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Abstract. This paper proposes a new public key authenticated encryption (signcryption) scheme
based on the Diffie-Hellman problem in Gap Diffie-Hellman groups. This scheme is built on the
scheme proposed by Boneh, Lynn and Shacham in 2001 to produce short signatures. The idea is to
introduce some randomness into this signature to increase its level of security in the random oracle
model and to re-use that randomness to perform encryption. This results in a signcryption protocol
that is more efficient than any combination of that signature with an El Gamal like encryption
scheme. The new scheme is also shown to satisfy really strong security notions and its strong
unforgeability is tightly related to the Diffie-Hellman assumption in Gap Diffie-Hellman groups.
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1 Introduction

The concept of public key signcryption schemes was proposed by Zheng in 1997 ([43]). The
purpose of this kind of primitive is to perform encryption and signature in a single logical step
in order to obtain confidentiality, integrity, authentication and non-repudiation more efficiently
than the sign-then-encrypt approach. The drawback of this latter solution is to expand the final
ciphertext size (this could be impractical for low bandwidth networks) and increase the sender
and receiver’s computing time. Several efficient signcryption schemes have been proposed since
1997. The original schemes proposed in [43],[44] were based on the discrete logarithm problem
but no security proofs were given. Zheng’s original construction was only proven secure in 2002
([3]) by Baek et al. who described a formal security model in a multi-user setting. In 2000, Stein-
feld and Zheng ([41]) proposed another scheme for which the unforgeability of ciphertexts relies
on the intractability of the factoring problem but they provided no proof of chosen ciphertext
security.

The drawback of the previously cited solutions is that they do not offer easy non-repudiation
of ciphertexts: a recipient cannot prove to a third party that some plaintext was actually sign-
crypted by the sender. Bao and Deng ([5]) proposed a method to add universal verifiability to
Zheng’s cryptosystem but their scheme was shown ([39]) to leak some information about the
plaintext as other schemes described in [42] and [31]. The latter schemes can easily be modified
to fix their problem but no strong guarantee of unforgeability can be obtained currently. In
the discrete logarithm setting, another scheme was shown in [39] to be chosen ciphertext secure
under the Gap Diffie-Hellman assumption. It was a signcryption scheme built on a modified ver-
sion of the DSA signature scheme which is not provably secure currently. As a consequence, no
proof of unforgeability could be found for that scheme. An RSA-based scheme was described by
Malone-Lee and Mao ([32]) who provided proofs for both unforgeability under chosen-message
attacks and chosen ciphertext security. Unfortunately, they only considered a security in a
single-user setting rather than the more realistic multi-user setting. Furthermore, the security
of that scheme is only loosely related to the RSA assumption. However, none of these schemes
is provably secure against insider attacks: in some of them, an attacker learning some user’s
private key can recover all messages previously signcrypted by that user while some others are



only proven secure against outsider attacks.

In 2002, An et al. ([1]) presented an approach consisting in performing signature and encryp-
tion in parallel: a plaintext is first transformed into a pair (¢, d) made of a commitment ¢ and
a de-commitment d in such a way that ¢ reveals no information about m while the pair (¢, d)
allows recovering m. Once he completed the transformation, the signer can jointly sign ¢ and
encrypt d in parallel using appropriate encryption and signature schemes. The de-signcryption
operation is then achieved by the recipient in a parallel fashion: the signature on c¢ is verified
while d is decrypted and the pair (c,d) is then used to recover the plaintext. This method de-
creases the computation time to signcrypt a message to the maximum of the times required by
the underlying encryption and signature processes. This parallel approach was further investi-
gated by Pieprzyk and Pointcheval ([35]) who proposed to use a (2,2)-Shamir secret sharing
as a commitment scheme: a plaintext is first splitted into two shares s;, so which do not in-
dividually reveal any information on m. s; is used as a commitment and signed while so is
encrypted as a de-commitment. The authors of [35] also gave a construction allowing them to
integrate any one-way encryption system (such as the basic RSA) with a weakly secure signature
(non-universally forgeable signatures in fact) into a chosen ciphertext secure and existentially
unforgeable signcryption scheme.

Dodis et al. ([20]) recently proposed another technique to perform parallel signcryption.
Their method consists in a Feistel probabilistic two-paddings (called PSEP for short) which
can be viewed as a generalization of other existing probabilistic paddings (OAEP, OAEP+,
PSS-R,etc.) and involve a particular kind of commitment schemes. The authors of [20] showed
that their construction also allows optimal exact security, flexible key management, compatibil-
ity with PKCS standards and has other interesting properties. On the other hand, all parallel
signeryption propositions require the recipient of a message to know from whom a ciphertext
emanates before beginning to verify the signature in parallel with the decryption operation.
A trivial solution to this problem is to append a tag containing the sender’s identity to the
ciphertext but this prevents the scheme from satisfying the notion of ciphertext anonymity for-
malized by Boyen in [14] (intuitively, this notion expresses the inability for someone observing
a ciphertext to determine who the sender is nor to whom it is intended) that can be a desirable
feature in many applications (see [14] for examples). Furthermore, by the same arguments as
those in [7], one can easily notice that the probabilistic padding described in [20] does not allow
the key privacy property to be achieved when instantiated with trapdoor permutations such as
RSA, Rabin or Paillier: in these cases, given a ciphertext and a set of public keys, it is possible
to determine under which key the message was encrypted. An anonymous trapdoor permutation
or a repeated variant of the padding PSEP (as the solutions proposed in [7]) could be used to
solve this problem but this would decrease the scheme’s efficiency.

In this paper, we propose a new discrete logarithm based signcryption scheme which sat-
isfies strong security notions: chosen ciphertext security against insider attacks (except the
hybrid composition proposed in [27] and the identity based scheme described in [14], no dis-
crete logarithm based authenticated encryption method was formally proven secure in such a
model before), strong unforgeability against chosen-message attacks, ciphertext anonymity in
the sense of [14] (this is an extension of the notion of key privacy proposed in [7] to the sign-
cryption case). We also prove that it satisfies a new security notion that is related to the one
of ciphertext anonymity and that we call ’key invisibility’. We show that the scheme’s strong
unforgeability is really tightly related to the hardness of the Diffie-Hellman problem unlike the
scheme proposed in [14] whose proof of unforgeability relies on Pointcheval and Stern’s forking
lemma and thus only provides a loose reduction to a computational problem. In fact, except the
hybrid construction of [27] (whose semantic security is based on the stronger hash oracle Diffie-
Hellman assumption) our scheme appears to be the first discrete logarithm based signcryption
protocol whose (strong) unforgeabililty is proven to be tightly related to the Diffie-Hellman



problem. About the semantic security of the scheme, we give heuristic arguments showing that
it is more tightly related to the Diffie-Hellman problem than expressed by the bounds at first
sight. Unlike [1],[20] and [35], our protocol is sequential but it is efficient and does not require the
recipient of a message to know who is the sender before starting the de-signcryption process. Our
scheme borrows a construction due to Boyen ([14]) and makes extensive use of the properties of
some bilinear maps over the so-called Gap Diffie-Hellman groups (in fact, the structure of these
groups is also exploited in our security proofs). Before describing our scheme, we first recall
the properties of these maps in section 2. The section 3 formally describes the security notions
that our scheme, depicted in section 4, is shown to satisfy in the security analysis presented in
section 5.

2 Preliminaries

2.1 Overview of pairings

Let k be a security parameter and ¢ be a k—bit prime number. Let us consider groups G; and
Go of the same prime order g. For our purposes, we need a bilinear map € : G; x G — Gg
satisfying the following properties:

1. Bilinearity: V P,Q € G1, V a,b € Zj, we have é(aP,bQ) = &(P, Q).
2. Non-degeneracy: for any P € G1, é(P,Q) =1 for all Q € G; iff P = O.
3. Computability: there is an efficient algorithm to compute é(P,Q) V P,Q € G;.

Modified pairings ([10]) obtained from the Weil or the Tate pairing provide admissible maps of
this kind. The group G; is a cyclic subgroup of the group of points of a suitable elliptic curve
E(F,) over a finite field while G is a cyclic subgroup of the multiplicative group associated
to a finite extension of F),. We refer to [33] or [9] for a detailed description of the Weil pair-
ings and to [25] for the Tate pairing. We now recall some problems that provided underlying
assumptions for many previously proposed pairing based cryptosystems. These problems are
formalized according to the elliptic curve additive notation.

Definition 1. Given groups Gi and G of prime order q, a bilinear map € : Gy X G; — Go and
a generator P of Gy,

- The Computational Diffie-Hellman problem (CDH) in Gi is, given (P,aP,bP) for
unknown a,b € Zg, to compute abP € Gy.

- The Decisional Diffie-Hellman problem (DDH) is, given (P,aP,bP,cP) for unknown
a,b,c € Zy, to decide whether ab = ¢ (mod q) or not. Tuples of the form (P,aP,bP,cP) for
which the latter condition is verified are called ”Diffie-Hellman tuples”.

- The Gap Diffie-Hellman problem (GDH) is to solve a given instance (P,aP,bP) of
the CDH problem with the help of a DDH oracle that is able to decide whether a tuple
(P,d' P,V P, P) is such that ¢ = a'b' (mod q) or not.

As shown in [28], a pairing can implement a DDH oracle. Indeed, in a group G; for which
pairings are efficiently computable, to determine whether a tuple (P, aP, bP, cP) is a valid Diffie-
Hellman tuple or not, it suffices to check if é(P,cP) = é(aP,bP). This kind of group, where the
DDH problem is easy while the CDH one is still believed to be hard, is called Gap Diffie-Hellman
groups in the literature ([28],[34]).



3 Security notions for signcryption schemes

We first recall the two usual security notions: the security against chosen ciphertext attacks
which is also called semantic security and the unforgeability against chosen-message attacks.
We then consider other security notions that were proposed by Boyen ([14]) in 2003. In the
notion of chosen ciphertext security, we consider a multi-user security model as already done in
[1],[3],]20],[35] and [14] to allow the adversary to query the de-signcryption oracle on ciphertexts
created with other private keys than the attacked one. We also consider the security against
insider attacks by allowing the attacker to choose to be challenged on a signcrypted text created
by a corrupted user (i.e. a user whose private key is known to the attacker). Indeed, for confi-
dentiality purposes, we require the owner of a private key to be unable to find any information
on a ciphertext created with that particular key without knowing which randomness was used
to produce that ciphertext. This further allows us to show that an attacker stealing a private
key does not threaten the confidentiality of messages previously signcrypted using that private
key L.

Definition 2. We say that a signcryption scheme is semantically secure against chosen ci-
phertext attacks (we call this security notion SC-IND-CCA) if no probabilistic polynomial time
(PPT) adversary has a non-negligible advantage in the following game:

1. The challenger runs the key generation algorithm Keygen to generate a private/public key
pair (sky,pku). sky is kept secret while pky is given to the adversary A.

2. A performs a first series of queries in a first stage. These queries can be of the following
kinds:

- Signeryption queries: A produces a message m € M and an arbitrary public key pkr
(that public key may differ from pky ) and requires the result Stgnerypt(m, sky, pkr) of
the signcryption oracle.

- De-signcryption queries: A produces a ciphertext o and requires the result of the operation
De-signcryt(o, sky). This result is made of a signed plaintext and a sender’s public key
if the obtained signed-plaintext is valid for the recovered sender’s public key. Otherwise
(that is if the obtained plaintext-signature pair is not valid for the obtained public key
when performing the de-signecryption operation with the private key sky ), the L symbol
1s returned as a result.

These queries can be asked adaptively: each query may depend on the answers to previous
ones.

3. A produces two plaintexts mg, m1 € M of equal size and an arbitrary private key skg. The
challenger flips a coin b «—pg {0,1} to compute a signeryption o = Signerypt(my, sks, pky)
of my with the sender’s private key sks under the attacked receiver’s public key pky. o is
sent to A as a challenge.

4. The adversary performs new queries as in the first stage. Now, it may not ask the de-
signeryption of the challenge o with the private key sky of the attacked receiver.

5. At the end of the game, A outputs a bit b’ and wins if b/ = b.

A’s advantage is defined to be Adv*™37¢3(A) := 2Pr{t/ = b] — 1.

In the notion of unforgeability captured by the formal definition below, as in many other
proposed provably unforgeable signcryption schemes ([1],[3],[14],[20],[27],[35], etc.), we allow
a forger attempting to forge a ciphertext on behalf of the attacked user U to know the receiver’s
private key. In fact, the attacker has to come with the intended receiver’s private key skgr as a
part of the forgery. The motivation is to prove that no attacker can forge a ciphertext intended

! That feature of signcryption schemes was also considered in [1],[14],[20],[29] and [35] and inappropriately called
" forward secrecy” in [29]



to any receiver on behalf of a given sender. In particular, no dishonest user can produce a ci-
phertext intended to himself and try to convince a third party that it emanates from a honest
user.

Definition 3. We say that a signcryption scheme s strongly existentially unforgeable against
chosen-message attacks (SC-SUF-CMA) if no PPT adversary has a non-negligible advantage in
the following game:

1. The challenger generates a key pair (sky,pky) and pky is given to the forger F.

2. The forger F performs queries to the oracles Signcrypty, (.,.) and De-signcrypty, (.)
exactly as in the previous definition. Again, these queries can also be produced adaptively.

3. At the end of the game, F produces a ciphertext o and a key pair (skgr,pkr) and wins
the game if the result of the operation De-signcrypt(o,skr) is a tuple (m,s,pky) such
that (m, s) is a valid signature for the public key pky such that o was not the output of a
signeryption query Stgnerypt(m, sky, pkr) made during the game.

Recall that, in the corresponding notion of conventional (i.e. non-strong) unforgeability for
signcryption schemes, the attacker cannot win if the outputted ciphertext was the result of
any signcryption query. In our context, as in [1],[27],[20], and many other works, the forger
is allowed to have obtained the forged ciphertext as the result of a signcryption query for a
different receiver’s public key than the one corresponding to the claimed forgery. The only
constraint is that, for the message m obtained by de-signcryption of the alleged forgery with
the chosen private key skpr, the outputted ciphertext o was not obtained as the result of a
Signcrypt(m, sky, pkr) query.

In [14], Boyen also proposed additional security notions for signcryption schemes. One of the
most important ones was the notion of ciphertext anonymity that can be viewed as an extension
to authenticated encryption schemes of the notion of key privacy already considered by Bellare
et al in [7]. Intuitively, in the context of public key encryption, a scheme is said to have the key
privacy property if ciphertexts convey no information about the public key that was used to
create them. In the signcryption setting, we say that the ciphertext anonymity (or key privacy)
property is satisfied if ciphertexts contain no information about who created them nor about
to whom they are intended. This notion is a transposition into the non-identity based setting
of the one presented in [14]. It can be described like that.

Definition 4. We say that a signcryption scheme satisfies the ciphertext anonymity property
(also called key privacy or key indistinguishability: we call this notion SC-INDK-CCA for short)
if no PPT distinguisher has a non-negligible advantage in the following game:

1. The challenger generates two private/public key pairs (skgro,pkro) and (skr1,pkr1). PkRo
and pkr1 are given to the distinguisher D.

2. D adaptively performs queries Signcrypt(m, skrc,pkr), for arbitrary recipient keys pkg,
and De-signerypt(o, skr.) forc=0 orc=1.

3. Once stage 2 is over, D outputs two private keys skso and sksi and a plaintext m € M.
The challenger then flips two coins b,b/ «—p {0,1} and computes a challenge ciphertext
o = Signerypt(m, sksyp, pkry) which is sent to D.

4. D adaptively performs new queries as in stage 2 with the restriction that, this time, it is
disallowed to ask the de-signcryption of the challenge o with the private keys skro or skr 1.

5. At the end of the game, D outputs bits d,d’ and wins if (d,d') = (b,¥'). Its advantage is
defined to be

AdviE-ees(DY = pyl(d, d') = (b, 1)) — %



Again, this notion captures the security against insider attacks since the distinguisher is al-
lowed to choose a set of two private keys among which the one used as sender’s key to create
the challenge ciphertext is picked by the challenger. The above definition can be viewed as a
transposition to the non-identity based setting of the definition of ciphertext anonymity pro-
posed by Boyen ([14]) as well as an extension of the definition of key privacy ([7]) to the
authenticated encryption context. We introduce another notion called ’key invisibility’ which
is close to the concept (formalized by Galbraith and Mao in [23]) of invisibility for undeniable
signatures. Intuitively, this notion expresses the impossibility to decide whether a given cipher-
text was actually created using a given particular sender’s private key and a given particular
receiver’s public key.

Definition 5. We say that a signcryption scheme satisfies the key invisibility (we denote this
notion by SC-INVK-CCA for short) if no PPT distinguisher has a non-negligible advantage in
the following game:

1. The challenger generates a private/public key pair (sky,pky). pky is given to the distin-
guisher D.

2. D adaptively performs queries Stgncrypt(m, sky, pkr), for arbitrary recipient keys pkr, and
De-signcrypt(o, sky).

3. Once stage 2 is over, D outputs a private key sks and a plaintext m € M. The challenger
then flips a coins b —pr {0,1}. If b = 0, then the challenger returns an actual challenge
ciphertext o = Stgnerypt(m, sks,pky) to D. If b =1, then the challenger returns a random
o uniformly taken from the ciphertext space C.

4. D adaptively performs new queries as in stage 2 with the restriction that, this time, it cannot
require the de-signcryption of the challenge o with the private keys sky.

5. At the end of the game, D outputs bits d and wins if d = b. Its advantage is defined as

Adv*™ (D) .= 2Pr{d = b] — 1.

Again, we allow the distinguisher to choose which private key is used as a part of the challenge
to take insider attacks into account.

Galbraith and Mao ([23]) showed that anonymity and invisibility are essentially equivalent
security notions for undeniable signatures. While one can prove in the same way that key privacy
and key invisibility are also essentially equivalent for some particular encryption schemes, such
an equivalence turns out to be unclear in the signcryption case. In fact, one cannot prove that
a distinguisher against the key invisibility implies a distinguisher against the key privacy with
the same advantage (because two random coins are used by the challenger in the definition of
key privacy and a single one for key anonymity). However, we can prove that, for signcryption
schemes satisfying some particular properties (that is, for a given message and a given sender’s
private key, the output of the signcryption algorithm must be uniformly distributed in the
ciphertext space when the receiver’s public key is random), we can prove that key invisibility
implies key privacy. In the next section we propose a scheme that satisfies both of them (in
addition to the usual notions of semantic security and unforgeability) in the random oracle
model.

4 A Diffie-Hellman based signcryption scheme with key privacy

This section presents a signcryption scheme whose unforgeability under chosen-message attacks
is tightly related to the hardness of the computational Diffie-Hellman problem in Gap Diffie-
Hellman groups. Our solution relies on the BLS signature (proposed in [11] and recalled in
appendix) whose security is enhanced by a random quantity U which is used for encryption



purposes but also acts as a random salt to provide a tighter security reduction to the Diffie-
Hellman problem in G in the proof of unforgeability.

We assume that both the sender and the receiver agreed on public parameters: security
parameters k and ¢, cyclic groups G and Gy of prime order g > 2* such that ¢ is the number of
bits required to represent elements of G1, a generator P of Gy and a bilinear map é : G; x G; —
Go. They also agree on cryptographic hash functions Hy : {0,1}"7%¢ — Gy, Hy : G> — {0,1}*
and Hs : {0,1}* — {0,1}"** where n denotes the size of plaintexts (i.e. the message space is
M ={0,1}"). The scheme consists of the following three algorithms (we recall that the symbol
@ denotes the bitwise exclusive OR).

Keygen: user u picks a random x, g Z; and sets his public key to Y, = z,P € G;. His
private key is z,. We will denote the sender and the receiver respectively by u = S and
u = R and their key pair by (zg,Ys) and (xg, YR).

Signcrypt: to signerypt a plaintext m € {0,1}" intended to R, the sender S uses the following
procedure

1. Pick a random 7 «<pg Z, and compute U = rP € G;.

2. Compute V = zgH;(m,U,YR) € G.

3. Compute W =V @ Hy(U,Yg,7Yr) € {0,1}* and then scramble the plaintext together
with the sender’s public key: Z = (m||Ys) @ H3(V) € {0,1}F4

The ciphertext is given by o = (U, W, Z) € G x {0, 1},

De-signcrypt: when receiving a ciphertext o = (U, W, Z), the receiver R has to perform the
steps below:

1. Compute V. =W @ Hy(U,Yr, 2rU) € {0,1}".

2. Compute (m||Ys) = Z @ H3(V) € {0,1}". Reject o if Yy is not a point on the curve
on which Gy is defined.

3. Compute H = Hy(m,U,YR) € G; and then check if é(Ys, H) = é(P, V). If this condition
does not hold, reject the ciphertext.

The consistency of the scheme is easy to verifiy. To prove to a third party that the sender S ac-
tually signed a plaintext m, the receiver just has to forward it m and (U, V, Yr). The third party
can then compute H as in the step 3 of unsigncrypt and perform the signature verification as
in the same step 3. We note that, in the signcryption algorithm, the recipient’s public key must
be hashed together with the pair (m,U) in order to achieve the provable strong unforgeability
(as shown in the proof of theorem 2).

As pointed out in [24], in some applications, it is interesting for the origin of a signcrypted
text to be publicly verifiable (by firewalls for example). In some other applications, it is un-
desirable: indeed as explained in [14], in some cases, it is better for a signcrypted text not to
convey any information about its sender nor about its intended receiver. This property, called
anonymity of ciphertexts, is provided by the above scheme as will be shown in the next section.

From an efficiency point of view, we can easily verifiy that the above scheme is at least as
efficient and more compact than any sequential composition of the BLS signature ([11]) with any
other Diffie-Hellman based chosen ciphertext secure encryption scheme ([2],[4],[19],[21],[22],]36],
[40]): indeed only three scalar multiplications in Gy are required for the signcryption operation
while 1 multiplication and 2 pairings must be performed in the de-signcryption process. A se-
quential combination of the BLS signature with the encryption scheme proposed in [2] would
involve an additional multiplication at decryption. If we take ¢ ~ k > 160 (by working with an
appropriate elliptic curve), we see that ciphertexts are about 480 bits longer than plaintexts.



Any combination of the BLS signature with a CCA-secure El Gamal type cryptosystem would
result in longer final ciphertexts. With the same choice of parameters, a composition of the BLS
signature with the lenth-saving El Gamal encryption scheme ([2]) would result in ciphertexts
that would be 640 bits longer than plaintexts.

5 Security Analysis

In this section, we first show that an adversary against the SC-IND-CCA security of the scheme
implies a PPT algorithm that can solve the Diffie-Hellman problem in G; with high probability.
This fact is formalized by the following theorem.

Theorem 1. In the random oracle model, if an adversary A has a non-negligible advantage €
against the SC-IND-CCA security of the above scheme when running in a time t and performing
gsc signcryption queries, qpsc de-signeryption queries and qp, queries to oracles H; (for i =
1,...,4), then there exists an algorithm B that can solve the CDH problem in the group G, with
a probability € > € — qu,qpsc /2% in a time t' < t+ (4qpsc + 2qm, )te where t. denotes the time
required for one pairing evaluation.

Proof. We show how to build an algorithm B that runs the attacker A as a subroutine to solve
the CDH problem in a polynomial time. Let (aP,bP) be a random instance of the CDH problem
in G1. B plays the role of A’s challenger in the game of definition 2 and first gives Y,, = bP € Gy
to B as a challenge public key. A then adaptively performs hash queries, signcryption queries
and de-signcryption queries as explained in the definition. To handle these queries, B maintains
lists L1, Lo, L3 to keep track of the answers given to oracle queries on Hy, Hy and Hs. Hash
queries on Hy and Hj are treated in the usual way: B first checks in the corresponding list
if the oracle’s value was already defined at the queried point. If it was, B returns the defined
value. Otherwise, it returns an uniformly chosen random element from the appropriate range
and updates the corresponding list. When a hash query Hy(m, U, Ygr) is performed, B first looks
if the value of H; was previously defined for the input (m,U,YRg). If it was, the previously
defined value is returned. Otherwise, B picks a random ¢ «—g Zg, returns tP € G as an answer
and inserts the tuple (m, U, Yg,t) into L.
Now, let us see how signcryption and de-signcryption queries are dealt with:

- For a signcryption query on a plaintext m with a recipient’s public key Yz both chosen by
the adversary A, B first picks a random r «pg Z,, computes U = rP € G; and checks if L;
contains a tuple (m, U, Yg,t) indicating that H;(m, U, Yr) was previously defined to be tP.
If no such tuple is found, B picks a random t «pg Z, and puts the entry (m, U, Yg,t) into
Ly. B then computes V = tY,, = t(bP) € G, for the random ¢ chosen or recovered from L.
The rest follows as in the normal signcryption process: B computes rYg (for the Yg specified
by the adversary), runs the Hs simulation process to obtain hy = Hy(U, Yr,7YR), and then
computes W =V @ hy and Z = (m||Y,,) ® hs where hg is obtained by simulation of the H3
oracle on the input V. (U, W, Z) is then returned as a signcryption of m from the sender of
public key Y, to the recipient of public key Yg.

- For a de-signeryption query on a ciphertext (U, W, Z) chosen by A, B proceeds as follows: it
scans the list Lo, looking for tuples (U, Yy, S;, ha;) (with 0 < i < gp,) such that V; = ho ;W
exists in an entry (V;,hs;) of Lz and, for the corresponding elements hg;, (m;,Ys;) =
hs; @& Z € {0, 1}7*4 is such that there exists an entry (m;, U, Yy, hi,) in the list L;. If no
such tuples are found, the L symbol is returned to A. Otherwise, elements (m;, U, V;, S;, hi;)
satisfying those conditions are kept for future examination. If one of them satisfies both
é(P,S;) = é(U,Y,) and é(Yg;, h1;) = é(P,V;), then (my, (U,V;)) is returned as a message-
signature pair together with the sender’s public key Y ;.



At the end of the first stage, A outputs two plaintexts my and m; together with an arbitrary
sender’s private key xg and requires a challenge ciphertext built under the recipient’s public
key Y,,. B ignores my and m; and randomly picks two binary strings W «pg {0, 1}5 and Z «—p
{0,137, A challenge ciphertext ¢ = (U, W, Z) = (aP,W, Z) is then sent to A that then
performs a second series of queries at a second stage. These queries are handled by B as those
at the first stage. As done in many other papers in the literature, it is easy to show that A will
not realize that o is not a valid signcryption for the sender’s private key xg and the public key
Y, unless it asks for the hash value Hy(aP,bP,abP). In that case, the solution of the Diffie-
Hellman problem would be inserted in Lo exactly at that moment and it does not matter if the
simulation of A’s view is no longer perfect.

At the end of the game, A produces a result which is ignored by B. The latter just looks into
the list Ly for tuples of the form (aP,bP, D;,.). For each of them, B checks whether é(P, D;) =
é(aP,bP) and, if this relation holds, stops and outputs D; as a solution of the CDH problem.
If no tuple of this kind satisfies the latter equality, B stops and outputs ”failure”.

Now to assess B’s probability of success, let us denote by AskH, the event that A asks
the hash value of abP during the simulation. As done in several papers in the literature (see
[40],[10] or [14]), as long as the simulation of the attack’s environment is perfect, the probability
for AskHs to happen is the same as in a real attack (i.e. an attack where A interacts with real
oracles). In a real attack we have

Pr[b = V'] < Pr[b = b'|-AskHy|Pr[-AskH;y] + Pr[AskHs] = % + %Pr[Asng]

and then we have e = 2Pr[b = b'] — 1 < Pr[AskHy]. Now, the probability that the simulation is
not perfect remains to be assessed. The only case where it can happen is when a valid ciphertext
is rejected in a de-signcryption query. It is easy to see that for every pair (V;, hs;) in L3, there
is exactly one pair (hi,ho;) of elements in the range of oracles Hy and H> providing a valid
ciphertext. The probability to reject a valid ciphertext is thus not greater than ¢,/ 22k The
bound on B’s computation time derives from the fact that every de-signcryption query requires
at most 4 pairing evaluations while the extraction of the solution from Lo implies to compute
at most 2qy, pairings.

O

The above security proof makes use of the pairing’s bilinearity to handle de-signcryption queries
and thus avoids the use of constructions such as [2], [36], [22], [21] that would increase the ci-
phertext’s length or imply additional computation in the de-signcryption operation. This results
in a worst-case bound on algorithm B’s computation time that seems to be quite loose: to ex-
tract the solution of the CDH problem, B might have to compute up to 2qp, pairings if A only
queries oracle Ho on tuples of the form (aP,bP,.). If we allow up to 250 Hy-queries, this appears
to be a loose bound at first sight. But we stress that, heuristically, A has really no interest
in asking hash queries on tuples (aP,bP,.) that are not valid Diffie-Hellman tuples: indeed,
since we work with Gap Diffie-Hellman groups, A is able to decide himself whether a given
tuple (aP, bP, cP) is a valid one or not and, since hash functions are indistinguishable from true
random functions from its point of view, it can gain no information by querying Hs on invalid
tuples. Furthermore, one can argue that an attacker A querying Hs on many invalid tuples
without checking the validity of these tuples would have no better strategy to find information
about the plaintext than computing the XOR of the ciphertext’s W-component with random
binary strings. Such a strategy would not be more efficient for A than an exhaustive search of
the solution to the Diffie-Hellman instance embedded in the challenge ciphertext. An attacker
having a non-negligible advantage against the semantic security would ask much less than 260
(useless) hash values of invalid Diffie-Hellman tuple. We can thus expect that, at the end of the



simulation, Ly only contains a limited number of entries (aP,bP,.).

We note that the bound on B’s probability of success is tight: if we allow ¢psc < 2%0 and
qr; < 200 with k& > 160, we obtain qH3qD5(;/22k < 27230 which is a negligible function of the
parameter k.

We point out that a pairing can be used here to extract the solution to the Diffie-Hellman
problem because there is a checking of the ciphertext’s validity at the decryption and cipher-
texts submitted to the de-signcryption oracle can thus be rejected if the appropriate Ho query
has not been previously performed. A similar trick cannot be used to prove the security of the
El Gamal type encryption, consisting in simply taking the XOR of the plaintext with the hash
value of an ephemeral Diffie-Hellman key, without applying any padding to the scheme in such
a way that its validity can be checked at decryption.

The following theorem claims the strong unforgeability of the scheme.

Theorem 2. In the random oracle model, if there exists an adversary F that has a non-
negligible advantage € against the SC-SUF-CMA security of the scheme when running in a time
t, making qsc signcryption queries, gpsc de-signecryption queries and at most qm, queries on
oracles H; (fori=1,...,4), then there exists an algorithm B that can solve the Diffie-Hellman
problem in Gy with a probability € > € — qscqm, /2F — apscqm, /2%F in a time t' < t + 4qpscte
where t. denotes the time required for a pairing evaluation.

Proof. given in appendix. U

This time, we obtain bounds that are explicitly tight. With k > 160, if we allow qg, < 2% and
qu, < 2°° (recall that hashing onto an elliptic curve may not be considered as an operation of
unit cost since it requires some extra computation when compared to hashing onto a finite field,
see [6] for details), gpsc < 23° we have gscqm, /2% < 1/28 and we still have ¢psoqr, < 272%.
We thus have a negligible degradation of B’s probability of success when compared to the
adversary’s advantage. The bound on B’s running time is also reasonably tight for gpgc < 23°.

We now give a proof in the random oracle model that the scheme satisfies the notion of
ciphertext anonymity described in section 3.

Theorem 3. In the random oracle model, assume there exists a PPT distinguisher D that has
a non-negligible advantage against the SC-INDK-CCA security of the scheme when running in
a time t, performing qsc signcryption queries, gpsc de-signeryption queries and qm, queries to
oracle H; (fori=1,...,4). Then there exists an algorithm B that solves the CDH problem with
an advantage € > € —1/2""1 —qpscqu, /2%F when running in a time t' < t+ (4qpsc +2qm, )te
where t. denotes the time required for one pairing evaluation.

Proof. given in appendix. U

Again, the bound on B’s computation time might seem to be meaningless but, as for the proof
of theorem 1, we can argue that a distinguisher performing a great number of Hs queries on
invalid Diffie-Hellman tuples would have no better strategy than an exhaustive search for Diffie-
Hellman instances embedded in the challenge-ciphertext. However, if we look at the proofs of
semantic security and ciphertext anonymity for the scheme described in [13], although no bound
is explicitly given for the running time of solvers for the bilinear Diffie-Hellman problems, these
bounds are not tighter than ours. Furthermore, the proof of ciphertext anonymity provided in
[13] leads to a significant degradation of the solver’s advantage when compared to the distin-
guisher’s one. We note that similar heuristic arguments can be given about solver’s running
time in [13].

Finally, we close the section related to the security analysis with the following theorem
related to the key invisibility.



Theorem 4. In the random oracle model, if there exists a distinguisher D having a non-
negligible advantage € against the SC-INVK-CCA security of the scheme when running in a
time t and performing qm, queries to oracles H;, fori=1,...,4, gsc signcryption queries and
qpsc de-signcryption queries, then there exists an algorithm B that solves the CDH problem
with an advantage ¢ > € — 12" — qpscqu, /2% in a time t' <t + (4qpsc + 2qm, )te where
te is the time required for a pairing evaluation.

Proof. given in appendix. O

6 Adding ciphertext unlinkability

This section shows how to add the property of ciphertext unlinkability to the scheme. This is
a notion introduced in [14]: signcryption schemes providing that property allow the receiver
of a signcrypted text to convince a third party that the sender actually signed the original
plaintext but without being able to convince that third party that the sender created the
received ciphertext (because the receiver would be able to generate the ciphertext himself from
the signature thanks to his private key) and without even disclosing any information that could
allow the third party to establish a link between the observed signature and the ciphertext. The
public parameters are the same as above but an additional hash function Hy : G13 — {0, 1}6 is
needed.

Keygen: user U picks a random z, <pr Z, and sets his public key to Y, = z,P € G;. His
private key is z,,. We will denote the sender and the receiver respectively by v = s and u = r
and their key pair by (zg,Ys) and (zg, Yr).

Signcrypt: to signerypt a plaintext m € {0,1}" intended to R, the sender S proceeds like this:

First compute w = Hy(Ys, Y, 25Yr) € {0, 1}

Pick a random 7 «p Z, and compute U = rP € G and then U’ = U @ w € {0,1}".
Compute V = zgHy(m,U’,Yg) € Gy.

Compute W =V @ Hy(U, Yg,rYg) € {0,1}* and then scramble the plaintext together
with the sender’s public key: Z = (m||Ys) @ H3(V) € {0, 1}F.

-

The ciphertext is given by o = (U, W, Z) € G x {0, 1},

De-signcrypt: to de-signcrypt a ciphertext o = (U, W, Z), the receiver R follows the proce-
dure below:

1. Compute V. = W @ Ho(U,Yg, 2gU) € {0,1}*. If the obtained V is not a point on the
curve on which G is built, reject the ciphertext o.

2. Compute (m||Ys) = Z @ H3(V) € {0, 1}"*¢. Reject o if Ys & Gy.

Compute w = Hy(Ys, Yr, 2gYs) € {0,1}f and U’ = U @ w € {0, 1}".

4. Compute H = H1(m,U’,YRr) € Gy and then check if é(Yg, H) = é(P, V). If this condition
does not hold, reject the ciphertext.

b

In that scheme, we also have the non-repudiation of signatures: the receiver can still forward
the de-signcrypted plaintext m and the tuple (U’,V,Yg) that can be checked to be a valid
signature on m but, furthermore, as in [14], the receiver R is unable to prove that S actually
created the ciphertext o since his knowledge of xr allows him to produce the encryption of the
signature himself. The above scheme thus provides detachable signatures that are unlinkable to
ciphertexts. We note that a single additional multiplication in Gy is required for signcryption



and de-signcryption operations to add this feature to the scheme. This unfortunately implies
an additional term on the bound of Diffie-Hellman solver’s running time in the security proofs
(which are omitted here because of space limitation).

7 Conclusions

This paper proposed a new Diffie-Hellman based signcryption scheme that satisfies strong se-
curity requirements. It turns out to be the discrete log based signcryption protocol whose un-
forgeability is the most tightly related to the Diffie-Hellman problem (except the construction in
[27], all other existing ones are built on signatures having security proof relying on the forking
lemma or on signatures for which no security proof exists and the CCA-security of [27] relies
on stronger assumptions than the present scheme’s semantic security). By heuristic arguments,
we argued that the reduction from an adaptive chosen ciphertext adversary to a solver for the
Diffie-Hellman problem is also efficient. We also introduced a new notion of security called ’key
invisibility’. This notion is close to the one of 'key indistinguishability’ and is also relevant for
public key encryption schemes for which it can be shown to be equivalent to the notion of ’key
privacy’ (provided, for a given plaintext, the output of the encryption algorithm is indistin-
guishable from a uniform distribution on the ciphertext space when this algorithm is run with
random public keys). We raised the open question of this equivalence in the signcryption case
and we show (see the appendix C) that for signcryption schemes satisfying a particular property
(namely, for a given message and a given sender’s private key, the output of the signcryption
algorithm must look uniformly distributed when random public keys are used), "key invisibility’
implies ’key privacy’.
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Appendix A

The BLS signature

In this part of the appendix, we recall the scheme proposed by Boneh et al. ([11]) in 2001 to
provide 160-bit signatures using the properties of Gap Diffie-Hellman groups. This signature
scheme was previously implicitly suggested in [15],[16] and in [34]. The system makes use of a
pairing é : G; X G; — Gg, where G is of prime order ¢ and has a generator P, and a hash
function h : {0,1}* — G;.

Keygen: pick a random x < Z,; and compute the public key ¥ = xP € G;. z is the signer’s
private key.
Sign: the signature on a message M is given by o = zh(M) € G;.

Verify: to verify a signature o on a message M, compute H = h(M) € G; and check if
(P,Y,H,o) is a valid Diffie-Hellman tuple. To do that, it sufficies to ensure that

é(P,o)=¢(Y,H).
The signature is rejected if this condition is not satisfied.

To obtain short signatures, Boneh et al. propose to use suitable families of elliptic curves and to
represent a signature by the x—coordinate of the point together with an additional bit. Similarly
to the Full Domain Hash signature ([17]), the above one presents a security degradation for the
probability of success of an algorithm solving the computational Diffie-Hellman problem when
compared to an attacker’s advantage in a chosen-message attack against the scheme. However,
as noticed in [12], introducing a random salt into the original BLS signature (similarly to the
Probabilistic Full Domain Hash scheme depicted in [18]) increases its length but provides it with
a security that is quite tightly related to the Diffie-Hellman problem. By an analysis similar to
Coron’s one ([18]), one can show that a 30-bit random salt is sufficient to enhance the hardness
of forging a signature to the same level of difficulty as solving the CDH problem. Even though
a technique due to Katz and Wang ([30]) allows removing the random salt without decreasing
the security of the scheme, the randomized signature is still of interest since it provides a high
level of security at the price of a 30-bit increasing in the length signatures. Recall that, except
for the schemes recently proposed in [26] and [30], all discrete logarithm based signatures either
have no security proof or have a reduction from a hard computational problem obtained via the
Pointcheval-Stern Forking Lemma ([37],[38]). As pointed out in [26] and [30], all security proofs
relying on the latter technique present a degradation of security in the reduction.

Appendix B: security proofs

Proof of theorem 2

B receives a random instance (aP, bP) of the Diffie-Hellman problem. It uses F as a subroutine
to solve that instance and plays the role of F’s challenger in the game of definition 3. It initializes
F with Y,, = bP as a challenge public key. F then performs adaptive queries that are handled
like explained below (using lists L1, Lo, L3 as in the proof of theorem 1):

- Hy and Hj queries: are dealt with in the usual way as in the proof of theorem 1.

- H; queries: when F asks the hash value of a tuple (m, U, Yr) that was previously queried, B
returns the value defined at the first query. For a query on a new tuple (m,U, Yr), B picks
a random ¢ € Z, and defines the value of Hi(m, U, YR) to be t(aP) € G; which is returned
to F (the list L is updated accordingly).



- Signcryption queries: for a signcryption query on a message and a receiver’s public key Yg
chosen by F, B picks a random r € Z,, computes U = rP € Gy. If the value of H; is already
defined at (m, U, YR), then B outputs "failure” and halts. Otherwise, B picks a random ¢ € Z,
and sets Hy(m,U, Yr) = tP (B updates L; accordingly to be able to answer subsequent hash
queries on the input (m,U,YRg)). B then computes V = tYg, W =V @ Hy(U, YR, rYR) and
Z = (m||Ys) ® H3(V') (where the values of Hy and H3 are obtained from oracle simulation
algorithms). The ciphertext (U, W, Z) is then returned to F as a signcryption of m.

- De-signcryption queries: are handled exactly as in the proof of theorem 1.

At the end of the game, F produces a ciphertext (U’, W', Z’) and a recipient’s public/private key
pair (xR, Yr). At that moment, B can perform the de-signcryption using z g and, if the ciphertext
is actually a valid forged ciphertext for the sender’s public key Y,,, B can recover the message-key
pair (m/,Y,,) and the signature V'. If the hash value Hy(m/,U’, Yg) was not asked by F during
the simulation, B outputs ”failure” and stops. Otherwise, the hash value Hy(m/,U’, Ygr) must
have been defined to be t(aP), for some t € Z, which is known to B, and V’ must be equal to
t(abP) that can then easily extract the solution t =1V’ of the CDH problem in G;. We can now
assess B’s probability of success. It is easy to see that the probability for B to fail in answering
a signcryption query is not greater than gscqg, /2% (since at each signcryption query, there is
at most qp, elements in L; and the randomly chosen r € Z, is uniformly taken from a set of
2F elements). As in the proof of theorem 1, the probability to reject a valid ciphertext is not
greater than ¢pscqm,/ 22k Tt is easy to see that the probability that F succeeds in producing
a forged ciphertext (U’, W', Z’) without asking the query Hy(m/,U’,YR) recovered plaintext, is
at most 1/2F.

O

Proof of theorem 3

Let (aP,bP) be a random instance of the CDH problem. B uses A to solve that instance and
plays the role of D’s challenger in the game of definition 4. To do this, B picks random elements
T,y € Zq and initializes D with kap = YR70 = .’B(bP) € G1 and kaJ = YR,l = y(bP) € G..D
then performs queries as explained in definition 4. To deal with these queries, B maintains lists
L;, fori=1,...,3 to keep track of answers to queries on random oracles H;. When oracles Ho,
Hj are queried, B answers in the usual way by returning the previously defined value for the
queried input if such a value exists and by returning a new uniformly chosen random value from
the appropriate range when the queried oracle has not been defined yet at the queried input.
Let us see how other queries are tackled with:

- Hp queries on an input (m, U, Yr) are handled as in the proof of theorem 1 by picking a
random t «—p Zg, inserting (m, U, Yg,t) into L; and returning Hy(m,U,Yg) =tP € G;.

- Signcryption queries: are treated exactly as in the proof of theorem 1. As in the latter, B
never reaches a state of failure when handling a signcryption query.

- De-signcryption queries: are also treated as in the proof of theorem 1. The probability for
B to reject a valid ciphertext is also bounded by g¢pscqm,/ 22k,

Once the first stage is finished, D outputs two sender’s private key skso = x50 € Zg, sks1 =
51 € Zq and a plaintext m € {0,1}". B ignores these outputs and sends the fake ciphertext
o= (aP,W,Z), where W and Z are randomly chosen binary strings of length ¢ and n + ¢, as
a challenge to D. It is clear that, as long as D does not query Hs to obtain the hash value of
(m,aP,x(bP),z(abP)) or (m,aP,y(bP),y(abP)), it will not realize that o is a fake ciphertext
and the simulation will remain perfect. Moreover, in either of these two events, B can easily
extract the solution abP of the CDH problem thanks to its knowledge of x and y and by



computing two pairings.

At the second stage, D performs queries that are handled exactly as in the first stage.
Eventually, D outputs a guess (d,d’) which is ignored by B that can extract the solution by
itself. Suppose that the answer to a H3 query is never Z @ (m,Ys) nor Z @ (m,Ys 1) where
Z is the random string embedded into the challenge o, Yso9 = zgoP and Ys; = x5 P (we
denote by BadHjz this 'bad’ event that might influence D’s behaviour). Since D is assumed to
have a non-negligible advantage in the real environment of attack, if BadHs does not occur, with
high probability, it queries Hy on (m,aP,z(bP),z(abP)) or on (m,aP,xz(bP),y(abP)) during
the simulation. Indeed, let AskHy denote this event. In the real attack, we have

Pr[(d,d") = (b,V')] < Pr[(d,d") = (b,V')|—BadH; A ~AskHs|Pr[—BadHs A —AskH]

+ Pr[(d,d") = (b,b') A —AskHy|BadH;]Pr[BadH;] + Pr[AskH;]

< Pr[(d,d’) = (b,b")|-BadH3 A —AskHy|Pr[-AskHs] + Pr[BadHs] + Pr[AskHy)]
1 2 3
=1 4 Tt + ZPT[ASkHQ]
since, if AskHs and BadHs do not occur during the game, D has absolutely no information on
V' (the XOR of W with the appropriate hash value) nor on which sender’s key is scrambled
together with the plaintext. We then have e — 1/2"+~1 < Pr[AskHy]. As in theorem 1, one
can easily show that, as long as the simulation is perfect (i.e. as long as a valid ciphertext is
not rejected), the probability for AskHs to happen is the same in the simulation as in a real
attack. B’s probability of success is thus at least € —gpscqsc/2%F. Its strategy to solve the CDH

problem is simply to compute two pairings for each Hy query made by D on tuples (aP, x(bP),.)
or (aP,y(bP),.). This gives us the same bound on B’s running time as the one of theorem 1.

O

Proof of theorem 4

Let (aP,bP) be a random instance of the CDH problem given to B. The distinguisher D is
initialized with the public key Y, = bP. It performs queries that are all handled as in the proof
of theorem 3. At some time, D outputs a plaintext m € {0,1}" together with a private key
xg € Zq and requests a challenge from B. B then picks random binary strings W «p {0, 1},
Z « {0,1}"** and sends 0 = (aP,W, Z) as a challenge to D. As in the proof of theorem 3, D
will not realize that o is actually a fake ciphertext until it asks the hash value Ha(aP,bP, abP).
As explained in the previous proofs, this event is very likely to happen but, since it provides B
with the solution to its problem, it does not matter if the simulation is no longer perfect. Now,
we can assess the probability AskHy that the solution to the CDH problem is asked to oracle
Hs. Let BadHs be the 'bad’ event that Z @ (m,Yys) is the answer of a Hs query at some time,
where Yg = zgP, (we call this a ’bad’ event since it might influence D’s behaviour). Since D
is assumed to have a non-negligible advantage in the real environment of attack, if BadHs does
not occur, with high probability, it queries Hs on (m, aP,bP,abP) during the simulation. In the
real attack, we have

Pr[d = b] < Pr[d = b|-BadH3 A —AskHs|Pr[-BadHs A —AskHs]
+ Pr[d = b A —AskHy|BadH3|Pr[BadH3] + Pr[AskH;]
< Pr[d = b|-BadHs A —AskHs|Pr[—AskHs| 4+ Pr[BadHs3] + Pr[AskHs]
1 1

1



and then Pr[AskHy] > € — 1/2"~1. Since B can find the solution to the CDH instance as soon
as AskHy happens, its probability of success is simply for AskHs to happen decreased by the
probability for the simulation not to be perfect (i.e. for a valid ciphertext to be rejected), we
obtain the same bounds on B’s advantage and on its running time as in theorem 3.

O

Appendix C: proof of the relation between key invisibility and key privacy

We consider a signcryption scheme (K, SC, DSC) made of a key generation algorithm K, a
signeryption algorithm SC and a de-signcryption algorithm DSC. We assume the scheme has
the following property: for any given m in the space of plaintexts M and any sk in the space of
private keys SKC, the distribution {o € C|o = SC(m, sk, pk) A pk < PK} is indistinguishable
from a uniform distribution on the space of ciphertexts C, where PK denotes the space of public
keys.

Now we consider, a disinguisher D 4 against the key privacy of such a scheme. We show that
it implies the existence of a distinguisher D; against its key invisibility. The proof is inspired
from the one of Galbraith and Mao ([23]) for undeniable signatures. The distinguisher, depicted
below, takes as input a public key pko and has access to a challenger Chall such as the one of
definition 5.

D?hall(pko)

1. (pkl, Skl) — K(k)

2.1 —pr{0,1}

If ¥ = 0 send (pko, pk1) to Dy
else send it (pk1, pko).

3. For any query related to the private key
associated to pkg, forward it to C'hall and
transmit the answer to D 4. Answer any query
related to pky with the private key sk;.

4. For the tuple (m, sk{), sk}) outputted by Dy,
flip a coin b” —p {0, 1}; send (m, sk;,) to Chall.

5. Receive a challenge o from Chall
and forward it to Dy.

6. Handle all queries made by D4 as in step 3.

7. D4 outputs (d’,d"). Return 0 if (d',d”) = (¥, V")
and 1 otherwise.

Let b be the random bit chosen by D;y’s challenger in the game of definition 5 and let € be D 4’s
advantage in the game of definition 4. From D;’s behaviour, it is clear that, if b = 0 (that is if
Chall decides to return an actual ciphertext for the private key sk, and the public key pko), we
have Pr[(d’,d") = (V/,b")] = e+1/4. Now, if b = 1 (that is if Chall decides to return a randomly
chosen o from the ciphertext space), it is clear that, with overwhelming probability, o is not
a valid ciphertext that could be the output of SC(m, skl pk,) for u,v = 0,1. Nevertheless,
because of the aforementioned assumed property of the scheme, D 4 is unable to realize it and
it comes that Pr[(d’,d"”) = (b',0")|b = 1] < 1/4 and we can then write

Pr[Output(D;) = b] = Pr[(d’,d") = (t/,b")|b = 0]Pr[b = 0] + Pr[(d’,d") # (t/,b")|b = 1]Pr[b = 1]
>( +1)1+§1_£+1
ST T T 2T
and hence, Adv(Dy) = 2 Pr[Output(D;) =b] — 1 > e.



We find that, for a signcryption scheme satisfying the required property, a distinguisher
against the key invisibility has an advantage at least as large as the one of a distinguisher against
the key privacy. This is not so surprising since, for our scheme, we obtain similar bounds for
the reductions of theorems 3 et 4.



