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Abstract

The pairings on elliptic curves have been applied for realizing the secure ID based cryptosystems
that can be invulnerable to the collusion attacks. The computation of the pairing are necessary
for the cryptosystems, though the computation of the pairing requires high cost compared with the
computation cost for the power operation over the finite fields or on the elliptic curve when the
parameters are securely to be provided.

In this paper we propose an efficient method for a class of ID based cryptosystems which have
been proposed by the present authors. The proposed method is able to reduce the number of the
computations for the pairing for verifying the ID based signature and also for decoding of the ID
based public key cryptosystems with the authentication, by a factor of 2.

Moreover we propose the ID based public key cryptosystems with signature and the ID based
public key cryptosystems having the multiple centers.

1 Introduction

The pairings on elliptic curves are applied for the secure ID based cryptosystems that can be invulnerable
to the collusion attacks. The computation of the pairing are necessary for the cryptosystems, though the
computation of the pairing requires high cost compared with the computation cost for the power operation
over the finite fields or on the elliptic curve when the parameters are securely to be provided.

In this paper we propose an efficient method for the ID based signature scheme and the new ID
based public key cryptosystem with the authentication which have been proposed by the present authors
[3][4][8][9][10][11]. The proposed method is able to reduce the number of the computations of the pairing for
the verification of the ID based signature and also for the decoding of the ID based public key cryptosystems
with the authentication, by a factor of 2. Moreover we propose the ID based public key cryptosystems
with the signature and the ID based public key cryptosystems having the multiple centers.

2 Reduction of Computation for Verification of ID based signa-
ture

2.1 Verification Equation

The equation for verifying the signature will be referred to as the verification equation. The idea of the
reducing the computation cost for the verification is based on the modifying of the verification equation.
The type of the verification equation of the ID based signature [8][9] can be described as follows:

e’n(a’PJ bQ) =A- en(cP, dQ)7 (1)
or
A = e,(aP,bQ) - en(cP,—dQ), (2)

where a,b,c and d are appropriately chosen integers in Z,. Weil pairings or Tate pairings must be
computed twice for checking whether the verification equation holds or not. The cost of the computation
of the pairing is not small. To improve this, we propose the reduced verification equation as follows:

en(aP +dQ,cP +bQ) = en(aP,cP)en(aP,bQ)en(dQ,cP), en(dQ,bQ))
= en(aPa bQ)/en(CPa dQ) = A (3)

It should be noted that e, (P, P) = €,(Q,Q) = 1 and e,(Q, P) = e,(P,Q) .
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2.2 Preliminary

The trustful center generates the elliptic curve such that the pairing on the curve can be computed and
the discrete logarithm problem on the curves and over the group of the n-th group formed by the values of
the pairing are difficult. We assume here that n is a 160bits prime from a practical point of view. ! The
center chooses 2 n-torsion points P, Q € E[n] such that (P) # (@) and the random integer [ € Z,,. Let Iy
denotes the identity(ID) information of user U where E[n] is an n-torsion group of E(F,+). The trustful
center publicizes the algorithms e, ( , ) and f(), where e, ( , ) is a pairing and f() is a one way function
which embeds the ID information Iy to the element Py = f(Iy) of the n-torsion group E[n] € E(F;).
The center then computes Ky = [Py and sends Ky secretly to the user U.

2.3 Conventional ID based Signature with Pairings(ElGamal Type)

The ElGamal type signature scheme can be described as follows[8][9] :
Signature : The signer A generates the signature {R, S} of the message m as follows:

R = kQ= (zgr,yr), (4)
h h l
5 (Z)PA_}_%KA:WPA_ (5)

Verification : The verifier V can verify the signature {R, S} by checking if the following verification
equation holds or not:

en(sa R) = en(PAa h(m)Q + :L.RIQ) (6)

The verifier must compute the pairings twice for checking if the above equation holds or not.
On the other hand, the above verification equation can be represented as Eq(1), where A = 1,

_ h(m)I:—a:Rl7 b= K
= 1, d = h(m)+ zgl.

Consequently, the verifier V can verify the signature {R, S} by checking if the following equation holds
or not:

en(S + h(m)Q + zr(1Q), P4 + R)
=en(S, R)en(Pa, (h(m) +zrl)Q)™* = 1. (7)

Note that the verifier can verify the signature by computing a pairing only once with this equation.

2.4 Conventional ID based Signature with Pairings(Schnorr Type)

The Schnorr type signature scheme can be described as follows[9]:
Signature : The signer A generates the signature {e, S} of the message m as follows:

r o= en(PAakQ) :en(PAaQ)ka (8)
e = h(ml|r), 9)
S = eKas+kPy= (el + k)PA. (10)

Verification : The verifier V can verify the signature {e, S}, by checking if the following verification
equations hold or not:

w = en(S,Q)en(Pa,—€lQ) = en(Pa, Q), (11)
e = h(m|w). (12)
The verifier must compute the pairings twice for checking if the above equation holds or not.

On the other hand, the above verification equation can be represented as Eq.(3). Therefore, the verifier
V can compute w by the following equation:

en(S + elQ;PA + Q)
= en(Sa PA)en(Sa Q)en(elQa PA)en(elQa Q)
= en(5,Q)en(Pa, —€lQ). (13)

Note that the verifier can verify the signature by computing a pairing only once with this equation.

w

IThe group formed by the values of pairing equal to the group of n-th root of unity on Fgv. In order to the discrete
logarithm over these groups become difficult, n has a prime factor of size 160bits or lager.



3 Reduction of Computation for ID based Public Key Cryp-
tosystems

3.1 Preliminary

The trustful center generates an elliptic curve such that the pairing on the curve can be computed and
the discrete logarithm problem on the curves and over the group of the n-th group formed by the values
of the pairing are difficult. The center chooses 2 n-torsion points P, € E[n| such that (P) # (@) and
the random polynomial f(z) over Z, such that

f(z) = agz? + ag_124 + - -+ a12 + ao. (14)

The center then publicizes the algorithms e, ( , ), and public information a;Q € E[n] (i = 0,---,d) and
y = en(P,Q) € F;y .2 Finally, the center computes U’s secret key Ky as follows:

1

Ky = mpa (15)

and sends Ky secretly to the user U.

3.2 1ID based Public Key Cryptosystem with Authentication

When using the keys described above[10], it is difficult to construct the ID based key sharing scheme.
However, the ID based public key can be modified to the ID based public key cryptosystems with the
authentication [11].

Encryption : The sender B chooses 2 random integers r and k and encrypts the message m for the
receiver A as follows:

d
Ci = TZIAiaiQ-i-kKB
=0
k
= Tf(IA)Q+mPa (16)
C;, = maoytk (17)

The sender sends the encrypted data Cy,Cs to the receiver A.
Decryption : Using the secret key K 4, the receiver A can decrypt the message as follows:

d
Co @ en(Ka, Cr)en (Ch ZIBiaiQ> (18)
=0
= mo yr+k D yryk:

On the above equation, for the given n-torsion points P, @, R € E[n], the following product must be
computed:

en(P, R)en (R, Q). (20)
The product of the pairings can be reduced to a pairing by the binomial property as

en(P,R)en(R,Q) = en(P,R)en(—Q,R)
= en(P-Q,R). (21)

Therefore, the above decryption can be computed as follows:

d
Co: @ e (KA - ZIBiaiQ, Cl)

i=0

2Tt should be noted that if the user U has already received the key Kj7, the user can generate y as follows :
d

Y= en(KUszUiaiQ) = en(Kva(IU)Q) = en(PvQ)

i=0



= Coen (LP — fI5)Q, rf(INQ + %p)

f(14)
— r+k 1 L
= v oen (g P rH0Q) en (5P £19)Q)
= ma y7'+k @ yryk

3.3 ID based Public Key Cryptosystem with Signature

The ID based public key cryptosystem with the authentication described in 3.2 cannot prevent the receiver
from substituting another message for the encrypted message. Therefore, the system cannot be used for
the signature scheme. Modifying the ID based public key cryptosystem with the authentication described
in 3.2, we can construct a new ID based public key cryptosystem with the signature as we shall show
below.

Encryption : The sender B chooses random integers r, k and encrypts the message m for the receiver
A as follows:

d
C, = k <Z I4fa;Q + h(m)KB>
i=0
_ hm)
Co = mad yk(1+h(m))_ (24)

The sender B then sends the encrypted data C7,C5 to the receiver A.

Using the secret key K 4, the receiver A can decrypt and verify the message as follows:
Decryption :

d
D = €n (KA - Z IBiaiQ) Cl) = yk(1+h(m)), (25)
=0
m = Co®D. (26)
Verification :
en (K4, C) ™) = p. (27)

Another computation of the decryption and verification for the new ID based public key cryptosystem
with the signature can be given as follows:

Decryption :
Dy = e,(Ka, C1) =y, (28)
Dy = e, (Ch zd:IBiaz'Q> =y, (29)
m = CzeaDllz;; (30)

Verification :
D™ = D, (31)

4 Multiple Centers

4.1 Conventional Cryptosystems

It is easy to modify the conventional ID based cryptosystems to the systems having the multiple center
as we shall show in the following[1][2].



We assume here that L centers are exist. The i-th center C; chooses a random integer I; € Z,, and
computes the secret key for the user A as

Ka; = [;Pa. (32)

The user then computes his or her secret key by
L L
Ko=) Kai=)» liPa. (33)
i=1 i=1

4.2 Key Generation

For the ID based public key cryptosystems and the signature schemes proposed in [10], it is difficult to
establish the multiple key generation centers. In this section, we present a new method for the establishing
of two centers.

The 1st center and the 2nd center generate the secret key of the system as follows:

f(z) = ao+az, (34)
g(x) = by +biz. (35)

The 1st center generates the public key as sag@,sa;@ and the 2nd center generates the public key,
tho P, tby P. The 1st center then generates the private key of user A as

1
ka= =P, (36)
f(14)
and the 2nd center generates the private key of user A as
~ 1
ka= Q 37)
9(14) (
Then the user A computes the private key by
1 1

Koa=ka—ks= Q. (38)

- p__-
f(Ia)" g(la)
The additional public keys of the centers are y*,y* where y = e, (P, Q).

4.3 Public Key Cryptosystem

Using the key described above, the sender can encrypt the message m in the following way.
Encryption :
The sender chooses a random integer k£ and encrypts the message m for the receiver A as follows:

Cl = k(SaoQ + IASCllQ + tboP + IAtblp)
= ksf(Ia)Q + ktg(Is)P, (39)
Cy = mayFtH, (40)

Decryption : Using the secret key K 4, the receiver A can decrypt the message as follows:

Co@en(Ka, C1) = may*ct) @e,(ksP,Q)en(—Q, ktP)

4.4 Signature Scheme

Using the key described above, the signer can sign the message m in the following ways.

[ElGamal TYPE]

Signature : The signer A chooses a random integer k and generates the signature {R, S} of the message
m as follows :

R = ksf(IA)Q +ktg(Ia)P = (zr,yn), (42)
s = Mgy,

_ hm)f(a) +zr , h(m)g(Ia) +zr

S T M@ T kel 43)



Verification : The verifier V can confirm the validity of the signature {R, S}, when the following
equations hold :

en(S,R) = yh(m)(Sf(1',«1)4‘159(13«1))+(S+'5)ER7 (44)

sa sa h
((y 0 ,ytbo ) (y 1 ytbl )IA ) (m) ,y(s+t)wR .

[Schnorr TYPE]
Signature : An signature set {e, S} of the message m is computed by

k
r o= (ySf(IA)+t9(IA)) (45)
e = h(mlr), (46)
S = eKa+k(P-Q)
e e
= —+k)P—<—+k>Q. 47
(7 o) 4o
Verification :  The verifier V can confirm the validity of the signature {e, S} when the following
equations hold :
w = en(S,5f(IA)Q +tg(La)P) -y~ *C*"
yPsF(Ta)+ta(la)) (48)
e = h(mllw). (49)

5 Conclusions

We have proposed the efficient method for a class of ID based cryptosystems, the ID based public key
cryptosystem with signature and the ID based cryptosystems having the multiple centers.
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