
SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION

JOHN MALONE-LEE

ABSTRACT. Signcryption [35] is a public key primitive that achieves the functionality
of both an encryption scheme and a signature scheme simultaneously. It does this more
efficiently than a composition of public key encryption and public key signature.

We present a model of security for signcryption schemes that offer non-interactive non-
repudiation. This is non-repudiation in which the judge settling a repudiation dispute does
not have to get involved in an interactive zero-knowledge proof. Our model applies to
many existing schemes in the literature [5, 23, 30].

We explain why the scheme proposed in [5] is insecure under any definition of privacy
based on the idea of indistinguishable encryptions [21]. We describe a modified scheme to
overcome the problem. Proofs of security are given for the scheme in the random oracle
model [11].

1. INTRODUCTION

Signcryption is a novel public key primitive first proposed by Zheng in 1997 [35]. A
signcryption scheme combines the functionality of a digital signature scheme with that of
an encryption scheme. It therefore offers the three services: privacy, authenticity and non-
repudiation. Since these services are frequently required simultaneously, Zheng proposed
signcryption as a means to offer them in a more efficient manner that a straightforward
composition of digital signature scheme and encryption scheme. The title of [35] stated
that it should be possible to achieve

���������
	���������������������������! ��"�#�$��%'&(&����������)	*������������"�+%-,.���!�/�+�0�1�������� *�"�#�$��%�2
(1)

and an ingenious scheme was proposed to meet such a goal.
Since the primitive was proposed, many signcryption schemes have been designed [5,

23, 25, 30]. These schemes have all been constructed without a precisely specified model
of security and a corresponding proof. Recently however several formal models of security
for signcryption schemes have emerged [2, 3, 4]. In [4] a variant of the original signcryp-
tion scheme from [35] is proved secure in the random oracle model [11]. The model in [3]
differs from the original idea in two respects. First of all it does not make non-repudiation
a requirement of signcryption. Secondly it does not require (1) to hold. The goal is simply
to analyse primitives that achieve the combined functionality of signature and encryption.
This includes signcryption schemes such as [35] but it could also include compositions of
signature schemes and encryption schemes.

The original scheme proposed in [35], and the variant of it in [4], concentrated on
achieving privacy and authenticity in a very efficient manner. These schemes are remark-
able in that signcryption requires only one group exponentiation. In [4] a proof of security
is given for the scheme in a model where these are the objectives. The only disadvantage
of the scheme is the way it achieves non-repudiation. For an untrusted trusted judge to
settle a repudiation dispute the zero-knowledge proofs of [10, 14] are required.

In [5] a modified version of Zheng’s original signcryption scheme is proposed that offers
non-repudiation in a more straightforward manner. We will explain why this scheme is

1

2 JOHN MALONE-LEE

insecure under any definition of privacy based on indistinguishability of encryptions (or
indistinguishability of signcryptions in this case). We will also propose a new scheme that
overcomes this weakness.

Non-repudiation for signcryption is not a straightforward consequence of unforgeability
as it is for digital signature schemes. The reason for this is that a signcrypted message is
“encrypted” as well as “signed”. Therefore, by default, only the intended receiver of a
signcryption may verify its authenticity. If a third party is to settle a repudiation dispute
over a signcryption it must have access to some information other than the signcryption
itself. It is observed in [30] that one of the non-repudiation procedures suggested for
Zheng’s original signcryption has a weakness: information given to a third party to settle a
dispute compromises the privacy offered by the scheme.

The aim of this work is twofold. Firstly we propose a model of security for signcryption
schemes that offer non-interactive non-repudiation with an untrusted judge. In this context
non-interactive refers to the fact that the judge is a passive verifier. It does not to have to
get involved in an interactive zero-knowledge proof to settle a repudiation dispute as is the
case for the scheme in [35]. The second aim is to consider signcryption in a multi-user
setting similar to that of [7] for public key encryption and [20] for public key signature
schemes. Our model differs from that of [3] in that we allow the adversary to choose
which users it attacks. We give proofs of security for a scheme similar to that of [5]. Our
proofs show how the security of our scheme is preserved as the numbers of users of the
scheme increases.

The remainder of this paper is organised as follows. In Section 2 we define precisely
the primitive that we are interested in. Once we have done this we give details of a scheme
satisfying our definition. We present security definitions in Section 3. Our security results
are given in Section 4. We finish with some concluding remarks.

2. SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION

This paper is concerned with signcryption schemes that have a non-repudiation pro-
cedure of a particularly simple form. We will call the primitive signcryption with non-
interactive non-repudiation (SCNINR). It is described formally in Definition 1 below.

Before presenting the definition, let us give some notation that will be used throughout.
If � is a set then ���� � denotes the algorithm that selects an element uniformly at random
from � and assigns the outcome to � . Similarly, if � is a probabilistic algorithm � ��
� � ��� 2	�
�	��2 ��� % denotes assigning to � the output of � on inputs �� 2	�
�	� 2 ��� and some input
drawn uniformly at random from an appropriate set. We denote assignment of � to � by
� � � .

Definition 1 (Signcryption with non-interactive non-repudiation). A signcryption scheme
with non-interactive non-repudiation consists of six algorithms

����� 2�� 2�� 2�� 2�� 2���� %
.� The system parameters generation algorithm

���
is randomised. It takes as input

a security parameter ��� and returns some global information . We write !����� � �"� % .� The user key generation algorithm
�

is randomised. It takes as input global in-
formation and returns a matching secret and public key pair

� � 2$# %
. We write� � 2%# % �� � � % .� The signcryption algorithm

�
is randomised. It takes as input a sender’s secret

key �'&(, a sender’s public key
&(, a receiver’s public key

#*)+ and a plaintext , . It

returns a ciphertext - . We write - �� ��.0/21324 5 1364 5879;: � , %
.

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 3

� The unsigncryption algorithm
�

is deterministic. It takes as input a sender’s pub-
lic key

&(, a receiver’s secret key �)+ , a receiver’s public key
)+ and a string

- . It returns either a message , , or the distinguished symbol
�

. We write
� � � . 5 1364 / 79 4 5679 : � - % , where � is either a message , or

�
. The symbol

�
in-

dicates that - is not a valid signcryption.� The non-repudiation algorithm
�

takes as input a sender’s public key
&(, a re-

ceiver’s secret key �)+ , a receiver’s public key
)+ and a string - . If - is a valid

signcryption it returns keys
&(,

#�)+ , a message , and a string � . The string �
is information that makes public verification that the message , was sent by the
owner of

&(to the owner of
)+ possible. That is to say, from a signcryption - ,�

extracts a digital signature under
&(on , . The public verification algorithm���

below is then used to verify the signature. If - is an invalid signcryption
�

returns
�

.� The public verification algorithm
���

takes as input a sender’s public key
&(, a

receiver’s public key
#*)+ a message , and purported signature � (as output by

�
above). It returns either � or

�
depending on whether or not � is a valid signature.

Note that this provides non-repudiation of origin but not of receipt.

We require that, for all keys returned by
� � % , and all messages ,����	� 2 ��
� we have� . 5 13 4 / 79 4 5679 : ��� .0/213 4 5 13 4 5679 : � , %�%�� , . We assume that the security parameter is available to

all algorithms after being explicitly provided to
���

and that these all run in polynomial
time (in the security parameter).

Several schemes fitting Definition 1 already exist in the literature. One example is the
original scheme of [35] when used with a particular non-repudiation procedure. This pro-
cedure involves surrendering the ephemeral key used for encryption together with a zero-
knowledge argument that the key has the correct form. Using a protocol of [16] a non-
interactive argument can be given to prove that the ephemeral key has the correct form.
This, together with the ephemeral key itself, would then correspond to � in Definition 1.
The problem with this approach is that it compromises the privacy of messages sent by the
sender in question to the receiver in question. This is discussed in [30] where a modified
scheme is suggested to overcome this problem, this scheme also fits Definition 1. Other
existing schemes fitting Definition 1 are given in [5, 23].

Note that we are not claiming that all signcryption schemes have the form of Defini-
tion 1: our aim is to provide a framework in which to formally analyse those that do.

We will give a concrete example of such a scheme constructed in a hybrid manner using
a symmetric encryption scheme. The scheme is a modification of that in [5]. As we will
discuss below, the actual scheme of [5] does not have indistinguishable signcryptions, even
under a passive attack, our modification overcomes this problem.

Our scheme uses a group for which there exists a non-degenerate, bilinear, computable
map to a second group. This choice is not essential for the functionality of the scheme;
however, using such a group simplifies our proofs and allows a tighter reduction in the
case of privacy. It would be possible to give similar proofs for more general groups under
the Gap Diffie-Hellman assumption as in [4]. There is a quadratic degradation in the time
complexity for the proof of privacy using this method however.

Definition 2 (Non-degenerate, bilinear, computable map). Let � and ��� be cyclic groups
of prime order � , where � is additive and ��� is multiplicative. Let ��������������� be a
map with the properties below.

(1) Non-degenerate: There exists 2$# �!� such that � � 2%# %#"� � .

4 JOHN MALONE-LEE

(2) Bilinear:

� � � , �� 2%# % � � � � 2%# %�� � � �� 2$# % � ��� � � 2%# � , # � % � � � 2%# � %�� � � 2%# � %

(3) Computable: There is an efficient algorithm for evaluating � .
Groups with such a map may be derived from subgroups of elliptic curve groups � �	��
$% ,
whose order � divides � �� � but does not divide � (� for � &�� &��

, and � is large
enough to resist the MOV attack [27], but small enough to make computing the Tate or
Weil pairing feasible. A modified version of the Tate or Weil pairing may be used with
some of these groups to give the required map. This technique was first described in [34]
and may be used for supersingular elliptic curves. Recently these groups have been used
constructively to build identity-based cryptosystems [13, 15, 24, 26, 29, 33]. As a result
there has been much interest in efficient implementation of the Tate pairing [6, 19].

Finally, before describing the scheme, we define what we mean by a symmetric encryp-
tion scheme.

Definition 3 (Symmetric encryption scheme). A symmetric encryption scheme
���

consists
of three algorithms

��� � ��������2���2�� %
.

� The key generation algorithm
� ���

is a randomised algorithm that takes as input a
security parameter �2� and returns a key � . We write ���� � ��� � �"� % and we denote
the set of all strings that have non-zero probability of being output by

� ��� � �"� % as� � ����� % .� The encryption algorithm
�

may be a randomised or deterministic algorithm. It
takes as input a key � � � � � ��� % and a plaintext , � � � 2 ��
 � . It returns a
ciphertext �#� � � 2 ��
�� . We write � �� ����� , %

.� The decryption algorithm
�

is a deterministic algorithm that takes as input a key
� � � � ����� % and a ciphertext � � �	� 2 ��
�� . It returns a plaintext , � �	� 2 ��
 � . We
write , � � ��� � % .

It is required that, for any � � � � ����� % , and any , � � � 2 ��
 � , we have
�����!�"��� , %�% � , .

We are now ready to give a concrete example of a signcryption scheme with non-interactive
non-repudiation. We call our scheme �$# and describe it in Definition 4 below.

Definition 4 (��#). Let
�%��� ��������2���2�� %

be a symmetric encryption scheme with
� � � ��� %� �	� 2 �
'&)(. Let * � � �	� 2 ��
�� ��� � 2 ��
'&+(� �	� 2 �
'&), and *-��� �	� 2 ��
�� �/. �
 be hash func-

tions. Based on these primitives the signcryption scheme �$# � � ��� 2%� 2�� 2 � 2�� 2���� %
is

constructed as follows:

Algorithm
��� � �2� %

Select a finite Abelian groups � and ��� of prime order � where0 � 0 �1� (
0 � 0 denotes the bit length of �) such that there is

a non-degenerate, bilinear, computable map ��� ��� � � ���
Select a generator 2 of � and let 3 denote the identity element
Let be a description of � 2 � 2 ��� 2 2 2 � 2����12 * � and * �
Return

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 5

Algorithm
� � % Algorithm

� .0/213 4 5 13 4 5879 : � , %
Algorithm

� . 5 13 4 / 79 4 5879 : � - %
� �� .#�
 � �� . �
 Parse - as

� � 2 � 2��+%# � � 2 � � � #)+ Verify � � .#�
�� � � . �
 ,
Return

� � 2%# % � � � 2 if not return
�

�'� 0)0 � � � * � � � % � � � 2 , � # &(
� � ������� , %

If
� � 3 , return

�
� � * � �	� 0)0 , 0+0 ��� 0)0 # &(0+0 #)+ % � � �)+ �� � � �'&(� ��
 �"� � ��� 0+0 ��� � * � � � %
- � � � 2 � 2��+% , � � ��� � � %
Return - If � "� *�� �	� 0)0 , 0)0 ��� 0+0 # &(0)0 #�)+ % ,

return
�

Return ,

Algorithm
� . 5 13 4 / 79 4 5679;: � - % Algorithm

��� . 5 1364 5879;: � , 2 � %
Parse - as

� � 2 � 2��+% Parse � as
� � � 2 � 2���%

Verify � � . �
 � � � . �
 , Verify � � � � � 2 �
'&), � � � . �
 � � � . �
 ,
if not return

�
if not return

�
� � � 2 , � # &(� � � 2 , � # &(
If
� � 3 , return

�
If
� � 3 , return

�
� � �)+ � If � "� * �	� 0+0 , 0+0 � � 0+0 # &(0+0 #)+ % , return

�
� � 0)0 � � � * � � � % Return �
, � � ��+� � %
If � "� * � ��� 0+0 , 0)0 � � 0+0 # &(0)0 #)+ % ,

return
�

� � � ��� 2 � 2���%
Return

&(2$#)+ 2 , 2 �
One of the most significant difference between our scheme and that of [5] is that our

scheme includes � � as input to the hash function *�� . This is crucial for the security of the
scheme. Consider what would happen if we had a similar scheme, the only difference being
that � � was no longer included in the *�� input. Suppose that an adversary is given

� � 2 � 2��+% :
a signcryption of either ,�� or , � created by the owner of

&(for the owner of
#*)+ . The

adversary can compute
� ��� 2 , � # &(and check whether or not � � *�� �	� 0+0 ,�� 0)0 # &(0+0 #)+ %

i.e. it can determine by simple elimination which message has been signcrypted. As we
discuss in Section 3.1 below, this violates the generally accepted definition of privacy for
any scheme offering encryption. It is easily verified that the scheme of [5] also suffers
from this major weakness. We use � � to prevent this trivial attack. Setting �	����� � should
suffice.

Note that, once
&(2$#)+ 2 , 2 � � � 2 � 2��+% is released by

�
algorithm in Definition 4, the

algorithm
���

is just the verification process for the signature scheme of Schnorr [31, 32].

3. SECURITY NOTIONS FOR SCNINR

3.1. Privacy of SCNINR in a Multi-User Setting. Like [7] for public key encryption,
and [20] for signature schemes, we consider the privacy of SCNINR schemes in a network
of � users. The goal of an adversary here is to determine which of two chosen messages
has been signcrypted. This idea originates in [21] where the analogous notion was dubbed
semantic security. Since then it has become the underpinning idea in the definitions of

6 JOHN MALONE-LEE

security for all types of encryption scheme [1, 3, 4, 8, 9, 12, 17, 18]. We describe the
particular attack scenario that we are interested in below.

To begin with global parameters are generated. Using these global parameters two key
pairs are generated for each of the � users. We say that a user has a sender key pair
and a receiver key pair. For user

�
these are denoted

� � &(2$# &(% and
� �)(2$#)(% respectively.

Which key is used depends on the role of a user in a particular communication: sender
or receiver. Referring to Definition 4, for user

�
to send a message to user � one would

signcrypt/unsigncrypt as follows:
� . /"13 4 5 13 4 5679 : � , %�� � . 5 13 4 / 79 4 5679 : � - % .

An adversary will operate in two stages. In the first, or find, stage it is given the global
parameters and the � pairs of public keys of the users. Similar to an adaptive chosen
ciphertext attack on a public key encryption scheme [1, 9, 12, 17, 18], the adversary is
provided with an unsigncryption oracle that it may call for any pair of users. The adversary
may also query a signcryption oracle that will signcrypt any message for any pair of users.
We must provide an adversary with such an oracle since, unlike the case of a public key
encryption scheme, an adversary is not able to signcrypt messages itself. This means
that we are proving security in a model where the adversary is assumed to be outside the
network. Such a model was dubbed outsider security in [3]. Unfortunately our scheme
does not offer privacy against insiders: referring to Definition 4, a user who knows � 2�� and
��&(can easily recover the ephemeral value

�
used to generate the encryption key.

The final oracle given to the adversary is the one used to generate the publicly verifiable
information necessary for non-repudiation. We say that this is the non-repudiation oracle.
The adversary may call this oracle with the appropriate public keys of any pair of users
and any string. We provide this oracle for two reasons. First of all, if the adversary is able
to gain access to the signcryption oracle and unsigncryption oracle, there is no reason that
it should not be able to access this oracle. Secondly, as observed in [30], it is possible that
information from such an oracle may compromise the privacy of the scheme.

At the end of the find stage the adversary outputs a pair of users for which it wants
to be challenged: a sender and a receiver. One of the messages is chosen at random and
signcrypted under the appropriate keys for the chosen sender and receiver. The resulting
signcryption is called the target ciphertext.

In the second, or guess, stage the adversary is given the target ciphertext. Using identical
oracles to those in the find stage the adversary must determine which of the two messages
was signcrypted. There is the obvious restriction that the adversary may not query the
unsigncryption oracle or the non-repudiation oracle with its chosen keys and the target
ciphertext.

We describe this attack formally in Definition 5 below.

Definition 5 (Privacy of SCNINR). Let
���!� � ��� 2%� 2�� 2�� 2�� 2���� %

be a SCNINR scheme.
Let ����� & be an adversary that outputs a bit � . The adversary �	��� & operates in two stages,
the find stage ��
 , and the guess stage ��� . In both stages of the attack the adversary has
access to a signcryption oracle

�� � ��2'��2'� %
. This oracle takes public keys

&(2 #)+ and a

message , as input. It returns - �� � .0/21324 5 1364 5879;: � , %
. The adversary has access to an

unsigncryption oracle
� ���#2 �#2 � %

. This oracle takes public keys
&(26#)+ and a signcryption

- as input. It returns
� . 5 1364 / 79 4 5679;: � - % . The adversary also has access to a non-repudiation

oracle
� � ��2'��2'� %

. This oracle takes as input public keys
&(2�#)+ and a signcryption - . It

returns
� . 5 13 4 / 79 4 5679 : � - % . We denote these oracles

��
,
��

and
��

respectively below. Let

� � be the security parameter. Consider the following experiment.

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 7

Experiment ����� (����� ��� &	�
 4 ��� 1 � � 2 �"� %
 �� ��� � �2� %
For

� � � 2	�	�
��2 � � � �'&(2$# &(% �� � � % ; � �)(2$#�)(% �� � � %� ,�� 2 , � 2 � 2�� 2�������� � % � � 	�� 4 � � 4 � �
 � �"� 2 2%# &� 2$#)� 2	�	�
� 2$# &� 2%#)� %
� �� �	� 2 ��

- � �� ��.0/��� 4 5 1� 4 567� : � , � %
� � � � 	 � 4 � � 4 � �� � �"� 2 2$# &� 2%#)� 2
�	�
��2%# &� 2%#�)� 2 - � 2 , � 2 , � 2�������� � %
If � � � � return 1, else return 0

It is mandated that the , � and , � output by �
 are of equal length and that � � never
queries the oracle

��
, or the oracle

�
, with

&� 2%#�)� and - � .
We define the advantage of the adversary as�! #" (����� ��� &	�
 4 ��� 1 � � 2 � � %��%$ ��&��(' �)��� (����� ��� &	�
 4 ��� 1 � � 2 � � % � �+*� � �

For any integers
� 2 � � 2 �-, 2 � �!. � , we define the advantage function of the scheme

�! #" (����� ��� &	�
 � � 2 � � 2�� 2 � � 2 �-, 2 � � %��
 �0/��1 1 � �2 3" (����� ��� &	�
 4 � 1 1 � � 2 � � %
 2
where the maximum is over all adversaries with time complexity

�
, each making at most

� � queries to
� � ��2'��2'� %

, making at most � , queries to
�� ���#2 �#2 � %

, and making at most �"�
queries to

� ���#2 �#2 � %
.

The scheme
� �

is said to be IND-CCA secure in the � user setting if the advantage
function

�2 3" (����� ��� &	�
 � � 2 �"� 24� 2 � � 2 �-, 2 � � % is a negligible function1 of the security param-
eter. Note that this definition of IND-CCA security should not be confused with IND-CCA
security for public key encryption schemes.

3.2. Unforgeability of SCNINR. We take as our starting point the definition of security
for public key signature scheme in the multi-user setting [20]. Several modifications to the
definition are necessary before it can be used for signcryption schemes. We discuss these
modifications before giving the definition formally.

Consider unforgeability in a network of � users. To begin with global parameters are
generated. Using these global parameters a sender key pair and a receiver key pair are
generated for each of the � user as described in Section 3.1.

The adversary is given access to three oracles. First of all, analogous to an adaptive
chosen message attack on a signature scheme [20, 22], it has access to a signcryption
oracle. It may call this oracle with a sending public key, an receiving public key and any
message. When using a signature scheme, public verification of signatures is possible.
This is not the case with a signcryption scheme and so we provide the adversary with an
unsigncryption oracle that it may call with a sending public key, and receiving public key
and any string. Like the definition of privacy, we also give the adversary a non-repudiation
oracle that it may call with a sending public key, a receiving public key and any string. A
proof in this model ensures that the information given away for public verification does not
compromise the unforgeability of the scheme.

When using a signature scheme, the only private key used in signature generation be-
longs to the sender. An adversary can therefore be anyone, since there is no difference in
the ability to forge signatures between a receiver of signed messages and an eavesdropping
third party. For a SCNINR scheme however, signature generation uses the receiver’s public
key as well as the sender’s keys. In this instance there may be a difference in the ability to

1A function 5�68709 is negligible if for every : there exists a 7�; such that 5�68709�<=7�> ; for all 7�?27+; .

8 JOHN MALONE-LEE

forge signcryptions between the receiver and a third party, since only the receiver knows
the secret key corresponding to its public key. With this in mind we allow the adversary
to come up with its own public key i.e. it becomes the � , � -th user in the network. The
goal of the adversary is to come up with a valid forgery from any of the original � users to
any user. That is to say that the adversary wins if it forges a signcryption from any of the
original � user to itself or to any other user.

Note that, unlike the case of privacy dealt with in Section 3.1, we are considering un-
forgeability by a user inside the network. Such a scenario is treated in [3] where it is
dubbed insider security. This is crucial if our scheme is to offer non-repudiation: it must
be clear to a third party whether the sender or receiver produced a signcryption.

We give the whole definition formally below.

Definition 6 (Unforgeability of SCNINR). Suppose that
� � � � ��� 2%� 2��

,
� 2�� 2���� %

is
a SCNINR scheme used in an � -user setting. Let � be an adversary whose goal is to
produce a forgery. This forgery may be from one of the � users to another of the � users.
Alternatively, the adversary may come up with its own public key

� and produce a forgery
from one of the � users to itself.

The adversary has access to a signcryption oracle
� ���#2 �#2 � %

. This oracle takes as input
public keys

&(,
)+ and a message , . It returns - �� ��.0/21324 5 1364 5879;: � , %

. The adversary also

has access to an unsigncryption oracle
� ���#2 �#2 � %

. This oracle takes as input public keys# &(,
)+ and a string - . It returns

� . 5 1364 / 79 4 5879 : � - % . The final oracle given to the adversary

is a non-repudiation oracle
� ���#2 �#2 � %

. This oracle takes as input public keys
&(,

)+ and a
string - . It returns

� . 5 1364 / 79 4 5879 : � - % . The attack is described in the experiment below where
these oracles are denoted

��
,
�

and
�

respectively.
Experiment ����� ��� &	�
 4 � � � 2 �"� %
 �� ��� � � � %
For

� � � 2	�	�
��2 � � � �'&(2$# &(% �� � � % ; � �)(2$#)(% �� � � %
If � 	 � 4 � � 4 � � � �"� 2 2$# &� 2$#�)� 2	�	�
��2%# &� 2%#�)� % outputs

&(,
� , ,!� , � � such that:

1. � � ��� . 5 13 4 5 � : � ,�� 2 � � % and,
2. the query

�� � # &(2%# � 2 , � % was never made,
(note that we may have

# � �� � #�)� 2	�
�	� 2%#�)�
)
return 1, else return 0.

We define the advantage of the adversary as�! #" ��� &	�
 4 � � � 2 � � % � &1��' ����� ��� &	�
 4 � � � 2 � � % � � * �
For any integers

� 2 � � 2 �-, 2 � �!. � , we define the advantage function of the scheme�2 3" ��� &	�
 � � 2 � � 2�� 2 � ��2 � , 2 �
� % �
 � /� � �2 3" ��� &	�
 4 � � � 2 � � %
 2
where the maximum is over all adversaries with time complexity

�
, each making at most � �

queries to
� ���#2 �#2 � %

, at most � , queries to
�� ���#2 �#2 � %

and at most �
� queries to
� � ��2'��2'� %

.
The scheme

� �
said to be existentially unforgeable against adaptive chosen message

attack if its advantage function is a negligible function of the security parameter.

4. SECURITY OF �$# IN THE MULTI-USER SETTING

4.1. Privacy of the scheme �$# in the multi-user setting. In this section we will prove
�$# to be secure under Definition 5. The security proof will be relative to the Computa-
tional Diffie-Hellman (CDH) assumption. We give a precise statement of this assumption
below.

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 9

Definition 7 (The Computational Diffie-Hellman Assumption). Let � � be a security pa-
rameter and let � be an algorithm. Consider the experiment below.

Experiment �)��� � � �	�� 4 � � �2� %
Run

��� � �"� % from Definition 4 of �$# to obtain
� 2 � �� . �

 � � 2 ,

� �"2� � � � �"� 2 2 2%# %
If

� � ���"2 return 1, else return 0

We define the advantage of � in solving CDH as

�2 3" � � �	�� 4 � � � � % � &1��' ����� � � �	�� 4 � � � � % � �-* �
We define the advantage function as

�2 3" � � �	�� � � � 2���% �
 � /� � �2 3" � � �	�� 4 � � � � %
 2
where the maximum is over all algorithms with time complexity

�
. The CDH assumption is

that
�2 3" � � �	�� � �2� 24��% is a negligible function of �2� .

We also require an assumption about the symmetric encryption scheme
���

used in the
construction of �$# . The assumption is indistinguishability of encryptions under chosen
plaintext attack (IND-CPA), as used in [1, 4]. The definition is given formally below.

Definition 8 (IND-CPA for Symmetric Encryption). Let
�%� � � ������2 ��2 � %

be a symmetric
encryption scheme as in Definition 3. Let � ��� � � � ��� � 2 � ����� % be an adversary that runs in
two stages: � ��� � the find stage and � � ��� the guess stage. Consider the experiment below.

Experiment �)��� (����� ��� &		� 4 � � (
� �"� %

� �� � ��� � �2� %� , � 2 , � 2�������� � % � � ��
��� ���� � � � � %
� �� �	� 2 �

� � �� ����� , � %
�� � � �
 ��� ���� � � �"� 2 � � 2 , � 2 , � 2��-����� � %
If � � � � return 1, else return 0

In the above experiment
����� � %

denotes the oracle that, when queried with , � � � 2 ��
� ,
returns � �� �"��� , %

. It is mandated that
0 , � 0 � 0 , � 0 .

We define the advantage of � ��� as�2 3" (����� ��� &		� 4 � � (
� � � %��%$ ��&��(' �)��� (����� ��� &		� 4 � � (

� � � % � � * � �

For any �2� , � and � � we define the advantage function of
���

as�! #" (����� ��� &		� � � � 24� 2 � � %��
 � /� � (�
�2 3" (����� ��� &		� 4 � � (

� � � %
 2

where the maximum is over all adversaries with time complexity
�
, each making at most

� � queries to
������� %

. We consider
���

to be IND-CPA secure if its advantage function is a
negligible function of the security parameter.

Using Definition 7 and Definition 8 we are now ready to state and prove our privacy
result for �$# .

10 JOHN MALONE-LEE

FIGURE 1

Algorithm
� � � � � � � 2 2 2%# %

For
� � � 2	�
�	��2 � �� � �(2�� �(� . �
# &(� � � � � �(% �	� �(� � �(% 2
If
&(� 3 , goto

�
For

� � � 2	�
�	��2 � �� � (� .#�
)(� # , � (2
If
)(� 3 , goto

�
� , � 2 , � 2 � 2�� 2�������� � % � ��� (�
 � �2� 2 2%# &� 2%#)� 2	�
�	� 2%# &� 2$#�)� %
� �� � � 2 ��

� �� 0+0 � �� �� � � 2 ��
'&+(� �	� 2 ��
 & ,
� � � � ���� � , � %��� � � � 0+0 , � 0)0 � �� 0+0 # &� 0)0 #)�
Add

�	��� � � 2 � �� % to ���
�

- � � � � � 2 � �� 2�� �� %	 � � � � #)� 2 %
� � � ��� (�� � �"� 2 2%# &� 2$#�)� 2	�
�	��2$# &� 2%#)� 2 - � 2 ,�� 2 , � 2��-����� � %

Theorem 1. Let �$# � ����� 2%� 2�� 2�� 2�� 2���� %
be as in Definition 4, using hash functions

* � and * � , and symmetric encryption scheme
���

. In the random oracle model for * �
and * � we have�! #" (����� ��� &��

� � � 24� 2 � %��� � �! #" � � �	�� � � � 24� � % , �2 3" (����� ��� &		� � � � 24� � 2 � % , � � �$ &), � �
, $�� � � � , � � ,�� �-, ,�� � � %

� �
, � � � , � %�� $ � � � , $ � � , $ ��, , $ � � ,��$%� � � %(2)

Here, if � is the complexity of computing � and � is the complexity of a multiplication
in �!2�� (where 2 is returned by

��� � �2� %), then
� � � � ,�� � ��� % ,�� � � � � % ,�� � � ��� � ,

� %"%-,�� �"� � , , �	� % � � , � %�%
.

Proof. Suppose that ����� &
� � ��
 2 � � % is an adversary that defeats the IND-CCA security

of ��# in the � -user setting as in Definition 5. Let � ��� & be such that it runs for time at most�
, makes at most � � signcryption queries, � , unsigncryption queries, �"� non-repudiation

queries, � � � queries to * � , and � � � queries to *-� .
To begin with

��� � � � % is run to produce group information . Suppose that we are
given � � 2 and

#�� �"2 . We will construct algorithms to show that � ��� & ’s advantage
is bounded by:

(1) The advantage in solving CDH problem.
(2) The advantage in breaking

���
.

Consider the algorithm in Figure 1 to solve the CDH problem in � 2�� . The meanings of
� � , and ���

�
are explained below.

Since we are in the random oracle model, we must provide subroutines to simulate
responses to the * � and * � queries made by ����� & . We must also provide subroutines to

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 11

FIGURE 2

Algorithm * � � (� � � %
Algorithm *�� � (� �	��� � %	 � � � � 2 2 % If

����� � 2 � % � � � � for some � :
* If 	 � 	 � : Return �� � � � � � �� . �

RETURN
�

Add
����� � 2 � % to � �

�

If
� 2 � � 0)0 � � 2 	 % � � �

�
� for some � � 0+0 � � : Return �

Return � � 0+0 � �
If
� � 2 ��� 0+0 � � 2 	 % � � �

�
� for some ��� 0)0 ��� :

Return � � 0+0 � �
�'� 0)0 � � �� �	� 2 �
 & (� � � 2 �
 &),
Add

� � 2 �'� 0)0 � � 2 	 % to � �
�

�
Return ��� 0+0 � �

simulate the signcryption oracle, the unsigncryption oracle and the non-repudiation oracle.
The superscript � � , on �
 and � � denotes this collection of simulators and the fact that
����� &

� � ��
 2 � � % has access to them. Note that the if
� � � � is successful then the solution�

to the CDH problem is actually returned by one of its subroutines. See Figure 2 and
Figure 5.

Let us first consider the simulation for * � . We must keep a list � �
�

to maintain consis-
tency between calls made by � ��� & . We divide � �

�
into two parts � �

� � � �
�

� � � �
�
� .

An entry of � �
�

� is of the form
� � 2 � � 0)0 � � 2 	 % where

� � 2 � � 0)0 � � % is the query/response
pair and 	 � � � � 2 2 % is stored for use later in the simulation. Note that the inputs to * � are
bit strings and the inputs to the pairing are elliptic curve points. We are therefore making an
implicit conversion from bit strings to elliptic curve points. Furthermore we are assuming
that the adversary only queries * � with bit strings that represent elliptic curve points. This
is justified since, in the random oracle model, querying *�� with any other bit strings will be
of no use to the adversary. Alternatively, we could have maintained two lists: one as above
for strings that represent valid elliptic curve points; and one of simple query/response pairs
for strings that do not represent valid elliptic curve points. The alternative solution would
not change the result.

An entry of � �
�
� is of the form

� 2 ��� 0+0 ��� 2 	 % where 	 � � ��#��!2�� % for some
#��

and
�

.
This represents the relation * � � � �� % � ��� 0+0 � � where � �#����� �$	� ��#
��%

which we do not
know.

The *-� simulation and book keeping is much simpler. We keep a list � �
�
, an entry of

which consists of simple query/response pair
����� � 2 � % .

The lists ���
�

and ���
�

are available to all algorithms, as are 2 2%#�2%# &� 2%#�)� 2	�
�	� 2%# &� 2$#�)� .
The * � and *-� simulations are described in Figure 2. The step marked with � is only exe-
cuted when responding to a query from ��� . Note that the step “RETURN

�
” in * � � (� � � %

is the step that returns the Diffie-Hellman value for algorithm
� � � � .

The signcryption and unsigncryption oracle simulators are described in Figure 3, Fig-
ure 4 and Figure 5. Note that the algorithm of Figure 5 is a subroutine that is only called by
the algorithm of Figure 4. Also, the step “RETURN

�
” of

� � � (� in Figure 5 is a step that
returns the Diffie-Hellman value for algorithm

� � � � . The unsigncryption simulation will

12 JOHN MALONE-LEE

FIGURE 3

Algorithm
� � (

�

� # &(2$#)+ 2 , %
� � 2�� �� . �
� � � 2 , � # &(
If
� � 3 , goto

�
	 � � ��#)+ 2�� %
If
� � 2 � � � 0+0 � �� 2 	 % � � �

�
� for some

� � 2 � � � 0)0 � �� % :
� � 0)0 � � � � � � 0+0 � ��

Else if
� 2 � � � 0)0 � �� 2 	 % � � �

�
� for some � � � 0+0 � �� :

�'� 0)0 � � � � � � 0+0 � ��
Else:
�'� 0)0 � � � �	� 2 �
'&)(� � � 2 ��
'& ,
Add

� 2 ��� 0+0 ��� 2 	 % to � �
�
�

� � ����+� , %
��� � � � 0+0 , 0)0 � � 0+0 # &(0)0 #�)+
Add

�	��� � 2 � % to � �
�

- � � � 2 � 2��+%
Return -

differ depending whether it is responding to a query from �
 or � � . The lines marked with
� are only executed when responding to a query from � � . Algorithm

� � (
� is constructed

in the same way as
� � (

� . However, where
� � (

� returns , ,
� � (

� returns
&(2%#)+ 2 ,

and
� � � 2 � 2���% .

Let us now examine our simulation. We consider how � ��� & runs in a real attack (real)
and in the above simulation (sim). Define an event BAD to be one that causes the joint
distribution of � ��� & ’s view to differ in sim from the distribution of � ��� & ’s view in real.

&���' � ��� & � ����� ��� BAD* � (� �%&���' � ��� & � ����� ��� BAD * �
�
& &. &���' � ��� & � ����� * �

�
& &

&��('
BAD* �

�
& &� �$, �$ �! #" (����� ��� &��
 4 � � 1

� � � % &��('
BAD* �

�
& &
�

(3)

We define the event FIND to be that where � � makes a * � query
�

such that � � � 2 2 % �	 � . We have&1��' � ��� & � �#��� ��� BAD * � (�� &1��' � ��� & � �#��� ��� BAD � FIND * � (� , &���' � ��� & � ����� ��� BAD � ��� FIND * � (�� &1��'
FIND * � (� , &��(' � ��� & � �#��� ��� BAD ����� FIND * � (� �

(4)

Now, if this FIND occurs in
�'� , then

� � � � succeeds in solving the CDH problem which
means that (4) becomes&��(' ����� & � ����� ��� BAD * � (�� �! #" � � �	�� 4 � �� ,

� � � % , &��(' ����� & � ����� ��� BAD ����� FIND * � (� �
(5)

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 13

FIGURE 4

Algorithm
�� � (

�

� # &(2%#)+ 2 - %
Parse - as

� � 2 � 2���%
If � �� . �
�� � �� . �
 , return

�
� � � 2 , � # &(
If
� � 3 , return

�
	 � � � #)+ 2�� %
If
� � 2 � � � 0+0 � �� 2 	 % � � �

�
� for some

� � 2 � � � 0+0 � �� % :
� � 0+0 � � � � � � 0)0 � ��

* Else if 	 � 	 � , call
� � � (� � # &(2$#)+ 2 - %

Else if
� 2 � � � 0+0 � �� 2 	 % � � �

�
� for some � � � 0+0 � ��

� � 0+0 � � � � � � 0)0 � ��
Else:
� � 0+0 � � �� �	� 2 ��
 & (� �	� 2 �
 &),
Add

� 2 � � 0+0 � � 2 	 % to � �
�
�

, � � � �+� � %�-� � � � 0)0 , 0+0 � � 0)0 # &(0+0 #)+
If
�	��� � 2 � � % � ��� � for some � � :
If � � � � :

Return ,
Return

�
� � �� . �

Add

���-� � 2 � � % to � �
�

If � � � � , return ,
Return

�

We have from (3) and (5) that

�$, �$ �2 3" (����� ��� &��
 4 ��� 1
� � � % &��('

BAD * �
�
& &� �2 3" � � �	�� 4 � �� ,

� � � % , &1��' ����� & � �#��� ��� BAD � � FIND * � (� �
(6)

We next establish a bound on
&1��'

BAD * �
�
& & .

The only way in which � ��� & ’s view can differ in real and sim is if there is an error in� � � � , * � � (� , * � � (� ,
� � (

� or
� � (

� . We therefore split

BAD
�
BAD � �� , � BAD � � � BAD � � � BAD 	 � � BAD � �(7)

The only possible error in
� � � � is trying to insert

� 0)0 , � 0)0 � �� 0+0 # &� 0+0 #�)� 2 ���� % into ���
�

when� 0)0 , � 0+0 � �� 0)0 # &� 0+0 #)� 2 � % � � �
�

for � "� � �� . At the point when this could happen is
outside � ��� & ’s view. Therefore, for such an error, would have to occur by chance in a
query made by � ��� & or in a response to such a query. We infer

&1��'
BAD � �� , * �

�
& &
� � � � , � � , ��, , � �

� �
�

(8)

It is easy to see that * � � (� and * � � (� provide perfect simulations and therefore

14 JOHN MALONE-LEE

FIGURE 5

Algorithm
� � � (� � # &(2$#�)+ 2 - %

Parse - as
� � 2 � 2��+%

If � �� . �
�� � �� . �
 :
If
)+ � #)� :
If � � � �(, return

�
Else:

� � � ���(�', � � �(% �*� � �(� %� � � #
RETURN

�

Else if
&(� # &� and � � � �(, return

�
Else if � � � �(ABORT
Else:� � � � �(��� + � � �(� + % �*� � �(� %
 �"� �� � � � � + � �(� � % ��� � �(� %
 �"� �� � � � �(� � � �(%��*� � �(� %
 � � �� � �

2 , � , � #
RETURN

�

&1��'
BAD �

� * �
�
& &
�%&���'

BAD �
� * �
�
& &
� � �(9)

Let us now consider
&1��'

BAD 	 � � � BAD � �� , * . We define
� � to be such that � � � � 2 2 % �

� � #)� 2 %�� 	 � , where
�

is the target receiver chosen by �
 . There are three possible
cases described below for an error in

�� � (
� .

(1) An error could be caused by
� � (

� in the find stage if, at the end of this stage,
��
 outputs

�
such that an invocation of

� � (
� has added

� 2 � � 0+0 � � 2 � � #)+ 2�� %�%
to � �

�
� such that � ��#�)+ 2�� % � � � #)� 2 %

. Since is independent of �
 ’s view this
can happen with probability at most � � ��� � � % .

(2) An error could be caused by
�� � (

� in the guess stage if, the query
� � has never

been made to * � , and the simulator, in responding to a query
��# &(2$#)+ 2 , %

, gen-
erates � and

�
such that � � #)+ 2 � 2 , �"# &(% � � � #)� 2 %

. This can occur with
probability at most � � ��� � � % .

(3) The other possibility of an error caused by
� � (

� can occur in either stage. This
error is cased if

� � (
� produces � and

��� � such that
����� � 2 ��� % � ��� � for � � "� � ,

or
��� � ���-� � � . This can occur with probability at most
 � � ��
(�� �

� � � , � , , �
� , � , �
� �

� � �+��$ � � � , � � , $ � , , $ �
� , � %$�� � � %
�

The three cases above tell us

&���'
BAD 	 � ��� BAD � � , * �

�
& &
� � � ��$ � � � , � � , $ �-, , $ � � ,��$%$�� � � %

�
(10)

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 15

We now deal with
&��('

BAD� � � � BAD 	 � ��� BAD � �� , * �
�
& & . We will split this up into two

cases: possible errors in the find stage and possible errors in the guess stage.
An error can only be caused by

� � (
� in the find stage if �
 makes a query

� # &(2$#)+ 2 - % ,
where - � � � 2 � 2��+% , such that the public key

#*)� corresponding to user
�

output by �

satisfies � � #)� 2 % � � � #)+ 2 � 2 , �"# &(% . Since is independent of �
 ’s view we infer

&1��'
BAD � � ����� ��% ��� BAD 	 � ��� BAD � � , * �

�
& &
� � , , �	�
� �

�
(11)

It remains to analyse&1��'
BAD� � � ���� ���"% ��� BAD� � ������� % � � BAD 	 � ��� BAD � �� , * �

�
& &(12)

Let us denote the event
�
BAD � � ��������% ��� BAD 	 � � � BAD � �� , by 3NB (3 Not Bad). So,

from (12), we are interested in&��('
BAD� � �0$�����"��% � 3NB * �

�
& &
�

(13)

In the guess stage the only possibility for a
� � (

� error is rejecting a valid ciphertext. We
know that if this occurs then � � must have made a

�� � (
� query with

� # &(2%#)+ 2�� � 2 � 2��+%�%
such that

� � #)+ 2 � 2 , �"# &(% � 	 � �
To analyse the probability of this occurring we must look at

� � � (� in Figure 5 since this
deals with all such queries. We split this into three cases.

CASE1. Event that would cause
� � � (� to (incorrectly) return

�
CASE2. Event that would cause

� � � (� to abort
CASE3. Event that would cause

� � � (� to return
�

on behalf of
� � � �

Let us suppose that
� � � (� (incorrectly) returns

�
in response to some query

&(2$#)+ 2 - �� � 2 � 2���% . In this case the following conditions are satisfied.

C1. � � #)+ 2 � 2 , �"# &(% � 	 �
C2. � � *-� � 0+0 , 0)0 � �� 0+0 # &(0)0 #)+ % where , � � � �� � � %
C3. 0+0 , 0)0 � �� 0+0 # &(0)0 #)+ "� 0+0 , � 0)0 � �� 0+0 # &� 0)0 #)�

The conditions C1 and C2 are obvious. To see why C3 must hold we use an argument
adapted from the full version of [4].

Suppose that C1 and C2 both hold and that 0)0 , 0)0 � �� 0)0 # &(0+0 #)+ � 0+0 , � 0+0 � �� 0)0 # &� 0+0 #)� .
This tells us that the following conditions are satisfied.

D1. � � #)+ 2 � 2 , �"# &(% � � ��#�)� 2 %
and since

)+ � #)� , � 2 , �"# &� �
D2. � � �	� (since , � � � �� � � % � � � �� � � � % � , � and the fact that

�
is injective for

any key)
D3. � � � �� (since otherwise

� � � (� does not return
�

)
D3.

� ��� � (by the properties of �!2�� and the facts that
� 2 , � # &� � � �� 2 , � �� # &�)

We infer that if we had 0+0 , 0)0 � �� 0)0 # &(0+0 #)+ � 0+0 , � 0+0 � �� 0)0 # &� 0+0 #)� would mean that
� � 2 � 2��+%

was the target ciphertext which is not allowed. Therefore the only way
� � � (� returns

�
incorrectly is if * � outputs one of �'��� 2
�	�
� 2 � ��
 in response to some query. Over all queries
made to

� � (
� and

� � (
� we infer that

&��('
CASE1* �

�
& &
� � � � � � , � � , ��, , � � %

� �
�

(14)

16 JOHN MALONE-LEE

Note that in the above we have assumed that 0)0 , 0+0 � �� 0+0 # &(0)0 #�)+ � 0+0 , � 0)0 � �� 0+0 # &� 0)0 #)�
means that

&(� # &� and
)+ � #�)� as elliptic curve points. We can ensure that this is the

case by insisting that the bit string representation of all points in � 2�� are of fixed length.
The simulator

� � � (� only aborts if � � � �(and
&("� # &� . When

�("� # &� , ���(is
unknown to the adversary and so

&1��'
CASE2* �

�
& &
� � , , �	�
� �

�
(15)

We must now analyse&1��'
CASE3

���
CASE2

���
CASE1

�
3NB* �

�
& &� &1��'

CASE3
���

CASE2
���

CASE1
�
3NB* � (�(16)

The equality in (16) concerning the equality of probabilities in � � � � and
�'� , follows from

a fact that we have been implicitly using in our analysis of
&��('

BAD * �
�
& & : all the events so

far (other than CASE3) depend on collisions being caused by the output of random number
generators or random oracles; such events occur with equal probability in � � � � and in

� � , .
Moreover, this is true until CASE3 occurs.

It is verified in the Appendix that if CASE3 occurs,
� � � (� returns

�
which is the correct

solution to the Diffie-Hellman problem. From this, (14), (15) and (16) it is clear that&��('
BAD� � �0$�����"��% � 3NB * �

�
& &� � � � � � , � � , �-, , � � %

� �
, �-, , � �
� �

, �2 3" � � �	�� 4 � � , � � � %(17)

Now, from (7), (8), (9), (10), (11), (12), (13), (17) we have

&���'
BAD * �

�
& &
� � � � , � � ,�� � , ,�� �
�

� �
, � � � , � %�� $ � � � , $ � � , $ � , , $ �	� ,��$%$�� � � %
, �2 3" � � �	�� 4 � �� ,

� � � % �
(18)

The final stage is to give a bound on
&���' � ��� & � �#��� ��� BAD � � FIND * � (� . Let ASK be

the event in which � ��� & makes the *-� query 0+0 , � 0+0 � �� 0)0 # &� 0+0 #)� . We have&1��' ����� & � �#��� ��� BAD ��� FIND* � (�� &1��' ����� & � �#��� ��� BAD ��� FIND � �
ASK

� �
ASK

% * � (�
� � � �$ &),

, &1��' ����� & � �#��� ��� BAD ��� FIND ��� ASK * � (� �
(19)

This follows from the fact that in the event
�
FIND, � �� is unknown to ����� & .

To complete the proof we show how, in the event �	��� & �
�#��� � �

BAD
� �

FIND
�

�
ASK, it would be possible to use � ��� & to break the symmetric encryption scheme

��� �
� � ��� 2 ��2 � %

in the sense of Definition 8. We describe an adversary � ��� to do this in Fig-
ure 6. The collection of subroutines � � , necessary for the execution of � � � are those used
by

� � � � of Figure 1.
In the event � ��� & �

�#��� � �
BAD

� �
FIND

� �
ASK, the following are true of � ��� in

Figure 6.� The adversary � ��� requires no access to an
�

oracle.� Adversary ����� & is run by � ��� in exactly the same way as it would be run by
� � � � .� If ����� & wins, then � ��� also wins.� The time taken to run � � � is the same as that taken to run

� � � � .

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 17

FIGURE 6

Algorithm � ��� �+� � � %
For

� � � 2
�	�
��2 � �� � �(2�� �(� . �
# &(� � � � ���(% �	� �(� � �(% 2
If
&(� 3 , goto

�
For

� � � 2
�	�
��2 � �� � (� .#�
�(� # , � (2
If
�(� 3 , goto

�
� , � 2 , � 2 � 2�� 2�������� � % � � � (�
 � �"� 2 2$# &� 2%#)� 2
�	�
� 2%# &� 2%#)� %�-����� � � � ��������� � 2 2$# &� 2%#)� 2
�	�	� 2%# &� 2%#�)� 2 � �� 2�� �� %

Return
� , � 2 , � 2�������� � � %

Outside of � � � ’s view � �� is chosen at random from � � 2 �
 & (and
a bit � is chosen uniformly at random. Message , � is encrypted
under � �� to produce � � � � � �� � , � % .
Algorithm � ��� � � � � 2 � � 2 , � 2 , � 2�������� � � %

Pares
������� � � as

��������� � 2 2$# &� 2%#)� 2
�	�
� 2%# &� 2%#)� 2 � �� 2�� �� %- � � � � � 2 � �� 2�� �� %
�� � � � (�� � �"� 2 2$# &� 2%#)� 2
�	�
��2%# &� 2%#)� 2 - � 2 , � 2 , � 2�������� � %
Return � �

From the above observations and examining the construction of � ��� we infer that

&1��' � ��� & � �#��� ��� BAD ��� FIND ��� ASK* � (� � �$, �$ �2 3" (����� ��� &		� 4 � � (
� � � %

� �$, �$ �2 3" (����� ��� &		� � � � 2�� � 2 � % �(20)

with
� � � �-,�� � ��� % ,�� � � � � � %-,�� � � � � � , � %�% ,�� ��� �-, , � � %�� � , � %�%

, where �
is the complexity of evaluating � and � is the complexity of a multiplication in �!2�� .

The result now follows from (6), (18), (19) and (20). �

4.2. Unforgeability of the scheme ��# . In this section we will prove �$# to be secure
under Definition 6. In our security analysis we will assume that, for a security parameter
� � , ��� � � � % has been run to produce . Subsequently

� � % is run to produce
� � 2%# %

and
we are given

#
.

We will show how an adversary, in the sense of Definition 6, may be used to recover �
from

#
. Let � � be such an adversary that attacks �$# in an � -user setting. In its attack

� � makes at most � � � , � � � , � � , �-, and � � queries to * � , * � , the signcryption oracle, the
unsigncryption oracle and the non-repudiation oracle respectively.

We will run � � in a simulated environment to construct an adversary � � that makes zero
queries to the signcryption oracle, zero queries to the random oracle * � , zero queries to
the unsigncryption oracle, zero queries to the non-repudiation oracle and one query to the

18 JOHN MALONE-LEE

random oracle *�� . To make this possible we describe a collection of simulators * � � (� ,
*-� � (� ,

� � (
� ,

� � (
� and

� � (
� using the same notation as Theorem 1. We denote

this collection of simulators � � , . We keep lists ��
�

and � �
�

that are initially empty to
maintain consistency between calls to * � � (� and *-� � (� . These lists have the same form
as those in Theorem 1.

First of all we generate the � pairs of public keys to supply to our adversary with as in
Figure 7. Once we have done this we are ready to run � � . We describe � � in Figure 8.
We describe the simulations with which it interacts in Figure 9, Figure 10 and Figure 11.
Algorithm

� � (
� is constructed in the same way as

� � (
� . Where

� � (
� returns , ,� � (

� returns
&(2%#�)+ 2 , and

� � � 2 � 2��+% .

FIGURE 7

Sender keys Receiver keys
�'&� � � For

� � � 2
�	�
��2 � :# &� � # �)(�� . �

For

� � $*2
�	�	� 2 � :
#�)(� �)(2

�'&(�� .#�
&(� �'&(

FIGURE 8

Algorithm � �
�
� � � � 2 2%# &� 2%#)� 2
�	�	� 2%# &� 2$#)� %� �� � � 2	�
�	��2 � �
# &(2%# � 2 ,!� 2 � � �� 2 � � 2�� � % � ��� (�� � �"� 2 2%# &� 2$#�)� 2	�
�	��2$# &� 2%#)� %

If � � "���� :
ABORT

Return
&(2$# � 2 ,�� 2�� � �� 2 � � 2�� � %

FIGURE 9

Algorithm * � � (� � � %
Algorithm *-� � (� ���-� � � ��� %	 � � � � 2 2 % If this is the

�
-th query to *�� � (� :

If
� 2 � � 0+0 � � 2 	 % � � �

�
� for some � � 0)0 � � : �� � * � �	��� � � ��� %

Return � � 0+0 � � If
�	��� � � ��� 2 � � % � ��� � for � � "���� :

If
� � 2 � � 0)0 � � 2 	 % � � �

�
� for some � � 0+0 � � : ABORT

Return � � 0+0 � � Add
�	��� � � ��� 2��� % to � �

�

� � 0+0 � � �� � � 2 �
'& (� �	� 2 ��
 &), Return
��

Add
� � 2 ��� 0+0 � � 2 	 % to � �

�
� If

�	��� � � ��� 2 � % � � � � for some � :
Return ��� 0)0 ��� Return �

� �� .#�

Add

���-� � � ��� 2 � % to � �
�

Return �

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 19

FIGURE 10

Algorithm
� � (

�

� # &(2%#�)+ 2 , %
� � 2�� �� . �
� � � 2 , � # &(

If
� � 3 goto

�
	 � � � #)+ 2�� %
If
� � 2 � � � 0+0 � �� 2 	 % � � �

�
� for some

� 2 � � � 0+0 � �� :
�'� 0)0 ��� � � � � 0)0 � ��

Else if
� 2 � � � 0+0 � �� 2 	 % � � �

�
� for some � � � 0+0 � �� :

� � 0)0 � � � � � � 0)0 � ��
Else:
� � 0)0 � � �� �	� 2 ��
 & (� �	� 2 �
'&),
Add

� 2 � � 0+0 � � 2 	 % to � �
�
�

� � � � � � , %
�-� � � ��� � � 0)0 , 0)0 � � 0)0 # &(0+0 #)+
If
�	��� � � ��� 2 � � % � ��� � for � � "� � , ABORT

Return
� � 2 � 2��+%

FIGURE 11

Algorithm
�� � (

�

� # &(2$#�)+ 2 - %
Parse - as

� � 2 � 2��+%
If � �� .#�
 � � �� .#�
 :

Return
�

� � � 2 , � # &(
If
� � 3 , return

�
	 � � ��#)+ 2�� %
If
� � 2 � � � 0+0 � �� 2 	 % � � �

�
� for some

� 2 � � � 0+0 � �� :
�'� 0)0 � � � � � � 0+0 � ��

Else if
� 2 � � � 0)0 � �� 2 	 % � ��� �

�
for some � � � 0)0 � �� :

�'� 0)0 � � � � � � 0+0 � ��
Else:
�'� 0)0 � � �� �	� 2 �
'&)(� � � 2 ��
'& ,
Add

� 2 ��� 0+0 ��� 2 	 % to �%� �
�

, � � ��+� � %��� � � ��� � � 0+0 , 0)0 � � 0+0 # &(0)0 #�)+
If
���-� � � ��� 2 � � � % � � � � for some � � � , � � � � � �

Else:
� � � . �

Add

����� � � ��� 2 � � % to ���
�

If � � � � , return ,
Else, return

�

20 JOHN MALONE-LEE

Claim 1.

�2 3" ��� &��
 4 � �
� � � % . �

� � �
� �2 3" ��� &��
 4 � �

� � � % � �
� � � � � , $�� � � , � , % � % , $

$�� � � % �(21)

Proof. Suppose that � � succeeds in forging
&(2$# � 2 ,�� 2�� � �� 2 ��� 2�� � % . Let

� � � � � 2 ,
� � # &(and let

��� � � ��� � � � � 0)0 ,!� 0+0 � �� 0+0 # &(0+0 # � . We define some special events below.� Event #�� : Adversary � � makes the query
��� � � ��� � to the random oracle * � dur-

ing its successful attack. The initials stand for critical query.� Event � (: For
� � � 2	�
�	��2 � � � , � (is the event that � � makes the query

��� � � ��� � to
the random oracle * � for the first time at the

�
-th query.

Let us now consider the advantage of � � . We will denote probabilities in � � ’s real attack,
i.e. the experiment given in Definition 6, with a subscript real and denote probabilities
where � � is run by � � with a subscript sim. From the construction of � � it is clear that

�2 3" ��� &��
 4 � �
� � � % .

,
�

�
(�� �

&1��'#� � � �/% � � � � ����� � � (* � (�
�

,
�

�
(�� �

&1��' � �1� * � (� &1��' � � � �#��� � � (* � (�
� �
� � �

&1��' � � � ����� � #�� * � (�
. �
� � ��� &1��' � � � ����� � #�� * � � & & � � � � � � � , $�� � � , � , % � %$�� � � % �(22)

� �
� � � � &1��' � � � ����� * � � & & &1��' � � � ����� � � #�� * � � & &

 � �
� � � � � , $�� � � , � , % � %$�� � � % �

. �
� � � � �! #" ��� &��
 4 � �

� � � % � �
� � � � � , $�� � � , � , % � %-, $

$�� � � % �(23)

For (22) note that � � can only win in the simulation if
�� � (

� does not abort. The proba-
bility of

� � (
� aborting is at most

� � � � � � � , $�� � � , � , % � % , $
$�� � � %

�

For (23) note that, in the random oracle model, � � can not win with probability greater
than �
 � � if the event #�� does not occur.

There is an implicit assumption above that the query ��� of � � in its successful run is
not for a string that has been added to ��

�
by an invocation of

� � (
� . That is to say we

assume that * � � (� does not abort. This is acceptable because a successful run of � � must
output a message that was never a signcryption query during the attack. �

The computational assumption on which our security proof relies will be the discrete log-
arithm assumption. We define the particular instance of the problem that we will be inter-
ested in below.

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 21

FIGURE 12

Algorithm ��� � �"� 2 2$# &� 2%#)� 2
�	�
� 2%# &� 2%#)� %
� � 2 � � �� .#�

If � � � �2� ABORT
Start � � � �2� 2 2%# &� 2$#�)� 2	�
�	��2$# &� 2%#)� %

If the subroutine *-� � (� calls *-� respond with � �# &(2%# � 2 ,!� 2 � � �� 2 � �� 2�� �� % � � �
�
� � �"� 2 2$# &� 2%#)� 2
�	�
� 2%# &� 2%#�)� %

Start � � � � � 2 2%# &� 2$#)� 2	�
�	��2$# &� 2%#)� % a second time with the same random input
If the subroutine *-� � (� calls *-� respond with ���# &(2%# � 2 ,!� 2 � � �� 2 � �� 2�� �� % � � �

�
� � �"� 2 2$# &� 2%#)� 2
�	�
� 2%# &� 2%#�)� %

� � �	� �� � �� %�� � ��&(� � �� � �� %�%
 �"� �
Return �

Definition 9 (The discrete logarithm assumption). Let
���

and
�

be as in Definition 4 of
�$# . Let � be an algorithm and consider the experiment below.

Experiment �)��� � & � �	�� 4 � � �"� %
 �� ��� � �"� %� � 2%# % �� � � %
� � � � �"� 2 2$# %
If
� � 2 return 1, else return 0

We define the advantage of the algorithm � as�2 3" � & � �	�� 4 � � � � % � &1��' ����� � & � �	�� 4 � � � � % � �-* �
For any integers

�
, we define the advantage function as�2 3" � & � �	�� � � � 2���% �
 � /� � �2 3" � & � �	�� 4 � � � � %
 2

where the maximum is over all algorithms with time complexity
�
.

The discrete logarithm assumption is that
�! #" � & � �	�� � �2� 24��% is a negligible function of the

security parameter.

From � � we now construct an algorithm ��� to find the discrete logarithm of
#

. When � �
is run by � � it no longer has access to *�� . We describe � � in Figure 12.

Let us suppose that we have a boolean matrix where each row corresponds to a possible
random input for the adversary � �

�
� � �2� 2 2%# &� 2%#�)� 2	�
�	� 2$# &� 2$#�)� % and each column corre-

sponds to a possible random response to the * � query made by � � . We denote this matrix� ��� � � 2 � % . An entry of
� ��� � � 2 � % is one if � �

�
� � �2� 2 2%# &� 2%#)� 2	�
�	� 2%# &� 2$#)� % wins when

run with the appropriate random input and * � response, and zero otherwise.

Definition 10 (Heavy row). Let
� ��� � � 2 � % be as above. A heavy row of

� ��� � � 2 � % is one
where the fraction of ones is at least �� �! #" ��� &�
 4 � �

� � 2 ��% .
Our proof will require the simple lemma below from [28].

Lemma 1 (Heavy row lemma). If
�! #" ��� &��
 4 � �

� � 2 ��% . �
 � � then the ones of
� ��� � � 2 � %

are located in heavy rows with probability �� .

22 JOHN MALONE-LEE

Proof. For compactness we will denote
� ��� � � 2 � % by

�
and

�2 3" ��� &��
 4 � �
� � 2 ��% by

�2 3" � � .&���'�� ����� �����(�"� � ��� � 0 �1�����"�(��� � � � � *� � &1��' � � �����������(�"� � ��� � 0 ���!���"�(��� � � � � *
� �

&1��' � � �����������(�"� � ��� � � ���!�"���(��� � � � � *&��(' �1�����"�(��� � � � � *
. � �� �2 3" � ��! #" � �

� �$
�

Claim 2. If
�! #" ��� &��
 4 � �

� � 2 ��% . �
 � � then

�! #" � & � �	�� 4 �
	 � � � % . ��
� �! #" ��� &�
 4 � �

� � 2 ��%� � �
� �

�
(24)

Proof. Consider an execution of ��� with random input � . Assuming that � � "� � � , the
first call to � � made by ��� succeeds with probability

�2 3" ��� &�
 4 � �
� � 2 ��% . If the first call

to � � is successful, by Lemma 1, the entry of the matrix
� ��� � � 2 � % corresponding to �

and � � is in a heavy row with probability �� . If we are in a heavy row, with probability�� �2 3" ��� &��
 4 � �
� � 2 ��% the entry of

� ��� � � 2 � % corresponding to � and � � is 1. This gives us
the probability that the second call to � � made by � � is successful. It is easily verified that
when � � "� �2� and both calls to � � made by � � are successful then � � is successful. The
result follows. �

From (21), (24) and the construction of � � and � � we derive the result below.

Theorem 2. Let �$# � ����� 2%� 2�� 2�� 2�� 2���� %
be as in Definition 4, using hash functions

* � and *-� , and symmetric encryption scheme
���

. In the random oracle model for * �
and *-� we have

�2 3" ��� &��

� � � 24� 2 � � 2 �-, 2 � � ��2 � � � %� $ � � � �! #" � & � �	�� � � � 24� � %", �

� �
�
��

, � � � � � � � , $�� � � , � , % � %$�� � � %
with

� � � � ,�� � ��� % ,�� � � � � � % ,�� � � ��� � , � %�% ,�� �"� � , , �	� %�� � , � %"%
, where �

is the complexity of evaluating � and � is the complexity of a multiplication in �!2�� .
Note that, since we are in the random oracle model, the advantage

�2 3" ��� &��

��� 2�� 2 � � 2 �-,

, � � � , � � � % is now the maximum over all adversaries running for time
�
, making at most

� � � � � � � queries to * � � * � , at most � � signcryption queries and at most �(, unsigncryption
queries.

5. CONCLUSION

We have described a model of security for signcryption schemes that offer non-interactive
non-repudiation. This is a model of security in the multi-user setting. Our model applies
to existing schemes such as those in [5, 23, 30].

We have shown how the scheme of [5] is insecure under any definition of privacy based
on indistinguishability of signcryptions. We have proposed a modification of this scheme to
overcome the weakness. Proofs of security of the modified scheme have been given in the
random oracle model. We note that this scheme is almost as efficient as the scheme in [4],

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 23

the only significant extra cost is one group exponentiation in the signcryption operation
and one in unsigncryption.

REFERENCES

[1] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an analysis of DHIES.
In Topics in Cryptology - CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages 143–158.
Springer-Verlag, 2001.

[2] J. H. An. Authenticated encryption in the public-key setting: Security notions and analyses, 2001. Available
at http://eprint.iacr.org/2001/079/.

[3] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In Advances in Cryp-
tology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 83–107. Springer-
Verlag, 2002.

[4] J. Baek, R. Steinfeld, and Y. Zheng. Formal proofs for the security of signcryption. In Public Key Cryptog-
raphy, volume 2274 of Lecture Notes in Computer Science, pages 80–98. Springer-Verlag, 2002.

[5] F. Bao and R. H. Deng. A signcryption scheme with signature directly verifiable by public key. In Public
Key Cryptography ’98, volume 1431 of Lecture Notes in Computer Science, pages 55–59. Springer-Verlag,
1998.

[6] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for paring-based cryptosystems.
In Advances in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
354–368. Springer-Verlag, 2002.

[7] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs and
improvements. In Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 259–274. Springer-Verlag, 2000.

[8] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
In �����

�
Annual Symposium on Foundations of Computer Science, pages 394–403. IEEE Computer Science

Press, 1997.
[9] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key

encryption schemes. In Advances in Cryptology - CRYPTO ’98, volume 1462 of Lecture Notes in Computer
Science, pages 26–45. Springer-Verlag, 1998.

[10] M. Bellare, M. Jakobsson, and M. Yung. Round-optimal zero-knowledge arguments based on any one-
way function. In Advances in Cryptology - EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer
Science, pages 280–305. Springer-Verlag, 1997.

[11] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In��� � ACM Conference on Computer and Communications Security, pages 62–73, 1993.
[12] M. Bellare and P. Rogaway. Optimal asymmetric encryption - how to encrypt with RSA. In Advances in

Cryptology - EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science, pages 92–111. Springer-
Verlag, 1994.

[13] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In Advances in Cryptology -
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer-Verlag, 2001.
Full version available at http://eprint.iacr.org/2001/090/.

[14] G. Brassard, D. Chaum, and C. Cr �	 peau. Minimum disclosure proofs of knowledge. Journal of Computer
System Sciences, 37:156–189, 1988.

[15] J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman groups. In Public Key
Cryptography - PKC 2003, volume 2567 of Lecture Notes in Computer Science, pages 18–30. Springer-
Verlag, 2003.

[16] D. Chaum and T. P. Pederson. Wallet databases with observers. In Advances in Cryptology - CRYPTO ’92,
volume 740 of Lecture Notes in Computer Science, pages 89–105. Springer-Verlag, 1993.

[17] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In Advances in Cryptology - CRYPTO ’98, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer-Verlag, 1998.

[18] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. Available at http://eprint.iacr.org/2001/108/, 2001.

[19] S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In Algorithmic Number Theory
(ANTS V), volume 2369 of Lecture Notes in Computer Science, pages 324–337. Springer-Verlag, 2002.

[20] S. Galbraith, J. Malone-Lee, and N. P. Smart. Public key signatures in the multi-user setting. Information
Processing Letters, 83(5):263–266, 2002.

24 JOHN MALONE-LEE

[21] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28:270–
299, 1984.

[22] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[23] W. H. He and T. C. Wu. Cryptanalysis and improvement of Petersen-Michels signcryption scheme. IEE
Proceedings - Computers and Digital Techniques, 146(2):123–124, 1999.

[24] F. Hess. Efficient identity based signature schemes based on pairings. In Selected Areas in Cryptography,
volume 2595 of Lecture Notes in Computer Science, pages 310–324. Springer-Verlag, 2003.

[25] M. K. Lee, D. K. Kim, and K. Park. An authenticated encryption scheme with public verifiability. In ���
�

Korea-Japan Joint Workshop on Algorithms and Computation, pages 49–56, 2000.
[26] J. Malone-Lee. Identity-based signcryption, 2002. Available at http://eprint.iacr.org/2002/098/.
[27] A. J. Menezes, T. Okamato, and S. A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite

field. IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.
[28] K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from identification. In Ad-

vances in Cryptology - CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 354–369.
Springer-Verlag, 1998.

[29] K. G. Patterson. ID-based signatures from pairings on elliptic curves. Electronic Letters, 38(18):1025–1026,
2002.

[30] H. Petersen and M. Michels. Cryptanalysis and improvement of signcryption schemes. IEE Proceedings -
Computers and Digital Techniques, 145(2):149–151, 1998.

[31] C. P. Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptology - CRYPTO
’89, volume 435 of Lecture Notes in Computer Science, pages 235–251. Springer-Verlag, 1990.

[32] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.
[33] N. P. Smart. An identity based authenticated key agreement protocol based on the Weil pairing. Electronic

Letters, 38(13):630–632, 2002.
[34] E. R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. In Ad-

vances in Cryptology - EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
195–210. Springer-Verlag, 2001.

[35] Y. Zheng. Digital signcryption or how to achieve cost(signature � encryption) ��� cost(signature) �
cost(encryption). In Advances in Cryptology - CRYPTO ’97, volume 1294 of Lecture Notes in Computer
Science, pages 165–179. Springer-Verlag, 1997.

APPENDIX

Suppose that
� � � (� or

� � � (� is responding to a query
��# &(2$#�)+ 2 - % made by � � where

- � � � 2 � 2��+% . Let
� � � 2 , � # &(�(25)

Recall that this query is such that � ��#)+ 2�� %�� � � #)� 2 % � 	 � . This would mean that

� �-�� � � #)+ % � � �-�$ � �	� % � � �-�� � ��#)� % � � �-�� � � %
 � � � �(26)

We split the event of such a query into two cases: CASE1 is the event that
)+ � #)� in the

offending query; CASE2 is the event that
)+ "� #)� in the offending query.

CASE1:
)+ � #)�

In this instance we must have

� � ��� �$ � � % ����� �$ � �	� %
(27)

From (25) and the way that
&(is created in Figure 1, we infer that

��� �$ � �	� %�� � , � �� �(� �
� �(
� �((28)

SIGNCRYPTION WITH NON-INTERACTIVE NON-REPUDIATION 25

Assuming � �("� � , together (27) and (28) give us

� �-�� � � % � � � � �(
�', � � �(
� �(�(29)

Using (29) we can compute

�;�"2 � � #
as required.

CASE2:
)+ "� #)�

Let us denote

� � � �-�� � � %
and � � � �-�$ � ��# %

(30)

From the way that
&(,

)+ and
)� are created in Figure 1, we infer that

� �-��	� ��#)+ % � � , � + 2
� �-��	� � #)� % � � , � � 2
��� �$ � �	� % ���', �

� �
� �(

� �(
� �(�

These equations and (26) tell us that

� � , � � % � � � � , � + % � ��, � � �� �(� �(
� �(� �(31)

Assuming � �("� � (, define
� � ���(��� + � � �(� +

� �(�
� � � � + � �(� �

� �(�
� � ���(� � � �(

� �(�
By equating coefficients in (31) and using the definitions for

�
, � and

�
above we have

���"2 �
�
2 , � , � #

as required.
E-mail address: malone@cs.bris.ac.uk

UNIVERSITY OF BRISTOL, DEPARTMENT OF COMPUTER SCIENCE, MERCHANT VENTURERS BUILDING,
WOODLAND ROAD, BRISTOL, BS8 1UB, UK

