
The Eighth Australasian Conference on Information Security and Privacy (ACISP ’03).
(9 – 11 july 2003, Wollongong, Australia)
R. Safavi-Naini Ed. Springer-Verlag, LNCS 2727, pages 383–401.

Parallel Authentication

and Public-Key Encryption

Josef Pieprzyk1 and David Pointcheval2

1 Centre for Advanced Computing – Algorithms and Cryptography
Department of Computing, Macquarie University

Sydney, NSW 2109, AUSTRALIA
josef@ics.mq.edu.au
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Abstract. A parallel authentication and public-key encryption is introduced and ex-
emplified on joint encryption and signing which compares favorably with sequential
Encrypt-then-Sign (EtS) or Sign-then-Encrypt (StE) schemes as far as both efficiency
and security are concerned. A security model for signcryption, and thus joint encryption
and signing, has been recently defined which considers possible attacks and security
goals. Such a scheme is considered secure if the encryption part guarantees indistin-
guishability and the signature part prevents existential forgeries, for outsider but also
insider adversaries. We propose two schemes of parallel signcryption, which are effi-
cient alternative to Commit-then-Sign-and-Encrypt (CtE&S). They are both provably
secure in the random oracle model. The first one, called generic parallel encrypt and

sign, is secure if the encryption scheme is semantically secure against chosen-ciphertext
attacks and the signature scheme prevents existential forgeries against random-message
attacks. The second scheme, called optimal parallel encrypt and sign, applies random
oracles similar to the OAEP technique in order to achieve security using encryption
and signature components with very weak security requirements — encryption is ex-
pected to be one-way under chosen-plaintext attacks while signature needs to be secure
against universal forgeries under random-plaintext attack, that is actually the case for
both the plain-RSA encryption and signature under the usual RSA assumption. Both
proposals are generic in the sense that any suitable encryption and signature schemes
(i.e. which simply achieve required security) can be used. Furthermore they allow both
parallel encryption and signing, as well as parallel decryption and verification. Proper-
ties of parallel encrypt and sign schemes are considered and a new security standard
for parallel signcryption is proposed.
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1 Introduction

The need for fast cryptographic transformations has never been so urgent as today
when new multimedia applications such as distance learning, video on demand and
TV channels delivery via Internet, interactive e-Commerce, etc. rely on secure trans-
fer of large volumes of data. Typically data in transit needs to be cryptographically
protected to provide either confidentiality and/or authenticity. As modern multimedia
applications are run in real time, there are stringent requirements imposed on delay
introduced by cryptography.

To speed up cryptographic transformations, we may apply two basic approaches.
Firstly, we may design faster (symmetric or asymmetric) cryptographic algorithms.
This option is not available most of the time. Once an algorithm becomes the standard
or has been incorporated in hardware, users will be stuck with it for some time. Besides,
the speed is typically determined by the number of rounds (in private key case) or by
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the size of the message (in public-key case). In the second approach, we can implement
a parallel cryptographic system. Note that block ciphers (such as DES) have several
operation modes from which some are sequential (like CBC and CFB) and some are
parallel (like ECB and OFB).

The main idea is to take a large message block, divide it into blocks of the size
determined by the applied cryptographic algorithm (in case of DES, the block size
would be 64 bits) and apply the chaining using less expensive operations before the
chained blocks are subject to cryptographic operation performed in parallel.

Consider what kind of cryptographic operations make sense for parallel execution.
Encryption can be sped up by putting parallel encryption threads. For public-key
cryptography, the chaining can be done by using hashing (hashing is much faster than
public-key encryption). In the case of private-key cryptography, the chaining must be
based on operations much faster than hashing (and encryption) such as bit-wise XOR.

The situation with digital signature looks differently. If the signer is a single person,
then generation of parallel signatures (for the same message) is not very useful – one
signature normally is enough. A plausible application of parallel signatures with a
single signer is the case when the message is long lived and whose authenticity must
be asserted even if one or more signature algorithms have been broken. More realistic
application is when the same message is being signed by many co-signers in parallel
as this is often required in group-oriented cryptography.

The most interesting case is, however, joint parallel encryption and signing. The
scheme produces strings that can be seen from two different angles as designated
verifier signatures or signed ciphertexts which can be verified by unique receiver. The
parallel encryption and signing was introduced by [1]. Independently, the concept
has been developed by the authors in this work. The both works can be seen as
generalizations of the signcryption concept introduced by Zheng [17].

The work is structured as follows. Section 2 puts forward arguments for parallel
encryption and signature, a.k.a. signcryption, and contrasts the approach with the
previous ones. The security model for signcryption is presented in Section 3. The
generic and optimal schemes for parallel signcryption are defined and analyzed in
Sections 4 and 5, respectively. Section 6 concludes the work.

2 The Concept of Parallel Signing and Public-key Encryption

The encryption and signature algorithms are two basic cryptographic tools provid-
ing privacy and authenticity, respectively. However, in many applications it is desired
to achieve both privacy and authenticity. Among many examples, we can mention
transport of session keys between nodes of a network whose secrecy and authenticity
is absolutely imperative to ensure secure data handling during sessions. Negotiations
between two parties (businesses, institutions, countries, etc) typically have to be con-
ducted in such a way that both the confidentiality and authenticity are guaranteed.
The lack of confidentiality can be exploited by competitors. On the other hand, the
lack of authenticity undermines the credibility of the negotiation process.

Both security goals are relatively easy to achieve if the cryptographic operations
are performed using symmetric primitives. Note that in this setting, the fact that
both parties share the same cryptographic key, means that everything not generated
by one party had to be originated by the other one. In the public-key setting, cryp-
tosystem can be applied either for privacy or authenticity. Clearly, when both goals
have to be achieved, two cryptosystems have to be used in either Sign-then-Encrypt
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(StE) or Encrypt-then-Sign (EtS) configuration [3]. Note that both configurations are
inherently sequential.

Encryption and authentication are inseparable with conventional cryptography.
The discovery of the public-key cryptography [7] divorced these two nicely coupled
security goals and enabled party to choose either confidentiality (public-key encryption
schemes) or authentication (signature schemes). Now in many applications, one would
like to get both confidentiality and authentication but using public-key cryptography.
Note that the come back to the conventional cryptography remains an unattractive
option. Indeed, once the public-key cryptography is properly implemented with a
secure and reliable public-key infrastructure (PKI), every single pair of parties may
establish a secure communication (with confidentiality or/and authenticity) using the
certificates of their public keys. Note also that within a single pair of parties, each
party is uniquely identifiable by the public key of the receiver and the public key of
the sender. Moreover, a signed ciphertext generated during communication between
two parties can be explicitly attributed to a single sender whereas with symmetric
cryptography this is not the case. Cryptograms are attributed implicitly — if I did not
send this message, the other party did. However, it does not provide the important
non-repudiation property. Furthermore, authentication fails when the secret key is
shared by more than two parties.

Authenticated encryption has been studied by many authors mainly in the context
of secret-key cryptography and message authentication code that is a symmetric-key
equivalent to signature (see [3, 4]). Zheng [17] considered the problem in the context
of public-key cryptography, with signcryption. The main problem considered in the
paper [17] was how to design encryption and signature so that their concatenation
maximizes savings of computing resources. A security model of parallel signcryption
was defined recently in the work [1].

Our goal is to achieve the lower bound in terms of time necessary to perform
authenticated encryption, and decryption as well, or

time(parallel encrypt & sign) ≈ max{time(encrypt),time(sign)}
and time(parallel decrypt & verify) ≈ max{time(decrypt),time(verify)}

At best, one would expect that parallel encryption and sign will consume roughly
the same time as the most time-consuming operation (either signing or encryption,
for the joint encryption and signing, and either verifying or decrypting, for the joint
decryption and verifying).

A hybrid approach called the envelop method can be used for authenticated en-
cryption. Public key encryption and signature are used independently to generate
cryptograms of both a secret key (which has been chosen at random by the sender)
and a signature of a message. This method can concurrently encrypt and sign. The
encryption is used for a secret key that is decrypted by the receiver. The secret key
can be applied to encrypt a message using a symmetric encryption. This method can
be simplified by independent encryption and signing (perhaps performed in parallel)
of the same message. Note that in this case, weaknesses of encryption and signature
schemes are likely to be preserved. In contrast, we show how to combine encryption
and signature schemes so that they strengthen each other while they can still be run
in parallel.

The Commit-then-Encrypt-and-Sign (CtE&S) can also be used to solve our prob-
lem [1], but it still requires strongly secure encryption and signature primitive to
provide secure signcryption.
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3 Model of Security

3.1 Signature Schemes

Description. A digital signature scheme Sign consists of three algorithms [10]:

– GenSig, the key generation algorithm which, on input 1k, where k is the security
parameter, outputs a pair (pk, sk) of matching public and private keys;

– Sig, the signing algorithm which receives a message m and the private key sk, and
outputs a signature σ = Sigsk(m);

– Ver, the verification algorithm which receives a candidate signature σ, a message
m, and a public key pk, and returns an answer Verpk(m,σ) as to whether or not
σ is a valid signature of m with respect to pk.

Security Notions. Attacks against signature schemes can be classified according to
the goals of the adversary and to the resources that it can use. The goals are diverse
and include:

– Disclosing the private key of the signer. This is the most drastic attack. It is
termed the total break.

– Constructing an efficient algorithm that is able to sign any message with a signif-
icant probability of success. This is called the universal forgery. When the scheme
prevents this kind of forgery it is said to be Non Universally Forgeable (NUF).

– Providing a single message/signature pair. This is called the existential forgery.
When the scheme prevents this kind of forgery it is said to be Non Existentially
Forgeable (NEF).

In terms of resources, we focus on two specific attacks against signature schemes:
the no-message attacks and the known-message attacks. In the first scenario, the at-
tacker only knows the public key pk of the signer. In the second, the attacker has
access to a list of valid message/signature pairs. But this list may contain messages
randomly and uniformly chosen, the attack is thus termed the random-message attack
(RMA). Finally, the messages may be chosen, adaptively, by the adversary himself, we
thus talk about thechosen-message attack (CMA).

In known-message attacks, one should point out that we consider a forgery of any
valid signature that is not in the above list. This is the strongest security level, a.k.a.
non-malleability [16].

3.2 Public-Key Encryption

Description. A public-key encryption scheme Encrypt is defined by three algo-
rithms:

– GenEnc, the key generation algorithm which, on input 1k, where k is the security
parameter, produces a pair (pk, sk) of public and private keys;

– Enc, the encryption algorithm which, on input a plaintext m and a public key pk,
outputs a ciphertext c;

– Dec, the decryption algorithm which, on input a ciphertext c and a private key
sk, outputs the associated plaintext m (or ⊥, if c is an invalid ciphertext).
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Security Notions. The simplest security notion is one-wayness (OW): with public
data only, an attacker cannot recover the whole plaintext m of a given ciphertext c.
We denote by Succow

Encrypt(t) the maximum probability of success that an adversary
can invert the encryption of a random plaintext in time t.

A stronger security notion has also been defined. It is the so-called semantic se-
curity (a.k.a. indistinguishability of encryptions [9], IND). If an attacker has some
information about the plaintext, the view of the ciphertext should not leak any ad-
ditional information. This security notion more formally considers the advantage an
adversary can gain when trying to guess, between two messages, which one has been
encrypted. In other words, an adversary is seen as a 2-stage Turing machine (A1, A2),
and the advantage Advind

Encrypt(A) should be negligible for any adversary, where

Advind
Encrypt(A) = 2× Pr

[

(pk, sk)← Gen(1k), (m0,m1, s)← A1(pk),
b ∈ {0, 1}, c = Encpk(mb) : A2(m0,m1, s, c) = b

]

− 1.

On the other hand, an attacker can use many kinds of attacks, depending on the
information available to him. First, in the public-key setting, the adversary can en-
crypt any plaintext of his choice with the public key: this basic scenario is called
thechosen-plaintext attack, and denoted by CPA. Extended scenarios allow the adver-
sary a restricted or unrestricted access to various oracles. The main and strongest
one is the decryption oracle which can be accessed adaptively in the chosen-ciphertext
scenario, denoted CCA. There is the natural restriction that any query to this oracle
should be different from the challenge ciphertext.

3.3 Joint Encryption and Signing: Signcryption

The following security model has been recently suggested and analyzed [1].

Description. A signcryption scheme SignCrypt is defined by three algorithms:

– Gen, the key generation algorithm which, for a security parameter k, outputs a
pair of keys (SDK,VEK). SDK is the user’s sign/decrypt key, which is kept secret,
and VEK is the user’s verify/encrypt key, which is made public.

– SigEnc, the encryption and signing algorithm which, for a message m, the public
key of the receiver VEKR and the private key of the sender SDKS , produces a
signed–ciphertext c = SigEncSDKS ,VEKR

(m).

– VerDec, the decryption and verifying algorithm which, for a signed–ciphertext c,
the private key SDKR of the receiver and the public key VEKS of the sender,
recovers the message m = VerDecVEKS ,SDKR

(c). If this algorithm fails either to
recover the message or to verify authenticity, it returns ⊥.

Security Notions. For the security notions of a signcryption, one can combine the
classical ones for signature [10] and encryption [2], under adaptive attacks. With an
access to the public information, PUB = (VEKS ,VEKR), and oracle access to the
functionalities of both S and R (i.e. access to the signcryption and the de-signcryption
oracles), the adversary should be able to break:

– authenticity (NEF) — come up with a valid signed–ciphertext of a new message,
and thus provide an existential forgery ;

– privacy (IND) — break the indistinguishability of signed–ciphertexts.
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One should note that the adversary may be one of S or R themselves. But then, S may
want to break the privacy, or R may want to break authenticity. If the signcryption
scheme prevents existential forgeries and guarantees indistinguishability, in the above
attack scenario, called adaptive attacks (AdA), we say the scheme is secure.

Definition 1. A signcryption scheme is secure if it achieves IND/NEF under adaptive
attacks.

Some Notations. Denote by Succnef−ada
SignCrypt(A) the probability of success of an ad-

versary in forging a new valid signed–ciphertext. Similarly, denote by Adv ind−ada
SignCrypt(A)

the advantage of an adversary in distinguishing signed–ciphertexts. Finally, denote
Winsecure

Π (A) as the maximum of these two values.
Let Succnef−ada

SignCrypt(t, q1, q2), Advind−ada
SignCrypt(t, q1, q2) and Winsecure

SignCrypt(t, q1, q2) be the re-
spective probabilities for an adaptive adversary whose running time is bounded by
t, while asking at most q1 queries to the signcryption oracle and q2 queries to the
de-signcryption oracle.

4 Generic Parallel Signcryption

A trivial implementation of parallel signcryption could be as simple as encrypt and
sign (with message recovery to allow parallel decryption and verification) the same
message in parallel. This, of course, does not work as the signature reveals the message.
Another classical solution could be the well-known envelope technique that first defines
a secret session key. This key is encrypted under the public key encryption and is used,
in parallel, to encrypt, under a symmetric encryption, the message and a signature
on it. If one assumes that the symmetric encryption has a negligible cost (some may
disagree with), then this allows parallel encryption and signing.The recipient first
decrypts the session key, and then extracts the message and the signature. Only when
all that operations have been completed, one can verify the signature. Therefore,
decryption and verification cannot be done in parallel.

The Commit-then-Encrypt-and-Sign (CtE&S) [1] is a little bit better. Indeed, it
first commits the message m, getting c the actual committed value, and d the decom-
mitment. Then one encrypts d in e and signs c in s. The signed–ciphertext (e, c, s)
can be de-signcrypted by first verifying (c, s) and decrypting e into d. The decommit-
ment d finally helps to recover m. But the decommitment may not be as efficient as
required.

Our idea exemplifies this technique, but with an efficient commitment scheme,
in the random oracle model: given a message, we design a (2,2) Shamir secret shar-
ing scheme [14] for which the secret is the message. Next, one of the shares is en-
crypted, the other is authenticated (in parallel). The perfectness of Shamir secret
sharing guarantees that the knowledge of one of the shares provides no information
(in the information-theoretical sense) about the secret.

4.1 Description

The building blocks are:

– an encryption scheme Encrypt = (GenEnc,Enc,Dec),
– a signature scheme Sign = (GenSig,Sig,Ver),
– a large k-bit prime p which defines the field Zp,



7

– a hash function h : Zp → Zp (assumed to behave like a random oracle [5]),

– k1 and k2, two security parameters such that k = k1 + k2.

Key Generation: Gen(1k) = GenSig × GenEnc(1k)
One first gets (sk1, pk1)← GenSig(1k) and (sk2, pk2)← GenEnc(1k). Then, one defines
SDK = (sk1, sk2) and VEK = (pk1, pk2).

Encrypt and Sign Algorithm: SigEncSDKS ,VEKR
(m)

1. Let m ∈ {0, 1}k1 be the message to be encrypted and signed. Choose a random
integer r ∈ {0, 1}k2 such that (m‖r) ∈ Zp and compute a = h(m‖r).

2. Form an instance of (2, 2) Shamir secret sharing scheme over Zp with the polyno-
mial F (x) = (m‖r) + ax mod p. Define two shares s1 = F (1) and s2 = F (2).

3. Calculate (in parallel) c1 = EncpkR
(s1) and c2 = SigskS

(s2). The signed–ciphertext

(c1, c2) is then dispatched to the receiver R.

Decrypt and Verify Algorithm: VerDecVEKS ,SDKR
(c1, c2)

1. Perform decryption and signature verification in parallel so, t1 = DecskR
(c1) and

t2 = VerpkS
(c2). Note that both the decryption Dec and verification Ver algorithms

return integers in Zp, unless some failure occurs. Indeed, it is possible that Dec

returns ⊥ if it decides that the cryptogram is invalid. Similarly, Ver returns a
message (signature with message recovery), or ⊥ if the signature is invalid. In
case of one failure, the decryption and verifying algorithm VerDec returns ⊥ and
stops.

2. Knowing two points (1, t1) and (2, t2), use the Lagrange interpolation and find
the polynomial F̃ (x) = a0 + a1x mod p.

3. Check whether a1 = h(a0). If the check holds, the algorithm extracts m from a0

(note that a0 = (m‖r)) and returns m. Otherwise, the algorithm outputs ⊥.

4.2 Security of Generic Scheme

Theorem 2. If the encryption scheme is IND-CCA and the signature scheme is NEF-
RMA, then the generic parallel signcryption scheme is secure ( IND/NEF-AdA).

More precisely, one can claim the following result:

Lemma 3. Let us consider an AdA adversary A against IND and NEF of the generic
parallel signcryption, with a running time bounded by t, while asking qh queries to
the random oracle h, and q1 and q2 queries to the signcryption and de-signcryption
oracles respectively. Then, the winning probability of this adversary is bounded by

2× Advind−cca
Encrypt (t′, q2) + 6× Succnef−rma

Sign (t′, q1) + (5 + 2q1)×
qh + q1 + q2

2k2
,

with t′ ≤ t + (q1 + q2)(τ + O(1)), where τ denotes the maximal running time of the
encryption, decryption, signing and verification algorithms.

The proof can be found in the Appendix A.
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4.3 Properties

From the efficiency point of view, this generic scheme is almost optimal since only one
hash value and two additions are required before the parallel encryption and signature
processes. The reverse process reaches the same kind of optimality.

However, the security requirements of the basic schemes, the encryption scheme
Encrypt and the signature scheme Sign, are very strong. Indeed, the encryption
scheme is required to be semantically secure against chosen-ciphertext attack and the
signature scheme must already prevent existential forgeries.

5 Optimal Parallel Signcryption

Adding a kind of OAEP technique [6], we can improve the generic scheme, in the
sense that we can weaken the security requirements of the basic primitives. The new
proposal just requires the encryption scheme to be deterministic and one-way against
chosen-plaintext attack, which is a very weak security requirement (even the plain-
RSA [12] achieves it under the RSA assumption). The signature scheme is required
to prevent universal forgeries under random-message attack (the plain-RSA signature
also achieves this security level).

5.1 Description

The building blocks are:

– an encryption scheme Encrypt = (GenEnc,Enc,Dec),

– a signature scheme Sign = (GenSig,Sig,Ver),

– a large k-bit prime p which defines the field Zp,

– k1 and k2, two security parameters such that k = k1 + k2.

– hash functions (assumed to behave like random oracles [5]),

f : {0, 1}k → {0, 1}k , g : {0, 1}k → {0, 1}k and h : {0, 1}k+k1 → {0, 1}k2 .

Key Generation: Gen(1k) = GenSig × GenEnc(1k)
One first gets (sk1, pk1)← GenSig(1k) and (sk2, pk2)← GenEnc(1k). Then, one defines
SDK = (sk1, sk2) and VEK = (pk1, pk2).

Encrypt and Sign Algorithm: SigEncSDKS ,VEKR
(m)

1. Let m ∈ Zp be the message to be encrypted and signed. Choose a random integer
r ∈ {0, 1}k1 and compute a = h(m‖r).

2. Form an instance of a (2, 2) Shamir secret sharing scheme over Zp with the poly-
nomial F (x) = (a‖r) + mx mod p. Define two shares s1 = F (1) and s2 = F (2).

3. Compute the transform r1 = s1 ⊕ f(s2) and r2 = s2 ⊕ g(r1).

4. Calculate (in parallel) c1 = EncpkR
(r1) and c2 = SigskS

(r2). The signed–ciphertext

(c1, c2) is then dispatched to the receiver R.
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Decrypt and Verify Algorithm: VerDecVEKS ,SDKR
(c1, c2)

1. Perform decryption and signature verification in parallel so, u1 = DecskR
(c1) and

u2 = VerpkS
(c2). Note that both the decryption Dec and verification Ver algorithms

return integers in Zp, unless some failure occurs. Indeed, it is possible that Dec

returns ⊥ if it decides that the cryptogram is invalid. Similarly, Ver returns a
message (signature with message recovery), or ⊥ if the signature is invalid. In
case of one failure, the decryption and verifying algorithm VerDec returns ⊥ and
stops.

2. Compute the inversion t2 = u2 ⊕ g(u1) and t1 = u1 ⊕ f(t2).

3. Knowing two points (1, t1) and (2, t2), use the Lagrange interpolation and find
the polynomial F̃ (x) = a0 + a1x mod p.

4. Extract r from a0 and check whether h(a1‖r)‖r = a0. If the check holds, the
algorithm returns a1, to be m. Otherwise, the algorithm outputs ⊥.

5.2 Security Analysis

Theorem 4. If the encryption scheme is deterministic and OW-CPA, and the sig-
nature scheme is NUF-RMA, then the optimal parallel signcryption scheme is secure
( IND/NEF-AdA).

About this theorem, one can claim a more precise result:

Lemma 5. Let us consider an AdA adversary A against IND and NEF of the optimal
parallel signcryption scheme, with a running time bounded by t, while asking q queries
to the random oracles, and q1 and q2 queries to the signcryption and de-signcryption
oracles, respectively. Then the winning probability of this adversary is bounded by

Succ
ow−cpa
Encrypt (t) + Q× Succnuf−rma

Sign (t′, Q) +
1

2k2
× (1 + 4Q2 + 3q2 + q1) +

q

2k1
,

with t′ ≤ t+Q(τ+O(1)), where τ denotes the maximal running time of the encryption,
decryption, signing and verification algorithms, and Q = q + q1 + q2.

Proof. The proof is similar to the proof of the Lemma 3. It is therefore also divided
into two parts. In the first one, we are going to show that the scheme meets IND-AdA,
but under the assumption that it meets NEF-AdA. The second part deals with NEF,
and shows that it actually meets NEF-AdA.

In the proof, when one calls to f , g, or h, if the query has already been asked, or
the answer has already been defined by the simulation, the same answer is returned,
otherwise a random value in the according range is given. Of course, one has to be
careful when one defines an answer of a random oracle:

– this answer must not have already been defined

– the answer must be uniformly distributed

Furthermore, we denote by qF , qG and qH the number of answers defined for f , g and
h, respectively. We will see at the end of the simulation the relations with qf , qg and
qh, the number of queries directly asked by the adversary (thus q = qf + qg + qh).
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Indistinguishability: IND. Let us assume that after q1 queries to oracle SigEnc

and q2 queries to oracle VerDec, after having chosen a pair of message m0 and m1,
and received a signed–ciphertext (c1, c2) of either m0 or m1, say mb, an adversary A
outputs a bit d which is equal to b with advantage ε: Pr[d = b] = (1 + ε)/2.

Let us first remark that because of the randomness of the random oracles f and
g, to get any information about the bit b (and thus about the encrypted and signed
message), an adversary must have got some information about s1 or s2 from either
the signed–ciphertext, or from the plaintext and the random tape.

The former case is only possible if the adversary asks for r1 to the oracle g (other-
wise it has no information about s2, and s1 neither). This event is denoted AskG. The
latter case means that the adversary asked either h(m0‖r) or h(m1‖r). This event is
denoted AskR. Consequently,

Advind−ada
SignCrypt(A) = 2Pr[d = b]− 1

= 2Pr[d = b ∧ (AskG∨AskR)]+2Pr[d = b ∧ ¬(AskG∨¬AskR)]− 1

≤ 2Pr[AskG ∨ AskR] + Pr[¬(AskG∨AskR)]− 1 = Pr[AskG∨AskR]

≤ Pr[AskG] + Pr[AskR | ¬AskG] ≤ Pr[AskG] +
qh

2k1

Therefore, r1 the plaintext of c1 necessarily appears in the queries asked to g. For each
query asked to g, one runs the deterministic encryption algorithm and therefore can
find the plaintext of a given c1: we may use this adversary A to break OW-CPA of the
encryption scheme (GenEnc,Enc,Dec). To achieve this aim, we design a simulator B
which is given the private/public keys (skS, pkS) for the signature scheme, but is just
further given the public key pkR of the encryption scheme.

– B is given a ciphertext c (of a random message) to decrypt under the encryption
scheme Encrypt, and then runs A.

– When B receives the pair of messages m0 and m1 fromA, it defines c (the challenge
ciphertext to decrypt) as c1, and randomly chooses r2 = t2, that it can sign using
the private key of the signature scheme, to produce c2. It therefore sends the pair
(c1, c2) as a signed–ciphertext of mb (for some bit b). Finally, the adversary A
follows in its attack.

– Any call by A to the oracle SigEnc can be simply answered by B using the private
key of the signature scheme, and the public key of the encryption scheme. It makes
one more call to each of the random oracles f , g and h.

– Before simulating the oracle VerDec, let us explain how one deals with h-queries.
Indeed, a list Λh is managed. For any query h(m‖r), one anticipates the signcryp-
tion:

H = h(m‖r) a0 = H‖r t1 = a0 + m mod p t2 = a0 + 2m mod p.

Then, u1 = t1 ⊕ f(t2) and u2 = t2 ⊕ g(u1) (using the simulations of f and g).
Eventually, one stores (m, r,H, u1, u2, t1, t2) in Λh.

– Any call by A to the oracle VerDec can be simulated using the queries-answers of
the random oracles. Indeed, to a query (c′1, c

′

2), one first gets u′

2 from c′2, thanks
to the public key of the signature scheme (u′

2 = VerpkR
(c′2)). Then, one looks up

into Λh for tuples (m, r,H, u1, u
′

2, t1, t2). Then, one checks whether one of the u1

is really encrypted in c′1, thanks to the deterministic property of the encryption.
If no tuple is found, the simulator outputs ⊥, considering it is a wrong signed–

ciphertext. Otherwise, the simulator returns m, to be the plaintext.
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For all the signed–ciphertexts correctly constructed (with s′2 = t′2 asked to f , r′1 = u′

1

asked to g and (m′‖r′) asked to h), the simulation gets back the message. But the
adversary may produce a valid signed–ciphertext without asking h(m′‖r′) required by
the above simulation. In that sole case, the simulation may not be perfect.

First, let us assume that (m′‖r′) has not been asked to h. Then, either (m′‖r′) 6=
(m‖r) (the pair involved in the challenge signed–ciphertext) then H is totally random.
The probability for H‖r′ to match with a′0 is less than 2−k2 . Or (m′‖r′) = (m‖r). Since
all the process to produce r′1 and r′2 is deterministic, r′1 = r1 and r′2 = r2, the same
as in the challenge signed–ciphertext. The encryption is deterministic, then c ′1 = c1.
Therefore, either the adversary produced a new signed–ciphertext, which is bounded
by Succnef−ada

SignCrypt(A), or the simulation of the sign-crypt oracle signed twice the value

t2 involved in the challenge signed–ciphertext, which is upper-bounded by q1/2
k2 ,

because of the randomness of r Therefore, the probability that some (m′‖r′) is equal
to (m‖r) is upper-bounded by Succnef−ada

SignCrypt(A)+q1/2
k2 . As a consequence, (m′‖r′) has

been likely asked to h, otherwise the simulation just fails with probability less than
2−k2 .

Then, the simulator can extract t′1 and t′2. But because of the randomness of H,
the probability for t′2 to be equal to t2 (the one involved in the challenge signed–

ciphertext) is less than qH/2−k2 . If it is not the case, and t′2 not asked to f , then the
probability for the resulting u′

1 to be in the list of the queries asked to g (explicitly
or implicitly) is less than (qG + 1)/2k . If it is not the case, the probability for u′

2 to
match with u2 (the one involved in the challenge signed–ciphertext) is less than 2−k.

Therefore, the probability that the simulation is not correctly decrypted (provided
that no signature forgery occurs and there is no double signatures on r2) is less than

2−k2 + qH · 2
−k2 + (qG + 1) · 2−k + 2−k =

qH + 1

2k2
+

qG + 2

2k
≤

qG + qH + 3

2k2
.

And thus, the simulations are all perfect with the probability greater than

1−
q2 · (qG + qH + 3) + q1

2k2
− Succnef−ada

SignCrypt(A).

If all the decryption simulations are correct (no occurrence of the event BadD),
we have seen that with a good probability the plaintext c1, and thus of c, appears
in the queries asked to g, which is immediately detected thanks to the deterministic
property of the encryption scheme so

Pr[AskG | ¬BadD] ≥ Pr[AskG]− Pr[BadD]

≥ Advind−ada
SignCrypt(A)−

qh

2k1
−

q2 · (qG + qH + 3) + q1

2k2
− Succnef−ada

SignCrypt(A).

The expression upper-bounds the advantage of A in IND-AdA by

Succ
ow−cpa
Encrypt (t

′) +
qh

2k1
+

q2 · (qG + qH + 3) + q1

2k2
+ Succnef−ada

SignCrypt(A),

where qF ≤ qf + qH , qG ≤ qg + qH , and qH ≤ qh + q1.

Non Existential Forgery: NEF. Let us assume that after q1 queries to oracle SigEnc

and q2 queries to oracle VerDec, an adversary A outputs (or asks to VerDec) a new
signed–ciphertext (c1, c2) which is valid with probability ε. We will use this adversary
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to perform a universal forgery, as thus produces a new signature on a designated ran-
dom message (under a known random-message attack) against the signature scheme
Sign.

To achieve this aim, we design a simulator B which has access to a list of message-
signature pairs, produced by the signing oracle (the messages are assumed to have
been randomly drawn in Zp, but not chosen by the adversary). Note that a valid
signed–ciphertext must satisfy the equality h(m‖r)‖r = a0. Therefore, the probability
to output such a valid signed–ciphertext without asking h(m‖r) is smaller than 2−k2 :
with probability greater than ε− 2−k2 , this query (m‖r) has been asked to h.

The simulator B is given the private/public keys (skR, pkR) for the encryption
scheme, but is just given the public key pkS of the signature scheme. It is furthermore
given a list of qH message-signature (M,S), in which we assume that the message on
which one has to produce a new signature is randomly located, say Mi.

– For any new query (m‖r) asked to h (by the adversary, or by our simulations of
SigEnc and VerDec), a new valid message-signature pair (M,S) is taken from the
list. Then, one chooses a random ρ, defines h(m‖r)← ρ and sets

s1 ← ρ‖r + m mod p s2 ← ρ‖r + 2m mod p r1 ← s1 ⊕ f(s2).

One eventually defines g(r1) ← s2 ⊕ M , which is a random value, since M is
randomly distributed. It may fail if g(r1) has already been defined. But because
of the random choice of ρ this may just occurs with probability less than qG/2k2 .
Remark that the comments above would be wrong if the value h(m‖r) would not
be a new random value, but a value already defined by the simulation. But one
can remark that no answer for h is defined by a simulator in the proof, but all
using this simulation.

– Any query m by A to the oracle SigEnc can be simulated, thanks to above sim-
ulation of h. Indeed, one simply chooses a random r, asks for h(m‖r). Then the
signature S involved in the pair (M,S) used for the h simulation is a signature c2

of r2 = M . Using the public key pkR of the encryption scheme, one can encrypt
r1 to obtain c1. The pair (c1, c2) is a valid signed–ciphertext of m.

– Any call by A to the oracle VerDec can be simulated using the private key skR of
the encryption scheme and the public key pkS of the signature scheme.

Finally, the adversary A produces a new signed–ciphertext (c1, c2) which is valid with
probability greater than ε, unless the above simulation of h failed (such a failure
happens with probability upper bounded by qHqG/2k2).

Furthermore, this signed–ciphertext is involved in one of the h-queries, but with
probability 1/2k2 . With probability 1/qH , this signed–ciphertext is involved in the i-th
query to the h-oracle: c2 is a valid signature of Mi. But either this is a new signature,
or it was already involved in a signed–ciphertext (c′1, c

′

2) produced by SigEnc. But in
this latter case, since c2 = c′2, necessarily c1 6= c′1. But because of the determinism of
the encryption scheme, it means that u1 6= u′

1, and then the redundancy may hold
but with probability less than qGqH/2k2 .

Finally, the probability for B to produce a new valid signature of Mi is greater
than

1

qH

×

(

ε−
2qGqH + 1

2k2

)

.

Furthermore, one can easily see that qF = qf + qH and qG = qg + qH , where qH ≤
qh + q1 + q2. ut
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6 Conclusion

We have introduced parallel signcryption schemes which are superior to well-studied
sequential Sign-then-Encrypt or Encrypt-then-Sign schemes, or any other combina-
tion, in term of their efficiency, since they allow parallel signature and encryption as
well as parallel decryption and verification.

The optimal scheme is especially attractive as it is secure using a weak encryp-
tion (i.e., one-way under chosen-plaintext attack) and a weak signature scheme (i.e.,
signature is required to be secure against universal forgeries under random-message
attack).

It has been shown that the OAEP technique which was applied for encryption [6]
(with other recent studies [15, 8]) can also be used for parallel signcryption. The OAEP
technique was incorporated into RSA Security standards for encryption (for details see
the description of PKCS#1 v2.1 [13].) Parallel signcryption is potentially a candidate
for the third missing standard for parallel authenticated encryption.

The message redundancy of the parallel signcryption scheme can be measured as
the ratio of the signed–ciphertext length to the message length. It is easy to see that
both schemes considered expand the length of signed–ciphertext by the factor of more
than 2. It is an interesting question whether the redundancy can be reduced while
leaving security conclusions intact.
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A Proof of Lemma 3

The proof is divided into two parts. In the first one, we are going to show that the
scheme meets IND-AdA. The second part deals with NEF.

In all the proof, when one calls to h, if the query has already been asked, or
the answer has already been defined by the simulation, the same answer is returned,
otherwise a random value in Zp is given. Of course, one has to be careful when one
defines an answer of a random oracle:

– this answer must not have already been defined

– the answer must be uniformly distributed

Furthermore, we denote by qH the number of answers defined for h. We will see at
the end of the simulation the relation with qh.

A.1 Indistinguishability: IND

Let us assume that after q1 queries to oracle SigEnc and q = q2 queries to oracle
VerDec, after having chosen a pair of message m0 and m1, and received a signed–

ciphertext (c1, c2) of either m0 or m1, say mb, an adversary A outputs a bit d which
is equal to b with advantage ε: Pr[d = b] = (1 + ε)/2.

We furthermore assume that all the valid signatures involved in the signed–cipher-

texts have been produced by our simulators, but maybe with probability less than ν.
This case of signature forgeries, which event is denoted by Forge, will be studied later.

ν = Pr[Forge].

We will use this adversary to break the IND-CCA security of the encryption scheme
Encrypt. To achieve this aim, we design a simulator B which has access to the
decryption oracle Dec. It is given the private/public keys (skS , pkS) for the signature
scheme, but is just further given the public key pkR of the encryption scheme.

– Any call by A to the oracle SigEnc can be simply answered by B using the private
key of the signature scheme, and the public key of the encryption scheme.

– Any call by A to the oracle VerDec can be simulated using the decryption oracle
Dec access. Indeed, to a query (d1, d2), one first asks the query d1 to the oracle
Dec and obtains t1. Thanks to the public key of the signature scheme, one can get
t2 from d2. This is enough to check the validity of the signed–ciphertext (d1, d2)
and to decrypt it. Unless d1 is the same as the challenge ciphertext c1. In this
case, necessarily d2 6= c2, and the signed–ciphertext is rejected. We will denote
by BadD the event that such a signed–ciphertext is wrongly rejected. Under the
assumption ¬Forge, we hope BadD to be negligible.
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When B receives the pair of messages m0 and m1 from A, it randomly chooses two
random integers r0 and r1 to produce two new messages for the encryption scheme:

M0 ← (m0‖r0) + h(m0‖r0) mod p

M1 ← (m1‖r1) + h(m1‖r1) mod p

B receives the ciphertext c1 of Mb, and has to guess the bit b, with the help of A. For
that, it chooses a random bit b′ (hoping it to be equal to b) and defines

s2 ← (mb′‖rb′) + 2h(mb′‖rb′) mod p.

Then, it can sign it using the private key of the signature scheme, to produce c2. It
therefore sends the pair (c1, c2) as a signed–ciphertext of mb (for the unknown bit b).
Finally, the adversary A ends its attack, returning a bit d, and B forwards it as its
final answer.

Now, we study the advantage of the adversary B in breaking IND-CCA of the
encryption scheme, which is

Advind−cca
Encrypt (B) = 2Pr[d = b]− 1 ≥ 2Pr[d = b | ¬Forge]− 2Pr[Forge]− 1

≥ 2Pr[d = b ∧ ¬BadD | ¬Forge]− 1− 2ν

≥ 2Pr[d = b | ¬BadD ∧ ¬Forge]− 2Pr[BadD | ¬Forge]− 1− 2ν

≥ Pr[d = b | b = b′ ∧ ¬BadD ∧ ¬Forge] + Pr[d = b | b 6= b′ ∧ ¬BadD ∧ ¬Forge]

−2Pr[BadD | ¬Forge]− 1− 2ν

Let us now study each term. One should first note that

Advind−ada
SignCrypt(A) = 2Pr[d = b | b′ = b]− 1

≤ 2Pr[d = b | ¬Forge ∧ b′ = b] + 2Pr[Forge | b′ = b]− 1

≤ 2Pr[d = b | b′ = b ∧ ¬BadD ∧ ¬Forge] + 2Pr[BadD | ¬Forge] + 2ν − 1

Let us now focus on the second term in the inequality, by defining AskH to be the
event that the adversary A either asks (m0‖r0) or (m1‖r1) to the random oracle h. It
is equal to

Pr[d = b | b′ 6= b ∧ ¬BadD ∧ ¬Forge] ≥

Pr[d = b | b′ 6= b ∧ ¬BadD ∧ ¬Forge ∧ ¬AskH]

×pr[¬AskH|b′ 6= b ∧ ¬BadD ∧ ¬Forge]

Clearly, in the case that b′ 6= b, the adversary may just have some information (in the
theoretical sense) about

Mb = (mb‖rb) + h(mb‖rb) mod p

s2 = (mb′‖rb′) + 2h(mb′‖rb′) mod p.

But without the event AskH, the hash values perfectly hide the first part, and therefore
the answer of A is independent of b (a random variable):

Pr[d = b | b′ 6= b ∧ ¬BadD ∧ ¬Forge ∧ ¬AskH] =
1

2
.

On the other hand, as said above, the h(mi‖ri) perfectly hide the (mi‖ri), for i = 0, 1,
and therefore one cannot get any information about the random values r0 and r1

without luck: AskH with probability less than 2qH/2k2 .
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Finally, let us study the probability of a wrong decryption. For that, we focus on
executions in which the adversary does not perform any signature forgery. Therefore,
d2 is the signature of t2, a uniformly distributed element, independently from the
wishes of the adversary. A bad decryption may just occur if d1 = c1, and thus is the
encryption of Mb, uniformly distributed as well, independently from the wishes of the
adversary. The probability that a t2 (signed by our simulation) provides the required
redundancy, t2 −Mb = h(2Mb − t2), is less than q1/2

k. Hence,

Pr[BadD | ¬Forge] ≤
q1

2k
.

This concludes the proofs:

Advind−cca
Encrypt (B) ≥

1

2
·
(

Advind−ada
SignCrypt(A)− 2Pr[BadD | ¬Forge]− 2ν + 1

)

+
1

2
·

(

1−
2qH

2k2

)

− 2Pr[BadD | ¬Forge]− 1− 2ν

≥
1

2
· Advind−ada

SignCrypt(A)− 3Pr[BadD | ¬Forge]− 3ν −
qH

2k2

≥
1

2
· Advind−ada

SignCrypt(A)−
3q1

2k
− 3ν −

qH

2k2

where qH ≤ qh + q1 + q2:

Advind−ada
SignCrypt(t, q1, q2) ≤ 2× Advind−cca

Encrypt (t
′, q2) +

6q1

2k
+

2(qh + q1 + q2)

2k2
+ 6ν,

where t′ is the announced bound.

A.2 Non Existential Forgery: NEF

Let us assume that after q = q1 queries to oracle SigEnc and q2 queries to oracle
VerDec, an adversary A outputs (or asks to the oracle VerDec) a new signed–cipher-

text (c1, c2) which is valid with probability ν. We use this adversary to perform an
existential forgery (under a random-message attack) against the signature scheme
Sign.

To achieve this aim, we design a simulator B which has access to a list of message-
signature pairs, produced by the signing oracle (the messages are assumed to have been
randomly drawn in Zp, but not chosen by the adversary). It is given the private/public
keys (pkR, skR) for the encryption scheme, but is just further given the public key pkS

of the signature scheme.

– Any query m by A to the oracle SigEnc can be simulated using a new valid
message-signature pair (M,S), for the signature scheme. Indeed, M is defined to
be s2 and S is defined to be c2. Then, one chooses a random r. Since

s2 = (m‖r) + 2h(m‖r) mod p = M,

one has defined the random oracle at the point (m‖r) (unless it has already been
done, which then raises event BadH):

h(m‖r)←
M − (m‖r)

2
mod p
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and therefore,

s1 ← (m‖r) + h(m‖r) =
M + (m‖r)

2
mod p.

Using the public key of the encryption scheme, one can encrypt s1 to obtain c1.
The pair (c1, c2) is a valid signed–ciphertext of m.

– Any call by A to the oracle VerDec can be simulated using the private key of the
encryption scheme and the public key of the signature scheme.

Finally, the adversary A returns (or asks to VerDec) a new signed–ciphertext (c1,
c2) which is valid with probability ν. With the public key of the signature scheme,
one can extract the message s2 signed into c2. By definition, (s2, c2) is an existential
forgery for the signature scheme. Indeed, one has just to check whether it is a really
new signed-message. Because of the determinism of the sharing technique, after the
random choice of r, if s2 has already been signed by the oracle SigEnc, it was for
encrypting and signing m‖r, where

s2 = (m‖r) + 2h(m‖r) mod p,

which is uniquely defined in the list of the queries asked to the random oracle h, unless
one has found a collision for the function

G : x 7→ x + 2h(x) mod p,

between the q1 values given by the simulation and the qH answers obtained by the
adversary. Because of the randomness of the random oracle h, this is upper-bounded
by q1 · qH/2k.

Furthermore, one has to be sure that everything looks like in a real attack, from
the adversary A point of view. However, when one defines a value for h, it may have
already been defined (event BadH). The probability of such an event is less than
qH/2k2 , for each simulation of the oracle SigEnc, because of the randomness of r.

Finally, the probability for B to produce an existential forgery against the signature
scheme is greater than

ν − q1 · qH ×

(

1

2k2
+

1

2k

)

.

Furthermore, one can easily see that qH ≤ qh + q1 + q2: the probability of the machine
for producing and existential forgery is greater than

Succnef−rma
Sign (B) ≥ Succnef−ada

SignCrypt(A)− q1 · (q1 + q2 + qh)×

(

1

2k2
+

1

2k

)

.


