
Compact and Flexible Resolution
of CBT Multicast Key-Distribution

Kanta Matsuura1, Yuliang Zheng2, and Hideki Imai1

1 IIS, Univ. of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo 106, JAPAN
kanta@iis.u-tokyo.ac.jp, imai@iis.u-tokyo.ac.jp

2 School of Comp. & Info. Tech., Monash Univ., Melbourne, VIC 3199, AUSTRALIA
yuliang@mars.fcit.monash.edu.au

Abstract. In an open network such as the Internet, multicast security
services typically start with group session-key distribution. Considering
scalability for group communication among widely-distributed members,
we can find a currently-leading approach based on a CBT (Core-Based
Tree) routing protocol, where Group Key Distribution Centers (GKDCs)
are dynamically constructed during group-member joining process.
In search of practical use of it, this paper first analyzes the CBT proto-
col in terms of its efficiency as well as security management. Then the
paper proposes several improvements on the protocol with an aim to
solve the problem identified. In particular, (1) an overuse of encryption
and signatures is avoided and (2) a hybrid trust model is introduced by
a simple mechanism for controling the GKDC distribution. A compre-
hensive comparison among the costs of several implementations is also
carried out.

1 Introduction

Multicast-oriented applications require a sufficient security infrastructure espe-
cially when implemented in an open and global network. A good example is the
Internet, where the next-generation protocol IPv6 (Internet Protocol version 6)
considers security services for multicast as one of the central issues [?], [?]. The
basic starting-point is secure and authenticated distribution or agreement of
group session-keys.

A simple strategy is to assign the key-distribution function to a trusted single
entity or Key Distribution Center (KDC). This strategy, however, very unlikely
scales for multicast communication among widely- or sparsely-distributed mem-
bers. Scalable approaches would be combined with multicast routing protocols
since

– there exist routing protocols which provide dynamic and scalable properties,

– routing mechanisms are typically in close relation to group structures,

and

– combining two pre-processes (routing preparation and key-distribution) po-
tentially saves bandwidth.

Looking at the Internet, we can find IGMP (Internet Group Management
Protocol) [?] used in the final delivery of a multicast packet between a local
router and a group member on its directly-attached subnetworks. IGMP delivery
services can be jointed by a number of different multicast routing and delivery
mechanisms among distributed routers.

For groups with dispersed or sparse membership, most scalable are Shared-
Tree techniques such as PIM-SM (Protocol-Independent Multicast – Sparse
Mode) [?] and CBT (Core-Based Tree) routing protocol [?]–[?]. The main dif-
ferences between these two techniques are that

– CBT maintains its characteristics as scalable as possible by not offering the
option of shifting from a Shared Tree to a Shortest Path Tree

and that

– CBT has fewer entries in the routing tables [?].

Thus, although not devoted to any specific implementation, a dynamic key-
distribution protocol in conjunction with CBT [?] is currently considered as a
strong candidate for a scalable multicast key-distribution scheme. This proto-
col uses Group Key Distribution Centers (GKDCs) which are dynamically con-
structed during group-member joining process.

This paper first overviews the CBT mechanism in Sect. 2, where several prob-
lems or questions are subsequently discussed, and finally four implementations
are evaluated in terms of their computational costs and communication over-
head. A more compact and yet more flexible resolution is then proposed in
Sect. 3 with a function of controlling GKDCs, followed by the evaluation of four
implementations. After discussion in Sect. 4, Sect. 5 gives conclusions.

2 Core-Based Tree

2.1 Routing Protocol

In the CBT routing protocol [?]–[?], a single shared delivery tree is built around
several core routers. When a host wishes to join the multicast group, it casts
an IGMP group membership report across its attached link. On receiving this
report, a local CBT-aware router explicitly joins the delivery tree by generating
a JOIN_REQUEST message, which is sent to the next hop on the path towards one
of the group’s core routers. In reply to this JOIN_REQUEST message, a JOIN_ACK
message is generated by the core or another router which has already joined
the tree on the path between the core and the host. This JOIN_ACK message
traverses the reverse path of the join and thus a new branch is created. Routers
along the new branch are called non-core routers, and there exists a parent-child
relationship between adjacent routers along the branch. The resulting tree is a
bidirectional and acyclic graph that reaches every member host. Once the tree
is established, packets are forwarded in a simple way: when a node receives a

multicast packet, it forwards copies of the packet on all branches of the group’s
tree except for the branch on which the packet arrived.

There are two significant differences between the CBT and other network-
layer multicast routing protocols such as DVMRP (Distance Vector Multicast
Routing Protocol) and M-OSPF (Multicast extensions for Open Shortest Path
First) [?]. First, different from DVMRP and M-OSPF, CBT messages have their
own protocol headers, which allow the protocol to make explicit provision for se-
curity. Second, CBT is a Shared-Tree technique; there exists one shared delivery
tree per group, not per sender. By contrast, the other protocols use Source-Based
Tree architecture, which is less scalable than Shared-Tree architecture.

2.2 Security Mechanism

The CBT architecture complements security by secure joining process [?]. This
complementation assumes the presence of an internetwork-wide asymmetric cryptosystem3.
In particular, join-process messages such as IGMP group membership reports,
JOIN_REQUEST messages, and JOIN_ACK messages are equipped with security
parameters by the use of the asymmetric cryptosystem.

We describe an example of secure CBT joining by using a sample tree shown
in Fig. 14. The main terms used in the description are as follows.

C: An elected primary core which takes on the initial role of GKDC.
TKN-X: Token of an entity X, typically containing recipient’s identity, a time-

stamp denoted as TS-X, and a pseudo-random number to help a recipient
with verification procedures; the time-stamp demonstrates message fresh-
ness, and the random number demonstrates message originality. If X is a
host, recipient’s identity is omitted.

SIGX(·): Signature with the secret key of X.
ENCX(·): Encryption with the public key of X.
KM: Key materials to be delivered. A group key and a key-encrypting key are

contained. The former is used for encrypting group data traffic. The latter
is created by the primary core and used for re-keying the group with a new
group key just prior to an old key exceeding its lifetime.

ACL: Group access control list created by a CBT group initiator.
SAp: Security Association parameters pre-negotiated through ISAKMP (Inter-

net Security Association and Key Management Protocol) [?] or Photuris Key
Management Protocol [?].

GAP: Group access package sent from an already-verified node to a joining
node.

The format of GAP is

SIGsender

(
TKN-sender, SIGC (ACL) , SEC→host, SE

C→next-hop

)
,

3 Public-key management systems can be globally provided, for instance, through ex-
tended DNS (Domain Name System) [?] or WWW (World Wide Web) [?].

4 This tree has only one core for simplicity, but typically a CBT tree comprises several.

where SEX→Y = ENCY
(
SIGX (KM, SAp)

)
.

ACL is assumed to have been already sent from the initiator to the primary core.
It is also assumed that the primary core has already participated in Security
Association establishment to hold KM and SAp. These pre-processes are carried
out by using a unicast protocol such as ISAKMP [?] or Photuris [?].

Join-Request: First, the host h sends an IGMP group membership report
(
SIGh (TKN-h) , MEMBERSHIP_REPORT

)

to the local router A. On receiving this report, A authenticates the h’s token
which is digitally-signed. If successful, A generates a CBT join-request

SIGA
(
TKN-A, SIGh (TKN-h) , JOIN_REQUEST

)

and unicasts it to the next-hop router B on the path to the core C. Next, B verifies
A’s signature. If successful, B relays the request to the core C by unicasting

SIGB
(
TKN-B, SIGh (TKN-h) , JOIN_REQUEST

)
.

Finally, the core C verifies B’s signature and also h’s signature. If this is successful
and the host h is found to be included in the group access control list ACL, C
generates a group access package GAP.

Join-Acknowledgement: The core router encapsulates the group access pack-
age GAP in a join-acknowledgement, and digitally signs the whole message:

h H

LAN

A

B

C

b

b

b

b

bb

Fig. 1. An example of Core-Based Tree. C is the primary core. A, B, and b’s are
non-core routers. h is a host which wishes to join the multicast group. The LAN (Local
Area Network) where h resides is under its local CBT-aware router A. Another host H
is on the same LAN.

SIGC
(
SIGh (TKN-h) , GAP, JOIN_ACK

)
.

This is sent to B. Then C’s signatures on the whole message and on GAP are
verified by B. If both successful, B extracts the encrypted information SEC→B

from GAP and decrypts it. Then B verifies C’s signatures on this information
and on the access control list ACL. If successful, B subsequently stores the ACL
in an appropriate table, encrypts the information (key materials and security-
association parameters) with a local key, and also stores it. Next, B encrypts the
key information with the next-hop router A’s public key to reform GAP. The
resulting whole acknowledgement message

SIGB
(
SIGh (TKN-h) , GAP, JOIN_ACK

)

is sent to A. On receiving this message, A follows the same verification and
storage process. Subsequently, A generates an IGMP group membership report

(
SIGh (TKN-h) , SEC→h, MEMBERSHIP_REPORT

)
,

where SEC→h is extracted from the received GAP and just forwarded. The host
h receives this report and identifies it by its signed token. Finally, h decrypts
and verifies the key information. Thus h securely obtains the key materials and
the security-association parameters, and the routers A and B become GKDCs5.

Once the above process is successfully completed, the router A, which is now
available as GKDC, directly responds to the request

(
SIGH (TKN-H) , MEMBERSHIP_REPORT

)

from another host H by sending
(
SIGH (TKN-H) , SEC→H, MEMBERSHIP_REPORT

)

back to H. SEC→H can be generated by A, since A knows SIGC (KM, SAp).
H then identifies it by its signed token and decrypts SEC→H. Finally, if the
core’s signature on the decrypted information is successfully verified, the report
is accepted. The whole process is summarized in Fig. 2.

2.3 Problems and Questions

Security: First, information on key can be distributed widely, which might
provide less security for the system; uncontrollable scalability could be a threat.
The system trusts each router’s behavior according to the spirit of the Internet,
but this trust does not automatically mean that the data-storage systems of the
routers are sufficiently protected against attackers.

Second, GKDCs store key materials in encrypted form, but without any
freshness parameters. This is less secure than storage with freshness parameters
such as time-stamps or nonces, which are deterrents to replay attacks.
5 When any process failure occurs or an invalid signature is found, a JOIN NACK message

is returned toward the local router A. The host h is then notified of the failure by a
resultant IGMP membership report. It initiates a join-request again if it wishes.

¡
¡

¡

J
J

J

¡
¡

¡µ ¡
¡

¡ª

6

?

6

?

J
J

J] J
J
Ĵ

h

A

B

C

(1)

(2)
(5)

(3)
(4)

(6)

then

H

A

B

C

(1)’

(2)’

CBT JOIN REQ/ACK

IGMP MEM REPORT

(1): SIGh (TKN-h)
(2): SIGA (TKN-A, SIGh (TKN-h))
(3): SIGB (TKN-B, SIGh (TKN-h))

(4): SIGC(SIGh (TKN-h), SIGC(TKN-C, SIGC(ACL),

ENCh(SIGC(KM, SAp)), ENCB(SIGC(KM, SAp))))
(5): SIGB(SIGh (TKN-h), SIGB(TKN-B, SIGC(ACL),

ENCh(SIGC(KM, SAp)), ENCA(SIGC(KM, SAp))))
(6): SIGh (TKN-h) , ENCh (SIGC (KM, SAp))

(1)’: SIGH (TKN-H)

(2)’: SIGH (TKN-H) , ENCH (SIGC (KM, SAp))

Fig. 2. Process description of secure joining to the sample Core-Based Tree. After the
joining process of host h, another host H makes a join-request.

Efficiency: First, sender’s signature on GAP (highlighted by underlined fonts
in Fig. 2) is redundant and unnecessary. This is because GAP is carried by a
join-acknowledgement message which is signed as a whole by the sender.

Second, the first signed and encrypted information, which is underlined in
Fig. 2, might be also redundant; the same information is contained in the follow-
ing part. If really redundant, this underlined part is considered to cause a waste
of bandwidth; in general, simultaneous use of digital signature and public-key
encryption leads to large communication overhead.

Digital signature and public-key encryption cost a lot not only in bandwidth
but also in computation. The cost depends on cryptographic algorithms, which
motivates us to evaluate the efficiency of specific implementations6.

6 No specific implementation is discussed in the Internet RFC (Request for Com-
ments) [?] which proposes the CBT-based key-distribution protocol.

2.4 Evaluation of Implementation

This subsection evaluates the efficiency of the following four implementations7:

RSA: SIG(·) = RSA signature, ENC(·) = RSA encryption.
ElGamal: SIG(·) = SDSS, ENC(·) = ElGamal encryption.
SC: SIG(·) = SDSS, ENCrouter(·) = signcryption,

SEC→host(·) = signcryption.
SC RSA: SIG(·) = RSA signature, ENCrouter(·) = signcryption,

SEC→host(·) = signcryption.

Since signcryption cannot change the recipient with keeping the signer, the last
part of GAP in SC/SC RSA uses signcryption just as an encryption scheme.

Computational Cost: We estimate the cost of public-key cryptographic com-
putation required by one execution of join-request and join-acknowledgement
process in each implementation. For specific comparison, we have to consider
the currently-required size of the exponents in those schemes, since the compu-
tational cost is mainly determined by the size of the exponent.

With RSA, the main computational cost is in decryption or signature genera-
tion which generally involves a modular exponentiation with a full size exponent,
namely about 1.5|n| modular multiplications using the “square-and-multiply”
method, where n indicates the RSA composite involved and |n| denotes the size
or length (in bits) of n. With the help of the Chinese Remainder Theorem,
this cost can be reduced to be 1.5|n|/4 = 0.375|n|. On the assumption that
|n| = 1536, which is recommended to be used for long-term security (say, more
than 20 years), we compute the total cost of the implementation RSA.

Next, ElGamal requires (1) one modular exponentiation for generating a sig-
nature, (2) two for verifying a signature, (3) two for encrypting, and (4) one
for decrypting. Resulting numbers of modular multiplications are (1) 1.5|q|, (2)
1.75|q|, (3) 3|q|, and (4) 1.5|q|, respectively, where q is the order of the subgroup
used in SDSS. Assuming that |q| = 176, which provides long-term security quite
similar to that considered in the case of RSA, we compute the total computational
cost of ElGamal.

Likewise, we compute the costs of SC and SC RSA; (1) one modular exponen-
tiation for signcrypting and (2) two for unsigncrypting result in (1) 1.5|q| and
(2) 1.75|q| modular multiplications. Signature generation and verification cost
the same as in ElGamal and in RSA, respectively.

Those costs are given as a function of the number of non-GKDC routers, as
shown in Fig. 3. SC RSA is the most efficient and ElGamal is the least efficient.
The cost of SC RSA is about 74% of that of ElGamal when there exist non-GKDC
routers.
7 Since signcryption is a relatively new cryptographic primitive, we overview it in

Appendix. The readers can consult textbooks (for example, [?]) about the other
well-known encryption/signature algorithms.

55

60

65

70

75

80

85

90

95

0 2 4 6 8 10

C
om

pu
ta

tio
na

l C
os

t (
N

or
m

al
iz

ed
)

[%
]

Number of Non-GKDC Routers

"RSA"
"SC"

"SC_RSA"

Fig. 3. Computational cost (normalized by the cost of ElGamal) of the conventional
CBT scheme with |n| = 1536 and |q| = 176.

Table 1. Communication overhead of SC represented by the ratios to those of RSA,
ElGamal, and SC RSA.

(h → A) or (H → A) (A → B) or (B → C)
vs. RSA 17.2% 17.2%

vs. ElGamal 100.0% 100.0%
vs. SC RSA 17.2% 17.2%

(a) during join-request process

(C → B) or (B → A) (A → h) or (A → H)
vs. RSA 15.0% 11.5%

vs. ElGamal 39.7% 25.6%
vs. SC RSA 22.5% 29.3%

(b) during join-acknowledgement process

Communication Overhead: Assuming the same security level as in the eval-
uation of computational cost, we use |p| = |n| = 1536 and |hash(·)| = |q|/2 = 88,
where p is the order of the multiplicative group and hash(·) is the one-way hash
function used in SDSS-based schemes. The evaluation result is shown in Table 1.
Since SC is estimated to be the most compact, this result is represented by the
ratios of the overhead of SC to those of the other implementations.

3 An Efficient Resolution

To solve or answer to the issues identified in Sect. 2.3, this section describes an
efficient resolution of secure CBT key-distribution.

3.1 Protocol

The resolution is simple enough to keep the advantages of the original scheme;
just the format of GAP is changed into

(
TKN-sender, SIGC (ACL) , TTL, ENCnd

(
SIGC (KM, SAp [, TS-C])

))

where “nd” is the node which can decrypt the encrypted information next. []
denotes an option and TTL is a Time-to-Live parameter for GKDC permission;
as described later, nd=next-hop if TTL is positive, and otherwise nd=host. The
core assigns an initial value to TTL according to its security policy, which will be
discussed later in Sect. 4. Different from the conventional CBT protocol, GAP
itself is not signed.

In particular, after exactly the same join-request process as in the origi-
nal CBT scheme, the core assigns a non-negative value to TTL, and generates
a join-acknowledgement message according to the GAP format refined above.
This message is forwarded toward the host hop by hop. On receiving the join-
acknowledgement message, each non-local router first verifies the sender’s signa-
ture on the whole message8. If successful, one of the following three procedures
occurs, depending on the value of TTL9:

(TTL>1) The router decrements the TTL and subsequently decrypts or un-
signcrypts the information contained in the last part of GAP. Then the
core’s signatures on this information and on ACL are verified. If successful,
the router encrypts (or signcrypts) the information with the public key of
the next-hop (and additionally with the router’s own secret key in the case of
signcryption). The resultant acknowledgement message as a whole is signed
with the router’s secret key and forwarded. The router stores KM, SAp, and
ACL in a signed and encrypted form to become GKDC. This stored infor-
mation optionally includes the time-stamp generated by the core, depending
on the security policy.

(TTL=1) The router decrements the TTL and subsequently decrypts or un-
signcrypts the last part of GAp. Then the core’s signatures are verified. In
addition, the host’s signature on the token is verified with the public key
consistently derived from the CBT routing information. If everything is suc-
cessful, the router encrypts (or signcrypts) the information with the public
key of the host (and additionally with the router’s own secret key in the case
of signcryption). The resultant acknowledgement message is forwarded in a
digitally-signed form. The storage process occurs in the same way as in the
case of TTL>1.

(TTL=0) The router is not qualified as GKDC; neither key materials nor ACL
is stored. The router just signs the whole message and forwards it to the
next-hop.

8 When any joining-process failure occurs or an invalid signature is found, a JOIN NACK

process is provoked in the same way as in the conventional scheme.
9 If an attacker changes the value of TTL, it can be detected by the verification of the

sender’s signature on the whole message.

¡
¡

¡

J
J

J

¡
¡

¡µ ¡
¡

¡ª

6

?

6

?

J
J

J] J
J
Ĵ

6

?

h

A

B

C

(1)

(2)
(5)

(3)
(4)

(6)

then

H

A

B

C

(1)’

(4)’

(2)’
(3)’

CBT JOIN REQ/ACK

IGMP MEM REPORT

(1): SIGh (TKN-h)
(2): SIGA (TKN-A, SIGh (TKN-h))
(3): SIGB (TKN-B, SIGh (TKN-h))

(4): SIGC(SIGh (TKN-h),
TKN-C, SIGC (ACL) , TTL, ENCB (SIGC (KM, SAp [, TS-C])))

(5): SIGB(SIGh (TKN-h),
TKN-B, SIGC (ACL) , TTL, ENCh (SIGC (KM, SAp [, TS-C])))

(6): SIGh (TKN-h) , ENCh (SIGC (KM, SAp [, TS-C]))

(1)’: SIGH (TKN-H)
(2)’: SIGA (TKN-A, SIGH (TKN-H))

(3)’: SIGB(SIGH (TKN-H),
TKN-B, SIGC (ACL) , TTL, ENCA (SIGC (KM, SAp [, TS-C])))

(4)’: SIGH (TKN-H) , ENCH (SIGC (KM, SAp [, TS-C]))

Fig. 4. Process description of the proposed secure joining to Core-Based Tree when the
initial value of TTL is 1. The joining process of host h qualifies router B as a GKDC,
and then that of host H qualifies A.

The local router follows the same process, except that the resultant message
is not a join-acknowledgement message but an IGMP group membership report

(
SIGh (TKN-h) , ENCh

(
SIGC (KM, SAp [, TS-C])

)
, MEMBERSHIP_REPORT

)
.

The whole process is exemplified in Fig. 4.

3.2 Evaluation of Implementation

This subsection evaluates the proposed protocol considering four implementa-
tions in a similar way as in Sect. 2:

RSA*: SIG(·) = RSA signature, ENC(·) = RSA encryption.
ElGamal*: SIG(·) = SDSS, ENC(·) = ElGamal encryption.
SC*: SIG(·) = SDSS, ENC(·) = signcryption.
SC RSA*: SIG(·) = RSA signature, ENC(·) = signcryption.

For simplicity, the initial value of TTL is assumed to be large enough for all the
routers to become GKDCs through one joining (Fig. 4 is not the case).

Computational Cost: The same security level as in Sect. 2 is considered. The
evaluation result is shown in Fig. 5; SC RSA* is the most efficient. Even the least
efficient one, ElGamal*, is more efficient than the corresponding implementa-
tion (ElGamal) of the conventional protocol. Figure 6 illustrates how much the
proposed protocol reduces the computational cost in comparison with the con-
ventional protocol reviewed in Sect. 2.

55

60

65

70

75

80

85

90

95

100

0 2 4 6 8 10

C
om

pu
ta

tio
na

l C
os

t (
N

or
m

al
iz

ed
)

[%
]

Number of Non-GKDC Routers

"RSA"
"ElGamal"

"SC"
"SC_RSA"

Fig. 5. Computational cost (normalized by the cost of the conventional ElGamal) of
the proposed scheme with |n| = 1536 and |q| = 176.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

R
ed

uc
tio

n
of

 C
om

p.
 C

os
t [

%
]

Number of Non-GKDC Routers

"RSA"
"ElGamal"

"SC"
"SC_RSA"

Fig. 6. Computational-cost reduction by the proposed protocol (|n| = 1536, |q| = 176).

Table 2. Communication overhead during join-acknowledgement process of SC* rep-
resented by the ratios to those of RSA*, ElGamal*, and SC RSA*. Considered parameters
are: |p| = |n| = 1536 and |hash(·)| = |q|/2 = 88.

(C → B) or (B → A) (A → h) or (A → H)
vs. RSA* 17.2% 17.2%

vs. ElGamal* 50.9% 38.4%
vs. SC RSA* 20.6% 23.7%

Communication Overhead: There is no difference between the conventional
and the proposed protocols, in the overhead during join-request process. Ta-
ble 2 shows the communication overhead during join-acknowledgement process,
where the same security level as in previous discussion is assumed. Since SC* is
estimated to be the most compact, the comparison result is represented by the
ratios of the overhead of SC* to those of the other implementations.

In comparison with the original protocol, the proposed protocol requires
shorter communication overhead during the join-acknowledgement process; as-
suming |TTL| ¿ |KM |, |TS-C| ¿ |KM |, and the same security level as in the
previous discussions (|p| = |n| = 1536 and |hash(·)| = |q|/2 = 88), the overhead
reduction of the messages between routers is estimated as follows:

RSA* vs. RSA:
3|n|+ |KM|+ |SAp|
8|n|+ |KM|+ |SAp| > 37.5%,

ElGamal* vs. ElGamal:
2 (|hash (·) |+ |q|) + |p|+ |KM|+ |SAp|
6 (|hash (·) |+ |q|) + 2|p|+ |KM|+ |SAp| > 44.3%,

SC* vs. SC:
2|hash(·)|+ 2|q|+ |KM|+ |SAp|
7|hash(·)|+ 7|q|+ |KM|+ |SAp| > 28.6%,

and

SC RSA* vs. SC RSA :
|n|+ |q|+ |hash(·)|+ |KM|+ |SAp|

5|n|+ 2|q|+ 2|hash(·)|+ |KM|+ |SAp| > 21.9%.

4 Discussion

4.1 A Question of Trust

The CBT security architecture assumes that all the routers on a delivery tree are
trusted and do not misbehave. In reply to the question whether this assumption
is reasonable in internetworking, the original RFC (Request for Comments) [?]
makes two remarks:

(A1) Depending on the security requirement and perceived threat, the pre-
sented model may be acceptable.

(A2) A higher level of security can be provided by imposing all the join-request
authentication on a core router.

In our scheme, the latter (A2) can be provided by assigning the minimum initial
value to Time-to-Live parameter, i.e., TTL=0. The flexibility of this kind of
control with the help of TTL will be discussed in the next subsection. It should
be noted that even this “only one GKDC” situation is still more scalable than
protocols with “only one KDC”; different groups can use different GKDCs in
CBT-based protocols.

The proposed scheme provides another improvement on security by option-
ally including an authenticated time-stamp in the key-material container. Such
a use of a time-varying quantity convinces the entities that the session-keys are
fresh. As well-known in the research community of information-security technolo-
gies, freshness of the keys contributes to the protection against replay attack.
This time-stamp can be replaced with other freshness parameters such as nonces.

4.2 Controlling GKDC Distribution

A need for controlling GKDC distribution or expansion is suggested by the
higher-level security modification (A2) mentioned in the previous subsection.
This control should be viewed not only from security requirements, but also
from load distribution/concentration and traffic efficiency. A large initial value
of TTL precludes too much burden from concentrating on a small number of
GKDC routers, but might provide insufficient security. By contrast, a small
initial value of TTL provides us a high level of security, but might cause too
heavy load on GKDC routers and traffic flood. One practical solution to this
balancing problem is to offer a flexible controlling mechanism with a cost as small
as possible; we propose the use of a Time-to-Live parameter TTL, which permits
the recipient router to become GKDC when positive. Both computational cost
and communication overhead caused by the deployment of TTL are negligible.

The use of TTL implies a hybrid trust model; the trust tree is no longer
the same as the distribution tree. The core assigns an initial value to TTL
to show the region of the routers which the core itself trusts. Suppose that the
router B receives a join-acknowledgement message with TTL=1 from the core C,
which tells B that B is trusted by C but that farther downstream routers are not
trusted by C. This acknowledgement process does not allow the farther routers to
become GKDCs this time. When the next join-acknowledgement process occurs
as a result of the next join-request, B assigns an appropriate initial value to
TTL to show the region of the routers which B trusts; if the next-hop router A
is trusted by B, B can assign a positive initial value without consulting the core
C. Thus the trusted region can be expanded request by request.

4.3 Sender-Specific Keys

After completion of the proposed key-distribution, each member can easily multi-
cast a sender-specific key by signing it with his/her own secret key and encrypting
the result with the obtained group key. This message includes necessary Security
Association parameters.

Non-member senders can also distribute a sender-specific key. They first ne-
gotiate with the primary core to establish the Security Association parameters
and their session key. Thereafter, by using the group’s current session-key, the
core multicasts the sender-specific session-key together with the sender’s security
parameters to the group.

5 Conclusions

This paper analyzed and improved a scalable multicast key-distribution based
on CBT.

In the analysis, four implementations were compared: RSA-based scheme
(RSA), ElGamal-based scheme (ElGamal), signcryption-based scheme (SC), and
signcryption-with-RSA scheme (SC RSA). In cryptographic computation, SC RSA
costs least and ElGamal costs most. The computational cost of SC is moder-
ate, and its communication overhead is by far the shortest. The computational
cost was examined in detail as a function of the number of non-GKDC routers
between the joining host and the core router of the group.

Likewise, in the proposed protocol, four implementations were compared:
RSA*, ElGamal*, SC*, and SC RSA*. The result was quite similar to that of the
conventional protocol; SC RSA* gives the smallest computational cost, and SC*
gives the shortest communication overhead. In each implementation, the pro-
posed protocol is more efficient than the conventional one. The computational-
cost reduction depends on the number of non-GKDC routers and saturates to be
approximately 24% (RSA* vs. RSA, or SC RSA* vs. SC RSA) and 17% (ElGamal*
vs. ElGamal, or SC* vs. SC). The overhead is also reduced significantly; at least
37.5% saving in the case of RSA*, 44.3% in the case of ElGamal*, 28.6% in the
case of SC*, and 21.9% in the case of SC RSA*. These advantages of the proposed
protocol are due to the deployment of a cheaper Group Access Package than the
conventional one.

To summarize the issues on efficiency, the combination of RSA and sign-
cryption is the best implementation in terms of the computational cost and the
signcryption-based implementation is the best way in terms of the communica-
tion overhead, both in the original protocol and in the proposed protocol. For
each implementation with more than two non-GKDC routers, the proposed pro-
tocol saves at least 13% of the computational cost and 22% of the communication
overhead.

In addition to the efficiency, the proposed scheme provides two improvements.
The first one is a function of controlling the expansion or distribution of GKDCs.
This contributes to protocol flexibility in balancing security requirements and
traffic efficiency or load concentration. The second one is a freshness parameter
optionally included in a returned key-material container. This contributes to the
protection against replay attack.

Appendix: SDSS and Signcryption

To avoid forgery and ensure confidentiality of the contents of a letter, for
centuries it has been a common practice for the originator of the letter to sign
his/her name on it and then seal it in an envelope, before posting it. In a secure
and authenticated communication over an open and insecure network, the same
two-step approach has been followed; before a message is sent out, the sender of
the message would sign it using a digital signature scheme, and then encrypt the
message (and the signature) using a private-key encryption algorithm under a
randomly chosen message-encryption key. The random message-encryption key
would then be encrypted by using the recipient’s public key. We call this two-step
approach signature-then-encryption.

In general, the sum of the cost for signature and the cost for public-key
encryption is computationally expensive. Originating from questioning whether
it is absolutely necessary for one to spend the sum of the costs to achieve both
confidentiality and authenticity, the author of [?] proposes a primitive called
signcryption.

Intuitively, a digital signcryption is a cryptographic method that fulfills both
the functions of secure encryption and digital signature, but with a cost smaller
than that required by signature-then-encryption. This paper uses an implementa-
tion of signcryption based on a Shortened Digital-Signature Standard (SDSS).
By using the notation listed in Table 3, Fig. 7 shows an SDSS which is referred
to as SDSS1 in [?]. The signcryption based on this SDSS1 is illustrated in Fig. 8.

Table 3. Notation.

Parameters public to all:
p — a large prime
q — a large prime factor of p− 1
g — an integer with order q modulo p chosen randomly from [1, 2, · · · , p− 1]
Keys of the sender and the recipient:
SKAlice ∈ [1, 2, · · · , q − 1] — secret key of Alice
PKAlice — public key of Alice where PKAlice = gSKAlice mod p
SKBob ∈ [1, 2, · · · , q − 1] — secret key of Bob
PKBob — public key of Bob where PKBob = gSKBob mod p
Operations and functions:
KHk(·) — a one-way hash function key-ed with k
hash(·) — a one-way hash function
(Ek, Dk) — encryption and decryption algorithms of a private key cipher

(attached subscrypts indicate the keys)
‖ — Concatenation
∈R — Random picking (ex.: x ∈R [1, 2, · · · , q − 1] indicates that

x is randomly picked from [1, 2, · · · , q − 1].)

This article was processed using the LATEX macro package with LLNCS style

Generation of signature (s1, s2) on a message m Signature verification

x ∈R [1, 2, · · · , q − 1]
k = gx mod p

k = (PKAlice · gs1)s2 mod p

s1 = KHk(m)
Accept m if and only if

s2 = x/(s1 + SKAlice) mod q
KHk(m) is identical to s1.

Fig. 7. Example of SDSS (SDSS1).

Signcryption by Alice Unsigncryption by Bob

x ∈R [1, 2, · · · , q − 1] (k1, k2) =

(k1, k2) = hash (PKx
Bob mod p) hash

(
(PKAlice · gs1)s2·SKBob mod p

)
c = Ek1(m) (c, s1, s2) ⇒ m = Dk1(c)
s1 = KHk2(m) Accept m if and only if
s2 = x/(s1 + SKAlice) mod q KHk2(m) is identical to s1.

Fig. 8. Example of signcryption based on SDSS1.

