(ei,m,Rj), S i) = m for all m ∈ Mk.

The model of authenticated encryption is syntactically
identical to that of encryption as defined above. The differ-
ence between encryption and authenticated encryption lies
in their security goals: the goal of encryption is to achieve
only confidentiality while the goal of authenticated encryp-
tion is to achieve both confidentiality and authenticity. In
this paper, we use the model in Definition 1 even for authen-
ticated encryption as well. In addition, we use encryption
(resp. authenticated encryption) to emphasize cases that we
are targeting confidentiality goals (resp. both confidentiality
and authenticity goals).

Let t1 and t2 be the number up to which each sender is
allowed to encrypt plaintexts and the number up to which
each receiver is allowed to decrypt ciphertexts, respectively,
and let ω be the number of possible colluders among users.
Let W := {W ⊂ U| #W ≤ ω}. Each element of W repre-
sents a group of possibly collusive users. For a set T and a
non-negative integer t, let P(T , t) := {T ⊂ T | #T ≤ t} be
the family of all subsets of T whose cardinality are less than
or equal to t.

Definition 2: (Exponentially Negligible Function) Let ε(k)
be a function defined over the positive integers k ∈N that
takes non-negative real numbers. Then, ε(k) is called ex-
ponentially negligible if there exists an integer k0 and some
constant a(1 < a) such that ε(k) ≤ 1

ak for all k ≥ k0.

We now consider security notions and formulate them
along with our model in Definition 1 from information-
theoretic viewpoints. In this paper, we consider the follow-
ing security goals: for confidentiality, APS (Almost Perfect
Secrecy) and NM (Non-Malleability); and for authenticity,
IntC (Integrity of Ciphertexts) and IntP (Integrity of Plain-
texts). The first notion of APS is a straightforward relaxed
notion of perfect secrecy by Shannon [17]. The second one,

NM, will be formally defined in the context of unconditional
security based on the idea of the notion of computational se-
curity [3], [4], [8], [9]. The third and fourth ones, IntC and
IntP, will be formally defined in the context of unconditional
security setting based on the idea of that of computational
security setting [4].

In addition, we consider the above four security goals
under the most powerful attacking model, that is, chosen
plaintext attacks and chosen ciphertext attacks (CPA and
CCA) in unconditional security setting. Here, CPA and CCA
means the attacks where the adversary can obtain the en-
cryption of any plaintext of his choice and the decryption
of any ciphertext of his choice except the target ciphertext.
Namely, the adversary is given oracle access to an encryp-
tion function and a decryption function, but is not allowed
to ask for the decryption of the target ciphertext itself.

First, we introduce the notion of almost perfect secrecy
against chosen plaintext attacks and chosen ciphertext at-
tacks (APS against CPA and CCA). Intuitively, the notion
of APS means that the partial information on the plaintext
from a target ciphertext which the adversary can derive is
upper-bounded by a small quantity ε. We note that this no-
tion can capture the notion of perfect secrecy (PS) by con-
sidering the case that ε = 0. We formalize APS from an
information-theoretic viewpoint as follows.

Definition 3 ((A)PS against CPA and CCA (cf. [17])): Let
Π be an encryption or authenticated encryption scheme. Let
k be a security parameter. For W ∈ W such that S i,Rj � W,
we define

PPS
Π (S i,Rj,W) := max

eW

max
MS i

max
CR j

max
MS 1 ,...,MS l ,...,MS n1

(l�i)
max

CR1 ,...,CRs ,...,CRn2
(s� j)

max
c


∑

m∈Mk

∣∣∣∣Pr(m|c, eW ,

{MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}) − Pr(m)
∣∣∣∣
,

where eW is taken over all possible combination of keys of
W; MS i is taken over P(Mk × Ck, t1 − 1) such that any ele-
ment (mS i , cS i ) of MS i is a pair of a plaintext mS i and a corre-
sponding ciphertext cS i encrypted by S i; MS l (l � i) is taken
over P(Mk × Ck, t1) such that any element (mS l , cS l ) of MS l

is a pair of a plaintext mS l and a corresponding ciphertext
cS l encrypted by S l; CRj is taken over P(Ck × (Mk ∪{⊥}), t2)
such that any element of CRj is a pair of a ciphertext cRj and
a decryption result of cRj by Rj; CRs (s � j) is taken over
P(Ck × (Mk ∪ {⊥}), t2) such that any element of CRs is a pair
of a ciphertext cRs and a decryption result of cRs by Rs; and c
is taken over valid ciphertexts from S i to Rj such that c does
not appear in CRj .

We define

PPS
Π := max

S i,Rj ,W
PPS
Π (S i,Rj,W).

Then, the schemeΠ is said to be (ω, t1, t2)-APS (Almost Per-
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fectly Secure) if PPS
Π

≤ ε for some exponentially negligible
function ε. In particular, if PPS

Π
= 0, the scheme Π is said to

be (ω, t1, t2)-PS (Perfectly Secure).

Remark 1: The above notion of APS is defined only in
terms of probability distribution since we are discussing
information-theoretic security. On the other hand, we note
that in the public-key setting the notion of semantic security
[10] is known as a computational analogue of Shannon’s
definition of perfect secrecy [17]. And, in order to define
semantic security or equivalently indistinguishability [10],
the computational complexity-theoretic approach by using
computational models whose computational complexity is
polynomially bounded is taken rather than the information-
theoretic one by the use of probability distribution.

Remark 2: In Definition 3, we have considered the attack-
ing model of CPA and CCA. In the public-key setting, for
each of CPA and CCA adaptive and non-adaptive cases are
currently known. However, there is no difference between
them in Definition 3. This is because all possible infor-
mation which the adversary with unlimited computational
power can obtain by having access to both encryption and
decryption oracles is taken into account. The same can also
be applied to other security definitions in this paper. Thus,
in the sequel we do not consider adaptive and non-adaptive
cases separately in formalizing CPA and CCA, since there
is no difference between them in formalization.

We next formally define the notion of non-malleability
in unconditional security setting based on the idea of that of
non-malleability in computational setting [3], [8], [9]. In-
tuitively, the notion of non-malleability means that from
a ciphertext c it is difficult for the adversary to create
a ciphertext c′(� c) such that underlying plaintexts of
them are meaningfully related. While the notion of non-
malleability in [3], [8], [9] is considered from a computa-
tional complexity-theoretic point of view, we formulate this
notion by the use of probability distribution in the following
since we are discussing information-theoretic security.

Definition 4 (NM against CPA and CCA): Let Π be an en-
cryption or authenticated encryption scheme. Let k be a se-
curity parameter and ε(k) an exponentially negligible func-
tion. For simplicity, we denote the exponentially negligi-
ble function ε(k) by ε. For a relation � on Mk, we write
�(x1, x2) = 1 if the relation � holds for x1, x2 ∈ Mk, and
we write �(x1, x2) = 0 otherwise. For any relation � on
Mk, we extend � to the relation �̂ on Mk ∪ {⊥} as follows:

�̂(x1, x2) :=

{
�(x1, x2) if x1, x2 ∈ Mk

0 if x1 = ⊥ or x2 = ⊥

For W ∈ W such that S i,Rj � W and a relation � on
Mk, we define

PNM
Π (�; S i,Rj,W) := max

eW

max
MS i

max
CR j

max
MS 1 ,...,MS l ,...,MS n1

(l�i)
max

CR1 ,...,CRs ,...,CRn2
(s� j)

max
c

max
c′

∑
d∈Dk

Pr(d) ·

∣∣∣∣χNM(�̂; S i,Rj; DEC(d, c, S i),DEC(d, c′, S i)

|c, eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})

−
∑

m∈Mk

Pr(m)χNM(�̂; S i,Rj; m,DEC(d, c′, S i))
∣∣∣∣,

where eW is taken over all possible combination of keys of
W; MS i is taken over P(Mk × Ck, t1 − 1) such that any ele-
ment (mS i , cS i ) of MS i is a pair of a plaintext mS i and a corre-
sponding ciphertext cS i encrypted by S i; MS l (l � i) is taken
over P(Mk × Ck, t1) such that any element (mS l , cS l ) of MS l

is a pair of a plaintext mS l and a corresponding ciphertext cS l

encrypted by S l; CRj is taken over P(Ck × (Mk ∪{⊥}), t2 −1)
such that any element of CRj is a pair of a ciphertext cRj and
a decryption result of cRj by Rj; CRs (s � j) is taken over
P(Ck × (Mk ∪ {⊥}), t2) such that any element of CRs is a pair
of a ciphertext cRs and a decryption result of cRs by Rs; c is
taken over valid ciphertexts from S i to Rj; c′ is taken over
ciphertexts from S i to Rj such that c′ � c; and the function
χNM(�̂; S i,Rj; m,DEC(d, c′, S i)) is defined as follows. For
m ∈ Mk, c′ ∈ Ck and Rj’s decryption key d ∈ Dk,

χNM(�̂; S i,Rj; m,DEC(d, c′, S i))

:=


1 if �̂(m,DEC(d, c′, S i)) = 1

for Rj’s decryption key d
0 otherwise

Similarly, the function χNM(�̂; S i,Rj; DEC(d, c, S i),
DEC(d, c′, S i)) | c, eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})
is defined as follows. For the given (c, eW , {MS l |1 ≤ l ≤
n1}, {CRs |1 ≤ s ≤ n2}), and d ∈ Dk, c′ ∈ Ck with c′ � c,

χNM(�̂; S i,Rj; DEC(d, c, S i),DEC(d, c′, S i)

|c, eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})

:=



1 if the given
(c, eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})

can occur with positive probability and
�̂(DEC(d, c, S i),DEC(d, c′, S i)) = 1
for Rj’s decryption key d

0 otherwise

We define

PNM
Π (�) := max

S i ,Rj ,W
PNM
Π (�; S i,Rj,W).

Then, the scheme Π is said to be (ω, t1, t2)-NM (Non-
Malleable) if PNM

Π
(�) ≤ ε for any relation �.

For confidentiality, we have already introduced the no-
tions of almost perfect secrecy and non-malleability in the
unconditional setting. In addition to the notions of confi-
dentiality, we formally define two notions of the integrity,
IntC (Integrity of Ciphertexts) and IntP (Integrity of Plain-
texts), for authenticated encryption in the unconditional set-
ting. The notion of IntC prevents the adversary from ille-
gitimately producing a ciphertext which the sender has not
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previously created, while the notion of IntP prevents the ad-
versary from illegitimately producing a ciphertext decrypt-
ing to a plaintext which the sender had never encrypted.

We first consider IntC. Intuitively, the notion of IntC
means that it is difficult for the adversary to create a cipher-
text c that has not been previously created by the sender but
will be accepted as valid and authentic by the receiver. This
notion is formalized in [4] in the context of symmetric en-
cryption in terms of computational security. We note that
the notion of IntC along with the model of symmetric en-
cryption is also formalized in [5] and [14].

In the following, we formulate the notion of IntC along
with our model only by the use of probability distribution
since we are discussing information-theoretic security along
with our model.

Definition 5 (IntC against CPA and CCA): LetΠ be an au-
thenticated encryption scheme. Let k be a security parame-
ter and ε an exponentially negligible function. For W ∈ W
such that S i,Rj � W, we define

PIntC
Π (S i,Rj,W) := max

eW

max
MS i

max
CR j

max
MS 1 ,...,MS l ,...,MS n1

(l�i)
max

CR1 ,...,CRs ,...,CRn2
(s� j)

max
c

Pr(Rj decrypts c from S i as not ⊥|

eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}),

where eW is taken over all possible combination of keys of
W; MS i is taken over P(Mk × Ck, t1) such that any element
(mS i , cS i ) of MS i is a pair of a plaintext mS i and a corre-
sponding ciphertext cS i encrypted by S i; MS l (l � i) is taken
over P(Mk × Ck, t1) such that any element (mS l , cS l ) of MS l

is a pair of a plaintext mS l and a corresponding ciphertext cS l

encrypted by S l; CRj is taken over P(Ck × (Mk ∪{⊥}), t2 −1)
such that any element of CRj is a pair of a ciphertext cRj

and a decryption result of cRj by Rj; CRs (s � j) is taken
over P(Ck × (Mk ∪ {⊥}), t2) such that any element of CRs

is a pair of a ciphertext cRs and a decryption result of cRs

by Rs; c is taken over ciphertexts such that c does not ap-
pear in MS i and also not in CRj except (c,⊥); and for given
(eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}), the probabil-
ity Pr(Rj decrypts c from S i as not ⊥ | eW , {MS l |1 ≤ l ≤
n1}, {CRs |1 ≤ s ≤ n2}) is strictly defined as follows. For
the given (eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}),

Pr(Rj decrypts c from S i as not ⊥
| eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})

:=
∑
d∈Dk

Pr(d) · χIntC(S i,Rj; c, d | eW ,

{MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}),
χIntC(S i,Rj; c, d | eW , {MS l |1 ≤ l ≤ n1},

{CRs |1 ≤ s ≤ n2})

:=



1 if the given
(eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})
can occur with positive probability and
DEC(d, c, S i) � ⊥
for Rj’s decryption key d

0 otherwise

We define PIntC
Π

:= maxS i,Rj ,W PIntC
Π

(S i,Rj,W). Then,
the scheme Π is said to be (ω, t1, t2)-IntC if PIntC

Π
≤ ε.

We next consider IntP. Intuitively, the notion of IntP
means that it is difficult for the adversary to create a cipher-
text c that will be accepted as valid and authentic by the
receiver and be decrypting to a plaintext which the sender
had never encrypted. As well as IntC, the notion of IntP is
formalized in [4] in the context of symmetric key encryption
in terms of computational security. In the following, as well
as IntC, we formulate this notion along with our model only
by the use of probability distribution.

Definition 6 (IntP against CPA and CCA): Let Π be an au-
thenticated encryption scheme. Let k be a security parame-
ter and ε an exponentially negligible function. For W ∈ W
such that S i,Rj � W, we define

PIntP
Π (S i,Rj,W) := max

eW

max
MS i

max
CR j

max
MS 1 ,...,MS l ,...,MS n1

(l�i)
max

CR1 ,...,CRs ,...,CRn2
(s� j)

max
c

Pr(Rj decrypts c from S i as not ⊥ and

not in MS i |eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}),

where eW is taken over all possible combination of keys
of W; MS i is taken over P(Mk × Ck, t1) such that any el-
ement (mS i , cS i ) of MS i is a pair of a plaintext mS i and a
corresponding ciphertext cS i encrypted by S i; MS l (l � i) is
taken over P(Mk × Ck, t1) such that any element (mS l , cS l )
of MS l is a pair of a plaintext mS l and a corresponding
ciphertext cS l encrypted by S l; CRj is taken over P(Ck ×
(Mk ∪ {⊥}), t2 − 1) such that any element of CRj is a pair
of a ciphertext cRj and a decryption result of cRj by Rj;
CRs (s � j) is taken over P(Ck × (Mk ∪ {⊥}), t2) such that
any element of CRs is a pair of a ciphertext cRs and a de-
cryption result of cRs by Rs; c is taken over ciphertexts
such that DEC(d, c, S i) � ⊥ for Rj’s decryption key d
and DEC(d, c, S i) does not appear in MS i ; and for given
(eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}), the probability
Pr(Rj decrypts c from S i as not ⊥ and not in MS i |
eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}) is strictly defined as

follows. For the given (eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤
n2}),

Pr(Rj decrypts c from S i as not ⊥ and not in MS i

| eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})
:=
∑
d∈Dk

Pr(d) · χIntP(S i,Rj; c, d | eW ,

{MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}),
χIntP(S i,Rj; c, d | eW , {MS l |1 ≤ l ≤ n1},
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{CRs |1 ≤ s ≤ n2})

:=



1 if the given
(eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})
can occur with positive probability,
DEC(d, c, S i) � ⊥ and
DEC(d, c, S i) does not appear in MS i

for Rj’s decryption key d
0 otherwise

We define PIntP
Π

:= maxS i,Rj ,W PIntP
Π

(S i,Rj,W). Then,
the scheme Π is said to be (ω, t1, t2)-IntP if PIntP

Π
≤ ε.

2.2 A Model of Signature Schemes with Unconditional
Security

In this subsection, we consider a model of unconditionally
secure signature schemes and describe the security defini-
tion considered in [18].

Definition 7 (Signature [12] [18]): A signature scheme Λ
consists of (U, TA, M, SK , VK , A, GEN, S IG, VER):

• U = {S 1, . . . , S n1 ,V1, . . . ,Vn2 } is a finite set of users,
where S i are signers and Vj are verifiers. Let US :=
{S 1, S 2, . . . , S n1 } and UV := {V1,V2, . . . ,Vn2 }. We also
use S i (resp. Vj) as S i’s (resp. Vj’s) identity.

• TA is a trusted authority.
• M = {Mk}k∈N is a sequence of finite sets of possible

messages, where Mk ⊂ {0, 1}lM (k), and lM(k) is a poly-
nomial of k. Hereafter, k means a security parameter.

• SK = {SK k}k∈N is a sequence of finite sets of possible
signing-keys. Here, SK k ⊂ {0, 1}lS K (k), and lS K(k) is a
polynomial of k.

• VK = {VK k}k∈N is a sequence of finite sets of pos-
sible verification-keys. Here, VK k ⊂ {0, 1}lVK (k), and
lVK(k) is a polynomial of k.

• A = {Ak}k∈N is a sequence of finite sets of possible
signatures. Here, Ak ⊂ {0, 1}lA(k), and lA(k) is a poly-
nomial of k.

• GEN is a key generation algorithm which on in-
put a security parameter 1k, outputs signing-keys and
verification-keys.

• S IG : SK ×M −→ A is a signing algorithm,
• VER : VK × M × A × US −→ {true, f alse} is a

verification algorithm.

As in the previous subsection, let t1 and t2 be the num-
ber up to which each signer is allowed to sign messages and
the number up to which each verifier is allowed to verify
signatures, respectively, and let ω be the number of possible
colluders among users.

In [18], it is mentioned that the strong security of the
signature schemes with unconditional security is existential
acceptance unforgeability for any verifier against adaptive
chosen message attacks and adaptive chosen signature at-
tacks. In the sequel, we briefly call this notion EAUF against
ACMA and ACSA. On the other hand, the notion of existen-
tial unforgeability (EUF), which is currently considered as

the strong security notion in public-key signature schemes
[11], can also be considered in the unconditional security
setting. However, we note that as shown in [18] it is suffi-
cient to consider EAUF against ACMA and ACSA as strong
security, since EAUF against ACMA and ACSA always im-
plies EUF against ACMA and ACSA.

Intuitively, the notion of EAUF means that it is diffi-
cult for the adversary to create a signature that has not been
legally created by the signer but will be accepted as valid by
a verifier. Here, note that in the unconditional security set-
ting there may exist a signature which cannot be output by
the signing algorithm with a legitimate signing key but will
be accepted by the verification algorithm with a legitimate
verification key (See [18]). In the following, we describe the
formalization of the notion of EAUF against CMA and CSA
along with our model by the use of probability distribution
as in [18]. Here, note that the notion of CMA and CSA is
sufficient to consider since there is no difference between
adaptive and non-adaptive cases in the following formaliza-
tion (See also Remark 2).

Definition 8 (EAUF against CMA and CSA [18]): Let Λ
be a signature scheme. Let k be a security parameter and
ε(k) an exponentially negligible function.

1) For W ∈ W such that S i,Vj � W, we define

PEAUF
Λ,1 (S i,Vj,W) := max

eW

max
MS i

max
MV j

max
MS 1 ,...,MS l ,...,MS n1

(l�i)
max

MV1 ,...,MVs ,...,MVn2
(s� j)

max
(m,a)

Pr(Vj accepts (m, a) as signed by S i

| eW , {MS l |1 ≤ l ≤ n1}, {MVs |1 ≤ s ≤ n2})

where eW is taken over all possible combination of
keys of W; MS i is taken over P(Mk ×Ak, t1) such that
any element of MS i is a valid signed message gener-
ated by S i; MS l (l � i) is taken over P(Mk × Ak, t1)
such that any element of MS l is a valid signed mes-
sage generated by S l; MVj is taken over P(Mk × Ak ×
{true, f alse}, t2 − 1) such that any element of MVj is
a pair of a signed message (mVj , aVj ) and a verifica-
tion result of (mVj , aVj ) by Vj; MVs (s � j) is taken
over P(Mk × Ak × {true, f alse}, t2) such that any el-
ement of MVs is a pair of a signed message (mVs , aVs )
and a verification result of (mVs , aVs ) by Vs; (m, a) is
taken over Mk × Ak such that (m, a) � MS i and does
not appear in MVj except ((m, a), f alse); and for given
(eW , {MS l |1 ≤ l ≤ n1}, {MVs |1 ≤ s ≤ n2}), the probabil-
ity Pr(Vj accepts (m, a) as signed by S i | eW , {MS l |1 ≤
l ≤ n1}, {MVs |1 ≤ s ≤ n2}) is strictly defined as follows.
For the given (eW , {MS l |1 ≤ l ≤ n1}, {MVs |1 ≤ s ≤ n2})
and Vj’s verification-key v ∈ VK k,

Pr(Vj accepts (m, a) as signed by S i

| eW , {MS l |1 ≤ l ≤ n1}, {MVs |1 ≤ s ≤ n2})
:=
∑
v∈VKk

Pr(v) · χEAUF,1(S i,Vj; (m, a), v | eW ,
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{MS l |1 ≤ l ≤ n1}, {MVs |1 ≤ s ≤ n2}),
χEAUF,1(S i,Vj; (m, a), v | eW , {MS l |1 ≤ l ≤ n1},

{MVs |1 ≤ s ≤ n2})

:=



1 if the given
(eW , {MS l |1 ≤ l ≤ n1}, {MVs |1 ≤ s ≤ n2})
can occur with positive probability and
VER(v, (m, a), S i) = true
0 otherwise

We define PEAUF
Λ,1 := maxS i ,Vj ,W PEAUF

Λ,1 (S i,Vj,W).

2) For W ∈ W such that Vj � W and S i ∈ W, we define
PEAUF
Λ,2 (S i,Vj,W) as

PEAUF
Λ,2 (S i,Vj,W) := max

eW

max
MV j

max
MS 1 ,...,MS l ,...,MS n1

(l�i)
max

MV1 ,...,MVs ,...,MVn2
(s� j)

max
(m,a)

Pr(Vj accepts (m, a) as signed by S i

|eW , {MS l |1 ≤ l ≤ n1, l � i}, {MVs |1 ≤ s ≤ n2})

where eW is taken over all possible combination of keys
of W; MS l (l � i) is taken over P(Mk ×Ak, t1) such that
any element of MS l is a valid signed message generated
by S l; MVj is taken over P(Mk×Ak×{true, f alse}, t2−
1) such that any element of MVj is a pair of a signed
message (mVj , aVj ) and a verification result of (mVj , aVj )
by Vj; MVs (s � j) is taken over P(Mk × Ak ×
{true, f alse}, t2) such that any element of MVs is a pair
of a signed message (mVs , aVs ) and a verification re-
sult of (mVs , aVs ) by Vs; (m, a) is taken over invalid
signed messages such that (m, a) does not appear in
MVj except ((m, a), f alse); and for given (eW , {MS l |1 ≤
l ≤ n1, l � i}, {MVs |1 ≤ s ≤ n2}), the probabil-
ity Pr(Vj accepts (m, a) as signed by S i | eW , {MS l |1 ≤
l ≤ n1, l � i}, {MVs |1 ≤ s ≤ n2}) is strictly de-
fined as follows. For the given (eW , {MS l |1 ≤ l ≤
n1, l � i}, {MVs |1 ≤ s ≤ n2}) and Vj’s verification-key
v ∈ VK k,

Pr(Vj accepts (m, a) as signed by S i | eW ,

{MS l |1 ≤ l ≤ n1, l � i}, {MVs |1 ≤ s ≤ n2})
:=
∑
v∈VKk

Pr(v) · χEAUF,2(S i,Vj; (m, a), v | eW ,

{MS l |1 ≤ l ≤ n1, l � i}, {MVs |1 ≤ s ≤ n2}),
χEAUF,2(S i,Vj; (m, a), v | eW ,

{MS l |1 ≤ l ≤ n1, l � i}, {MVs |1 ≤ s ≤ n2})

:=



1 if the given (eW ,
{MS l |1 ≤ l ≤ n1, l � i}, {MVs |1 ≤ s ≤ n2})
can occur with positive probability and
VER(v, (m, a), S i) = true
0 otherwise

We define PEAUF
Λ,2 := maxS i ,Vj ,W PEAUF

Λ,2 (S i,Vj,W).

Then, the signature scheme Λ is said to be (ω, t1, t2)-
EAUF if max{PEAUF

Λ,1 , PEAUF
Λ,2 } ≤ ε.

3. Relations among Security Notions for Authenticated
Encryption

In the previous section, we define the notions of
(ω, t1, t2)-APS and (ω, t1, t2)-NM for confidentiality, and
those of (ω, t1, t2)-IntC and (ω, t1, t2)-IntP for authenticity.
Thus, by combining these notions of confidentiality and au-
thenticity, we reach the following four notions for authenti-
cated encryption schemes:

(i) (ω, t1, t2)-APS and (ω, t1, t2)-IntC, which is briefly de-
noted by (ω, t1, t2)-APS ∧ IntC;

(ii) (ω, t1, t2)-APS and (ω, t1, t2)-IntP, which is briefly de-
noted by (ω, t1, t2)-APS ∧ IntP;

(iii) (ω, t1, t2)-NM and (ω, t1, t2)-IntC, which is briefly de-
noted by (ω, t1, t2)-NM ∧ IntC; and

(iv) (ω, t1, t2)-NM and (ω, t1, t2)-IntP, which is briefly de-
noted by (ω, t1, t2)-NM ∧ IntP.

In this section, we analyze relations among the security no-
tions and reveal the strongest notion among them.

First, we start with the following proposition. The
proof of Proposition 1 easily follows from the definitions.

Proposition 1: Let Π be an authenticated encryption
scheme. Let X∈ {APS, NM, IntC, IntP}. If Π is (ω, t1, t2)-
X, then Π is (ω′, t′1, t

′
2)-X for ω ≥ ω′, t1 ≥ t′1 and t2 ≥ t′2.

Next, for authenticity, we show that the notion of IntC
always implies that of IntP.

Theorem 1: Let Π be an authenticated encryption scheme.
If Π is (ω, t1, t2)-IntC, then Π is (ω, t1, t2)-IntP.

Proof. We use same notations used in Definitions 5 and 6.
For any eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2} and c, we
have

Pr(Rj decrypts c from S i as not ⊥ and not

in MS i |eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})
≤ Pr(Rj decrypts c from S i as not ⊥

|eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}).

Thus, PIntP
Π

(S i,Rj,W) ≤ PIntC
Π

(S i,Rj,W) for any S i,Rj and
W. Therefore, we obtain PIntP

Π
≤ PIntC

Π
. This implies that if

PIntC
Π

≤ ε, it follows that PIntP
Π

≤ ε. �
From Theorem 1 it is sufficient to consider (i) or (iii),

when we are interested in the strongest security notion
among the four notions (i)–(iv). The following theorems
(Theorems 2 and 3) show that the strongest notion among
them is exactly (i).

Theorem 2: Let Π be an authenticated encryption scheme.
IfΠ is (ω, t1, t2)-APS ∧ IntC, thenΠ is (ω, t1, t2)-NM ∧ IntC.

Proof. Since Π is already (ω, t1, t2)-IntC, it is sufficient to
show that it is (ω, t1, t2)-NM.

Suppose that PIntC
Π

≤ ε. Let d be a decryp-
tion key of the receiver Rj. Also, let (eW , {MS l |1 ≤
l ≤ n1}, {CRs |1 ≤ s ≤ n2}, c, c′) be arbitrarily given
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and suppose that it can occur with positive probability.
Then, if �̂(DEC(d, c, S i),DEC(d, c′, S i)) = 1, we have
DEC(d, c′, S i) � ⊥. Therefore,

χNM(�̂; S i,Rj; DEC(d, c, S i),DEC(d, c′, S i) |
c, eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})
≤ χIntC(S i,Rj; d, c′ | c, eW ,

{MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}) (1)

On the other hand, we note that for m ∈ Mk,
�̂(m,DEC(d, c′, S i)) = 1 implies DEC(d, c′, S i) � ⊥.
Therefore,

χNM(�̂; S i,Rj; m,DEC(d, c′, S i))

≤ χIntC(S i,Rj; d, c′)

Thus, we obtain∑
m∈Mk

Pr(m)χNM(�̂; S i,Rj; m,DEC(d, c′, S i))

≤
∑

m∈Mk

Pr(m)χIntC(S i,Rj; d, c′)

= χIntC(S i,Rj; d, c′). (2)

By (1) and (2), it is shown that∣∣∣∣ χNM(�̂; S i,Rj; DEC(d, c, S i),DEC(d, c′, S i)

| c, eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})

−
∑

m∈Mk

Pr(m)χNM(�̂; S i,Rj; m,DEC(d, c′, S i))
∣∣∣∣

≤ max(χIntC(S i,Rj; d, c′), χIntC(S i,Rj; d, c′ |
c, eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}))

≤ χIntC(S i,Rj; d, c′) + χIntC(S i,Rj; d, c′ | c, eW ,

{MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2}). (3)

From (3) it follows that∑
d∈Dk

Pr(d) ·
∣∣∣∣ χNM(�̂; S i,Rj; DEC(d, c, S i),

DEC(d, c′, S i)|c, eW , {MS l |1 ≤ l ≤ n1},
{CRs |1 ≤ s ≤ n2})

−
∑

m∈Mk

Pr(m)χNM(�̂; S i,Rj; m,DEC(d, c′, S i))
∣∣∣∣

≤
∑
d∈Dk

Pr(d) · {χIntC(S i,Rj; d, c′) + χIntC(S i,Rj; d,

c′|c, eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤ n2})}
≤ 2PIntC

Π ,

where the last inequality follows from the definition of PIntC
Π

.
By taking maximum for eW , {MS l |1 ≤ l ≤ n1}, {CRs |1 ≤ s ≤
n2}, c and c′, it follows that

PNM
Π (�; S i,Rj,W) ≤ 2PIntC

Π .

Therefore, PNM
Π

(�) ≤ 2PIntC
Π

for any relation �. This im-
plies that PNM

Π
(�) ≤ 2ε for any relation �, since PIntC

Π
≤ ε.
�

Theorem 3: There exists a scheme which is (ω, t1, t2)-NM
∧ IntC but is not (ω, t1, t2)-APS ∧ IntC.

Proof. Let Λ be a signature scheme which meets (ω, t1, t2)-
EAUF. Then, by the definitions of PIntC

Λ
and PEAUF

Λ
, it easily

follows that PIntC
Λ

≤ PEAUF
Λ

. Thus, PIntC
Λ

≤ ε if PEAUF
Λ

≤ ε,
which means that Λ is (ω, t1, t2)-IntC. Moreover, from the
proof of Theorem 2, it follows that the scheme Λ meets
(ω, t1, t2)-NM. Thus, it is (ω, t1, t2)-NM ∧ IntC. On the other
hand, the scheme Λ does not obviously meet (ω, t1, t2)-APS.

�
It should be noted that the strongest security notion

for authenticated encryption is clearly the combined notion
(ω, t1, t2)-APS ∧ NM ∧ IntC ∧ IntP, that is, the one which
includes all the notions for confidentiality and authenticity.
However, from the above relations among the notions, we
can simply define the strongest security notion for authenti-
cated encryption in unconditional setting as follows:

Definition 9 (Strong Security): Let Π be an authenticated
encryption. Then, Π is said to be (ω, t1, t2)-secure ifΠmeets
both (ω, t1, t2)-APS and (ω, t1, t2)-IntC.

4. Analysis of Generic Composition Methods in Uncon-
ditional Security Setting

4.1 Generic Composition Methods

Let Π be an encryption scheme specified by an encryption
algorithm ENCΠ and a decryption algorithm DECΠ. Let
Λ be a signature scheme specified by a signing algorithm
S IGΛ and a verification algorithm VERΛ. We define typical
three types of composition methods to construct an authen-
ticated encryption Π̄ based on Π and Λ in the sequel. Con-
sider the case that a sender S i generates a ciphertext c̃ of a
plaintext m and then sends it to a receiver Rj in our model
in Sect. 2. Here, let e and s be S i’s encryption key in Π and
S i’s signing key in Λ, respectively. Also, let d and v be Rj’s
decryption key in Π and Rj’s verification key in Λ, respec-
tively. Then, S i’s encryption key in Π̄ is ẽ := (e, s), and Rj’s
decryption key in Π̄ is d̃ := (d, v). The typical three types of
composition methods, denoted by Encrypt-and-Sign, Sign-
then-Encrypt and Encrypt-then-Sign, are defined as follows:

• Encrypt-and-Sign:
c̃ = ENCΠ̄(ẽ,m,Rj) = (c, a), where c =

ENCΠ(e,m,Rj) and a = S IGΛ(s,m). DECΠ̄ is per-
formed by first performing DECΠ to recover m and
then verifying the signature a. If DECΠ outputs ⊥ or
VERΛ outputs f alse, DECΠ̄ outputs ⊥ implying that
the ciphertext is invalid.

• Sign-then-Encrypt:
c̃ = ENCΠ̄(ẽ,m,Rj) = ENCΠ(e, (m, a),Rj), where
a = S IGΛ(s,m). DECΠ̄ is performed by first perform-
ing DECΠ to recover (m, a) and then verifying the sig-
nature a. If DECΠ outputs ⊥ or VERΛ outputs f alse,
DECΠ̄ outputs ⊥ implying that the ciphertext is invalid.

• Encrypt-then-Sign:
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c̃ = ENCΠ̄(ẽ,m,Rj) = (c, a), where c =

ENCΠ(e,m,Rj) and a = S IGΛ(s, c). DECΠ̄ is per-
formed by first verifying the signature a and then per-
forming DECΠ to recover m. If VERΛ outputs f alse
or DECΠ outputs ⊥, DECΠ̄ outputs ⊥ implying that
the ciphertext is invalid.

In the rest of this section, we analyze the security of
the typical three types of composition methods mentioned
above.

4.2 Encrypt-and-Sign

The following theorems show that the Encrypt-and-Sign
composition method is not always secure even if the given
encryption meets APS and the given signature meets EAUF.
The proofs are similar to those of [4].

Theorem 4: Given an encryption scheme Π which meets
(ω, t1, t2)-APS and a signature scheme Λ which meets
(ω, t1, t2)-EAUF, there exists a signature schemeΛ′ such that
Λ′ meets (ω, t1, t2)-EAUF, but the scheme Π̄ formed by the
Encrypt-and-Sign composition method based on Π and Λ′

is not (ω, t1, t2)-APS.

Proof. Let Π = (GENΠ, ENCΠ,DECΠ) be the given en-
cryption scheme and Λ = (GENΛ, S IGΛ,VERΛ) the given
signature scheme. We construct a signature scheme Λ′ =
(GENΛ′ , S IGΛ′ ,VERΛ′) as follows: (i) GENΛ′ : GENΛ′ =

GENΛ; (ii) S IGΛ′ : for a message m, S IGΛ′(s,m) :=
m||S IGΛ(s,m). Consequently, the signed message is
(m, S IGΛ′(s,m)); and (iii) VERΛ′ : for a signed message
(m, a), parse a as a1||a2 where |a1| = |m|. If m = a1 and
VERΛ(v, (m, a2), S i) = true, VERΛ′ (v, (m, a), S i) = true.
Otherwise, VERΛ′(v, (m, a), S i) = f alse. Then, it is shown
that Λ′ is (ω, t1, t2)-EAUF if Λ is (ω, t1, t2)-EAUF. Then,
however, in Π̄ which is formed by the Encrypt-and-Sign
composition method based on Π and Λ′,

ENCΠ̄(ẽ,m,Rj)

= (ENCΠ(e,m,Rj), S IGΛ′(s,m))

= (ENCΠ(e,m,Rj),m||S IGΛ(s,m)).

Obviously, Π̄ is not (ω, t1, t2)-APS. �

Theorem 5: Given an encryption scheme Π which meets
(ω, t1, t2)-APS and a signature scheme Λ which meets
(ω, t1, t2)-EAUF, there exists an encryption scheme Π′ such
that Π′ meets (ω, t1, t2)-APS, but the scheme Π̄ formed by
the Encrypt-and-Sign composition method based on Π′ and
Λ is not (ω, t1, t2)-IntC.

Proof. Let Π = (GENΠ, ENCΠ,DECΠ) be the given en-
cryption scheme and Λ = (GENΛ, S IGΛ,VERΛ) the given
signature scheme. We construct an encryption scheme
Π′ = (GENΠ′ , ENCΠ′ ,DECΠ′ ) as follows: (i) GENΠ′ :
GENΠ′ = GENΠ; (ii) ENCΠ′ : for a plaintext m, let c =
ENCΠ(e,m,Rj). Then, choose r ∈ {0, 1} uniformly at ran-
dom. Then, ENCΠ′(e,m,Rj) := r||c; (iii) DECΠ′ : for
a ciphertext c, parse c as r||c′ where r is a bit. Then,

DECΠ′(d, c, S i) := DECΠ(d, c′, S i). Then, it is shown that
Π′ is (ω, t1, t2)-APS ifΠ is (ω, t1, t2)-APS. Then, however, Π̄
formed by the Encrypt-and-Sign composition method based
on Π′ and Λ,

ENCΠ̄(ẽ,m,Rj)

= (ENCΠ′(e,m,Rj), S IGΛ(s,m))

= (r||ENCΠ(e,m,Rj), S IGΛ(s,m)).

Let (r||c, a) be a ciphertext generated by the sender S i. Then,
DECΠ̄(d, (r′||c, a), S i) � ⊥, where r′ = 1 if r = 0 and r′ = 0
if r = 1. Thus, Π̄ is not (ω, t1, t2)-IntC. �

4.3 Sign-then-Encrypt

The following theorem shows that the Sign-then-Encrypt
composition method is not always secure even if the given
encryption meets APS and the given signature meets EAUF.
The proof is similar to that of [4].

Theorem 6: Given an encryption scheme Π which meets
(ω, t1, t2)-APS and a signature scheme Λ which meets
(ω, t1, t2)-EAUF, there exists an encryption scheme Π′ such
that Π′ meets (ω, t1, t2)-APS, but the scheme Π̄ formed by
the Sign-then-Encrypt composition method based on Π′ and
Λ is neither (ω, t1, t2)-APS nor (ω, t1, t2)-IntC.

Proof. Let Π = (GENΠ, ENCΠ,DECΠ) be the given en-
cryption scheme and Λ = (GENΛ, S IGΛ,VERΛ) the given
signature scheme. We construct the encryption scheme
Π′ = (GENΠ′ , ENCΠ′ ,DECΠ′) as in the proof of Theo-
rem 5. Then, it is shown that Π′ is (ω, t1, t2)-APS if Π
is (ω, t1, t2)-APS. However, in Π̄ formed by the Sign-then-
Encrypt composition method based on Π′ and Λ,

ENCΠ̄(ẽ,m,Rj)

= ENCΠ′(e, (m, S IGΛ(s,m)),Rj)

= r||ENCΠ(e, (m, S IGΛ(s,m)),Rj).

Obviously, as in the proof of Theorem 5, Π̄ is not (ω, t1, t2)-
IntC. Let (r||c) be a target ciphertext. Then, the adversary
can obtain the answer of the query (r′||c), where r′ = 1 if
r = 0 and r′ = 0 if r = 1, by asking the receiver Rj the
query, regarding Rj as a decryption-oracle. Therefore, Π̄ is
not (ω, t1, t2)-APS. �

4.4 Encrypt-then-Sign

The following theorem shows that the Encrypt-then-Sign
composition method is always secure if the given encryp-
tion meets APS and the given signature meets EAUF.

Theorem 7: Given an encryption scheme Π which meets
(ω, t1, t2)-APS, and a signature scheme Λ which meets
(ω, t1, t2)-EAUF, then the scheme Π̄ formed by the Encrypt-
then-Sign composition method based onΠ andΛmeets both
(ω, t1, t2)-APS and (ω, t1, t2)-IntC.
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Proof. Let Π = (GENΠ, ENCΠ,DECΠ) be the given en-
cryption scheme and Λ = (GENΛ, S IGΛ,VERΛ) the given
signature scheme. Then

ENCΠ̄(ẽ,m,Rj) = (c, a),

where c = ENCΠ(e,m,Rj) and a = S IGΛ(s, c). Since Π
is (ω, t1, t2)-APS and Λ is (ω, t1, t2)-EAUF, without loss of
generality we can assume that PPS

Π
≤ ε and PEAUF

Λ
≤ ε,

where PEAUF
Λ

:= max{PEAUF
Λ,1 , PEAUF

Λ,2 }.
First, by the definitions of PIntC

Π̄
and PEAUF

Λ
, it easily

follows that PIntC
Π̄

≤ PEAUF
Λ

. Thus, PIntC
Π̄

≤ ε if PEAUF
Λ

≤
ε, which implies that Π̄ is (ω, t1, t2)-IntC if Λ is (ω, t1, t2)-
EAUF.

Secondly, we will show that Π̄ is (ω, t1, t2)-APS if Π
is (ω, t1, t2)-APS and Λ is (ω, t1, t2)-EAUF. Before provid-
ing a formal proof, we briefly explain the idea of the proof.
Let (c, a) be a target ciphertext in Π̄. The ciphertext which
is different from (c, a) has the form (c′, a′) with c′ � c, or
(c, a′′) with a′′ � a. Even if the adversary asks the receiver
Rj, regarding him as a decryption-oracle, the query of the
form (c′, a′) with c′ � c, the adversary cannot obtain any
partial information on the plaintext underlying c since Π is
(ω, t1, t2)-APS. On the other hand, even if the adversary asks
the receiver Rj, regarding him as a decryption-oracle, the
query of the form (c, a′′) with a′′ � a, the adversary cannot
obtain the meaningful answer since Λ is (ω, t1, t2)-EAUF.
Thus, the queries of this form cannot help him to derive any
partial information on the plaintext underlying c. Therefore,
the adversary cannot eventually obtain any partial informa-
tion on the plaintext underlying c, even if he adaptively asks
queries.

Now, we show the formal proof that Π̄ is (ω, t1, t2)-APS
if Π is (ω, t1, t2)-APS and Λ is (ω, t1, t2)-EAUF. We note that
PPS
Π̄

(S i,Rj,W) is defined as follows.

PPS
Π̄

(S i,Rj,W) := max
eW

max
M̃S i

max
C̃R j

max
M̃S 1 ,...,M̃S l ,...,M̃S n1

(l�i)
max

C̃R1 ,...,C̃Rs ,...,C̃Rn2
(s� j)

max
c̃=(c,a)


∑

m∈Mk

∣∣∣∣Pr(m|c̃, eW ,

{M̃S l |1 ≤ l ≤ n1}, {C̃Rs |1 ≤ s ≤ n2}) − Pr(m)
∣∣∣∣
.

Here, in the above, any element of M̃S l (1 ≤ l ≤ n1)
is a pair of a plaintext mS l and a corresponding cipher-
text c̃S l = (cS l , aS l ) encrypted by S l. Then, we define
MS l := {(mS l , cS l )}; Any element of C̃Rs (1 ≤ s ≤ n2)
is a pair of a ciphertext c̃Rs = (cRs , aRs ) and a decryp-
tion result of c̃Rs using DECΠ̄ by Rs. Then, for C̃Rs =

{(c̃Rs , decryption result of c̃Rs using DECΠ̄ by Rs)}, we de-
fine CRs := {(cRs ,m̄Rs )}, where m̄Rs is defined as follows. If
the verification result of c̃Rs = (cRs , aRs ) using VERΛ by Rs

is true, let m̄Rs be the decryption result of cRs using DECΠ
by Rs. If the verification result of c̃Rs = (cRs , aRs ) using

VERΛ by Rs is f alse, let m̄Rs := ∅, where ∅ means empty-
information; and the target ciphertext c̃ = (c, a) is taken over
valid ciphertexts from S i to Rj.

Let d be a decryption key of Π held by Rj, and v a
verification key of Λ held by Rj. Also, let d̃ = (d, v) be
a decryption key of Π̄ held by Rj. For C̃Rj and the target
ciphertext c̃ = (c, a), we set

C̃′
Rj

:= {((c, a′),DECΠ̄(d̃, (c, a′), S i))|a′ � a} ⊂ C̃Rj

We consider the following two cases: (i) There ex-
ists some ((c, a′),DECΠ̄(d̃, (c, a′), S i)) ∈ C̃′

Rj
such that

DECΠ̄(d̃, (c, a′), S i) � ⊥; (ii) Otherwise, that is, C̃′
Rj
=

{((c, a′),⊥)|a′ � a} or C̃′
Rj
= ∅.

(i) In this case, the plaintext m0 := DECΠ̄(d̃, (c, a′), S i) =
DECΠ(d, c, S i) is revealed. Then, for any eW , {M̃S l |1 ≤
l ≤ n1}, and {C̃Rs |1 ≤ s ≤ n2, s � j},∑

m∈Mk

∣∣∣∣Pr(m|c̃ = (c, a), eW , {M̃S l |1 ≤ l ≤ n1},

C̃Rj , {C̃Rs |1 ≤ s ≤ n2, s � j}) − Pr(m)
∣∣∣∣

=
∑

m�m0

∣∣∣∣0 − Pr(m)
∣∣∣∣ + (1 − Pr(m0))

= 2(1 − Pr(m0))

= 2δ, (4)

where δ = 1 − Pr(m0) (0 ≤ δ ≤ 1).
(ii) In this case, for any eW , {M̃S l |1 ≤ l ≤ n1}, and {C̃Rs |1 ≤

s ≤ n2, s � j},∑
m∈Mk

∣∣∣∣Pr(m|c̃ = (c, a), eW , {M̃S l |1 ≤ l ≤ n1},

C̃Rj , {C̃Rs |1 ≤ s ≤ n2, s � j}) − Pr(m)
∣∣∣∣

≤
∑

m∈Mk

{∣∣∣∣ Pr(m|c̃ = (c, a), eW , {M̃S l |1 ≤ l ≤ n1},

C̃Rj , {C̃Rs |1 ≤ s ≤ n2, s � j})
− Pr(m|c, eW , {MS l |1 ≤ l ≤ n1},

CRj , {CRs |1 ≤ s ≤ n2, s � j})
∣∣∣∣

+
∣∣∣∣ Pr(m|c, eW , {MS l |1 ≤ l ≤ n1},

CRj , {CRs |1 ≤ s ≤ n2, s � j})

− Pr(m)
∣∣∣∣
}

=
∑

m∈Mk

∣∣∣∣Pr(m|c, eW , {MS l |1 ≤ l ≤ n1},CRj ,

{CRs |1 ≤ s ≤ n2, s � j}) − Pr(m)
∣∣∣∣ (5)

≤ PPS
Π (S i,Rj,W)

≤ PPS
Π

≤ ε, (6)

where the equality (5) follows from Lemma 1 in Ap-
pendix.
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Let E be the event that the case (i) occurs. Then, for S i, Rj

and W,

PPS
Π̄

(S i,Rj,W) ≤ Pr(E) · 2δ + Pr(¬E) · ε (7)

≤ PEAUF
Λ · 2δ + ε

≤ 3ε,

where the inequalty (7) follows from (4) and (6). From the
above, it follows that PPS

Π̄
≤ 3ε. Therefore, Π̄ is (ω, t1, t2)-

APS. �
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Appendix

Lemma 1: With the notations in the proof of Theorem 7,

Pr(m|c, eW , {MS l |1 ≤ l ≤ n1},CRj ,

{CRs |1 ≤ s ≤ n2, s � j})
= Pr(m|(c, a), eW , {M̃S l |1 ≤ l ≤ n1}, C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})

Proof.

Pr(m|c, eW , {MS l |1 ≤ l ≤ n1},CRj ,

{CRs |1 ≤ s ≤ n2, s � j})
− Pr(m|(c, a), eW , {M̃S l |1 ≤ l ≤ n1}, C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})
=
{

Pr(m|c, eW , {MS l |1 ≤ l ≤ n1},CRj ,

{CRs |1 ≤ s ≤ n2, s � j})
− Pr(m|c, eW , {M̃S l |1 ≤ l ≤ n1}), C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})
}

+
{

Pr(m|c, eW , {M̃S l |1 ≤ l ≤ n1}), C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})
− Pr(m|(c, a), eW , {M̃S l |1 ≤ l ≤ n1}), C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})
}
. (A· 1)

We first note that

Pr(m|c, eW , {M̃S l |1 ≤ l ≤ n1}), C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})
− Pr(m|(c, a), eW , {M̃S l |1 ≤ l ≤ n1}), C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})
= 0. (A· 2)

This is because m and a are independent after (c, eW , {M̃S l |1
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≤ l ≤ n1}), C̃Rj , {C̃Rs |1 ≤ s ≤ n2, s � j}) being given.
Next, we note that the following equality also holds:

Pr(m|c, eW , {MS l |1 ≤ l ≤ n1},CRj ,

{CRs |1 ≤ s ≤ n2, s � j})
− Pr(m|c, eW , {M̃S l |1 ≤ l ≤ n1}), C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})
= 0. (A· 3)

In fact, the above equality (A· 3) follows from the definitions
of M̃S l , MS l , C̃Rs and CRs (1 ≤ l ≤ n1, 1 ≤ s ≤ n2). Thus,
from (A· 1), (A· 2) and (A· 3), it follows that

Pr(m|c, eW , {MS l |1 ≤ l ≤ n1},CRj ,

{CRs |1 ≤ s ≤ n2, s � j})
− Pr(m|(c, a), eW , {M̃S l |1 ≤ l ≤ n1}, C̃Rj ,

{C̃Rs |1 ≤ s ≤ n2, s � j})
= 0.

Therefore, the proof is completed. �
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