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Construction and Formal Security Analysis of
Cryptographic Schemes in the Public Key

Setting

Joonsang Baek, PhD
Monash University, 2004

Abstract

This thesis presents two main themes. One is the study of existing cryptographic
schemes through a new perspective and the other is the construction of new
schemes which will enhance the functionality of current public key cryptography.
Specifically, contributions of this thesis are as follows:

We show that the slightly modified version of one of Zheng and Seberry’s public
key encryption schemes presented at Crypto ’92 is secure against chosen cipher-
text attack in the random oracle model, relative to, in fact, the Gap Diffie-
Hellman problem.

We present strong and realistic confidentiality and unforgeability notions for
generic signcryption schemes, which encompass the conventional notions of in-
distinguishability against chosen ciphertext attack and existential unforgeability
against chosen message attack. We then show that Zheng’s original signcryption
scheme meets our confidentiality and unforgeability notions in the random oracle
model, relative to the Gap Diffie-Hellman problem for confidentiality and the
standard Discrete-Logarithm problem for unforgeablity.

We construct the first identity-based threshold decryption scheme secure against
chosen ciphertext attack. A formal proof of security of the scheme is provided
in the random oracle model, assuming the Bilinear Diffie-Hellman problem is
computationally hard. We also construct, by extending the proposed identity-
based threshold decryption scheme, a mediated identity-based encryption scheme
secure against more powerful attacks than those considered previously.

We formalize the concept of identity-based threshold signature and give the first
provably secure scheme based on the bilinear pairings. Like our identity-based
threshold decryption scheme, an important feature of the proposed identity-based
threshold signature scheme is that the private key associated with an identity is
shared among signature generation servers, which, we claim, is more practical
than sharing a master key of the Public Key Generator.

xi



Construction and Formal Security Analysis of
Cryptographic Schemes in the Public Key

Setting

Declaration

I declare that this thesis is my own work and has not been submitted in any
form for another degree or diploma at any university or other institute of tertiary
education. Information derived from the published and unpublished work of
others has been acknowledged in the text and a list of references is given.

Joonsang Baek
January 6, 2004

xii



Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr Yuliang Zheng. I
very much appreciate his constant support and encouragement. With his thought-
ful guidance, I was able to stay focused during the entire period of my PhD. I am
also deeply grateful to my co-supervisor Dr Jan Newmarch for his encouragement
and support. Weekly meetings with him have been delightful experiences for un-
derstanding the real-world security problems and enhancing my knowledge of
other areas of computing. I would like to extend my gratitude to Dr Lee Seldon,
who helped me to have great teaching experiences in my final year at Monash.

Special thanks go to my friend and former colleague Ron Steinfeld. I have bene-
fited greatly from his encouragement, inspiration, and friendship. Collaborating
him was a real pleasure.

Warm gratitude also goes to my friends at Monash including Craig MacDon-
ald, Wei Ye, Samantha Senaratna, Hugo LeRoux, Minh Le Viet, Kei Nam Tsoi,
Adrian Ryan, Paulo Tam, Nisha Roy, Robin Kirk, Chu Tiong Yeoh, Benny Na-
sution, Robert Bram, Yandong Fan, How Keat Low, and Yongseok Choi.

Many thanks to Michael Scriven and Shirley Scriven for their generosity while
my wife and I stay in their rear house.

I cannot thank my father and mother enough for their great love and spiritual
support. I also thank my brother and sister very much for their encouragement.

Last, but not least, I would like to express my deepest thanks to my wife Hyung-
Ran. Without her support, tolerance, and love, this thesis would not have been
possible.

Joonsang Baek

Monash University
January 2004

xiii



Publications

Publications arising from this thesis include:

J. Baek, R. Steinfeld, and Y. Zheng (2002), Formal Proofs for the Secu-
rity of Signcryption, Public Key Cryptography – Proceedings of PKC 2002,
Lecture Notes in Computer Science 2274, pages 80-98, Springer-Verlag,
2002.

R. Steinfeld, J. Baek, and Y. Zheng (2002), On the Necessity of Strong As-
sumptions for the Security of a Class of Asymmetric Encryption Schemes,
Australasian Conference on Information Security and Privacy – Proceedings
of ACISP 2002, Lecture Notes in Computer Science 2384, pages 241–256,
Springer-Verlag, 2002.

J. Baek and Y. Zheng (2003), Zheng and Seberry’s Public Key Encryption
Scheme Revisited, International Journal of Information Security (IJIS), Vol.
2, No. 1, pages 37–44, Springer-Verlag, 2003.

J. Baek, R. Steinfeld, and Y. Zheng (2003), Formal Proofs for the Secu-
rity of Signcryption (Full Version), Submitted to Journal of Cryptology.

J. Baek and Y. Zheng (2003), Simple and Efficient Threshold Cryptosystem
from the Gap Diffie-Hellman Group, IEEE Global Communications Con-
ference – Proceedings of IEEE GLOBECOM Conference, Communication
Security Track, SC04-7, pages 1491–1495, IEEE, 2003.

J. Baek and Y. Zheng (2004), Identity-Based Threshold Decryption, Public
Key Cryptography – Proceedings of PKC 2004, Lecture Notes in Computer
Science, Springer-Verlag, 2004, to appear.

J. Baek and Y. Zheng (2004), Identity-Based Threshold Signature from the
Bilinear Pairings, IEEE International Conference on Information Technol-
ogy: Coding and Computing – Proceedings of ITCC 2004, Information
Assurance and Security Track, IEEE Computer Society, 2004, to appear.

xiv



Permanent Address: School of Network Computing
Monash University
Australia

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trade-
mark of the American Mathematical Society. The macros used in formatting this dissertation
were written by Glenn Maughan and modified by Dean Thompson and David Squire of Monash
University.

xv



1

Chapter 1

Introduction

1.1 Motivation

1.1.1 Cryptographic Schemes and Their Security

Over the last decades, the deployment of the Internet and distributed systems
has significantly simplified the exchange of information between remote users.
However, this in turn, has led to an explosive growth in threats over the networks
such as electronic eavesdropping, fraud, and malicious code. In order to pro-
tect valuable resources from such threats, engineers have been developing diverse
security systems.

As a base technology, cryptography is playing a central role in building security
systems. Hence, for cryptographers, it is important to design robust and versatile
cryptographic schemes which can serve as sound security primitives. However,
this task is not always easy in that a cryptographic scheme which looks sturdy
at first sight sometimes turns out to have serious security flaws. A good example
is Bleichenbacher’s [22] attack on the RSA encryption standard PKCS #1 which
was implemented in the widely-used Secure Socket Layer (SSL) protocol. His
attack indeed surprised the community as the cryptographic schemes had gener-
ally been believed to be the strongest link in the security system. It should be
emphasized, however, that what Bleichenbacher attacked is not the RSA [103]
function which is related to the problem of factoring a large integer (the un-
derlying computational primitive of the PKCS #1), but, the way of using it to
construct a public key encryption scheme. It seems that the attacked PKCS #1
had been constructed through intuitive heuristics rather than a rigorous analy-
sis. Consequently, Bleichenbacher’s attack suggests that the heuristic approach
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to design cryptographic schemes can be risky and the security of cryptographic
products should be evaluated very carefully before they are deployed.

However, a sound approach to evaluating the security of cryptographic schemes
or protocols already exists. This approach is called “provable security” and stems
from Goldwasser and Micali’s [62] pioneering work on public key encryption
schemes that hides all partial information about plaintext. According to Stinson
[119], the provable security approach can be described as follows:

“This approach is to provide evidence of security by reducing the security of
the cryptosystem to some well-studied problem that is thought to be difficult.
For example, it may be able to prove a statement of the type ‘a given cryp-
tosystem is secure if a given integer n cannot be factored.’ Cryptosystems
of this type are sometimes called provably secure.”

That is, in the provable security approach, one ensures the security of a given
cryptographic scheme by presenting a “reduction” between the properly defined
security notion for the scheme and the underlying primitive such as RSA or
DES [84], in a similar way as proving that a given computational problem is
NP-complete in the theory of computation.

Since Goldwasser and Micali’s work, there have been a number of research works
taking this approach and it has become a paradigm of cryptographic research.
As a consequence, and possibly affected by the negative results on the security
of the past cryptographic standards, e.g, [23], [64], and [22], today’s standard
organizations such as ISO-IEC [109], P1363 [67], and NESSIE [98] strongly rec-
ommend that a precise security analysis based on the provable security approach
should be included in a proposal of new cryptographic schemes or protocols.

1.1.2 Scope of This Thesis

The provable security approach, as discussed above, is not only important by
itself to analyze the security of a given cryptographic scheme rigorously but also
helps to design new ones, with a high level of security guarantee. With this in
mind, we pursue two goals in this thesis:

• One goal is to analyze the security of important existing cryptographic
schemes whose security has not been analyzed in a framework of the prov-
able security approach. To this end, we have selected Zheng and Seberry’s
public key encryption [130] and Zheng’s original signcryption [124] schemes
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which have been extensively explored by a number of research works since
they were proposed. Taking the provable security approach, we rigorously
analyze the security of these schemes in Chapters 3 and 4.

• The other goal is to construct new cryptographic schemes which will en-
hance the functionality of identity-based cryptography, specific public key
cryptography that does not depend on the public key directories. The con-
cept of identity-based cryptography was proposed in 1984 by Shamir [108],
but has flourished only recently thanks to the recent work of Boneh and
Franklin [27]. In Chapters 5 and 6, we treat the problem of giving identity-
based cryptography the functionality of threshold cryptography whose main
motivation is to decentralize the power of cryptographic operations [44].

In the next section, we overview the subject matter of each chapter in relation
to achieving the above two goals.

1.2 Overview of Chapters

1.2.1 Chapter 2: Background

In this chapter, we survey the background theory on which the subject matter of
the rest of the thesis is based. First, we review the basics of public key encryption,
digital signature, and identity-based encryption/signature. We also review some
computational primitives such as the Integer Factorization, Discrete-Logarithm,
and various Diffie-Hellman problems. We then study the important security no-
tions for public key cryptographic schemes such as the indistinguishability of
encryptions [62] against chosen ciphertext attack [85, 100, 48, 16] and unforge-
ability against chosen message attack [63]. Finally, we discuss the random oracle
model [20], which is somewhat controversial but is an important ingredient of the
practice-oriented provable security paradigm in which one can design efficient
provably-secure cryptographic schemes [14].

1.2.2 Chapter 3: Security Analysis of Zheng and Seberry’s
Public Key Encryption Scheme

This chapter is devoted to the security analysis of Zheng and Seberry’s public
key encryption scheme presented at Crypto ’92 [130], which has affected the
design of many public key encryption schemes proposed since then. We show
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that the slightly modified version of this scheme proposed by Lim and Lee [77]
is indeed provably secure against chosen ciphertext attack in the random oracle
model, relative to the “Gap Diffie-Hellman” problem [90]. (Note that the Gap
Diffie-Hellman problem is to solve the Computational Diffie-Hellman problem
[45] with the help of the oracle (algorithm) for solving the Decisional Diffie-
Hellman problem.) Interestingly, this result contradicts the recent security proof
claimed by Soldera, Seberry, and Qu (SSQ) [115] that only the intractability
of the Decisional Diffie-Hellman problem is sufficient for the modified version of
Zheng and Seberry’s scheme to be secure against chosen ciphertext in the random
oracle model. Through informal and formal arguments, we show that their claim
is in fact false.

Publication Information. An earlier version of the results in this chapter was
published in International Journal of Information Security (IJIS) [8]. A part of
discussions on SSQ’s result was motivated by the paper presented at Australasian
Conference on Information Security and Privacy 2002 (ACISP 2002) [117].

1.2.3 Chapter 4: Security Analysis of Signcryption

Signcryption is a public key cryptographic scheme that provides simultaneously
both message confidentiality and unforgeability at a low computational and com-
munication overhead, which was originally proposed by Zheng at Crypto ’97
[124]. Like Zheng and Seberry’s public key encryption scheme, Zheng’s original
signcryption scheme has not been analyzed within the framework of provable
security. This chapter deals with the problem of formulating security models
for signcryption and analyzing the security of Zheng’s original scheme. After
presenting realistic confidentiality and unforgeability models for (general) sign-
cryption which encompass chosen ciphertext and chosen message attacks, we show
that Zheng’s original signcryption scheme is provably secure in our confidentiality
model relative to the Gap Diffie-Hellman problem and is provably secure in our
unforgeability model relative to the standard Discrete-Logarithm problem. All
these results are shown in the random oracle model.

Publication Information. An earlier version of the results in this chapter was pre-
sented at International Workshop on Practice and Theory in Public Key Cryp-
tography 2002 (PKC 2002) [6].
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1.2.4 Chapter 5: Identity-Based Threshold Decryption
from the Bilinear Map

Threshold decryption [44] is of particular importance where the decentralization
of the power to decrypt is required. The motivation for identity-based encryption
originally proposed by Shamir [108] is to provide confidentiality without the need
of exchanging public keys or keeping public key directories. A major advantage
of ID-based encryption is that it allows one to encrypt a message by using a recip-
ient’s identifiers such as an email address. This chapter focuses on the problem
of constructing an identity-based threshold decryption scheme in which threshold
decryption is realized in the identity-based setting. First, we carefully examine
issues related to the construction of such a scheme and argue that it is important
in practice to design an identity-based threshold decryption scheme in which a
private key associated with an identity is shared rather than a master key of the
PKG. We then present the first identity-based threshold decryption scheme se-
cure against chosen ciphertext attack. A formal proof of security of this scheme
is provided in the random oracle model, assuming the Bilinear Diffie-Hellman
problem [27] is computationally hard. Another contribution of this chapter is, by
extending the proposed identity-based threshold decryption scheme, to construct
a mediated identity-based encryption scheme [46] secure against more powerful
attacks than those considered previously.

Publication Information. An earlier version of the results in this chapter has been
accepted to present at International Workshop on Practice and Theory in Public
Key Cryptography 2004 (PKC 2004) [10]. A part of the results in this chapter
was motivated by our paper presented at Communication Security Track of IEEE
2003 Global Communication Conference (GLOBECOM 2003) [9].

1.2.5 Chapter 6: Identity-Based Threshold Signature from
the Bilinear Map

In this chapter, we formalize the concept of identity-based threshold signature
and give the first provably secure scheme based on the bilinear pairings. Like our
identity-based threshold decryption scheme presented in Chapter 5, an important
feature of this scheme is that a private key associated with an identity is shared
among a number of signature generation servers rather than a master key of the
PKG. From a theoretical point of view, an interesting aspect of our results is
that the security of one of the proposed verifiable secret-sharing schemes used to
construct our identity-based threshold signature scheme is relative to the modified
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Generalized Bilinear Inversion (mGBI) problem, which is a slight modification of
the Generalized Tate Inversion (GTI) problem that Joux [69] recently proposed
and questioned how it can be applied to build cryptographic protocols. Hence,
our result gives a partial answer to Joux’s question.

Publication Information. An earlier version of the results in this chapter has been
accepted to present at Information Assurance and Security Track of IEEE 2004
International Conference on Information Technology: Coding and Computing
(ITCC 2004) [11].
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Chapter 2

Background

2.1 Introduction

Public key cryptography has made security services over the networks more ver-
satile than ever before. Using public key cryptography, the end-users who have
never met each other before can now exchange data securely and conveniently.
Moreover, public key cryptography has made it possible to realize secure elec-
tronic commerce such as secure fund transfers and digital cash. Indeed, a large
number of today’s security applications over the Internet are built on it.

In this chapter, we review some basic concepts from public key cryptography such
as:

• motivations for public key encryption, digital signature, and identity-based
encryption/signature schemes and their descriptions;

• well-known computational problems on which the current public key cryp-
tographic schemes are based;

• fundamental security notions and the random oracle model [20].

Since the aim of this chapter is to give an overview of the background theory
that will be used in later chapters, the above subject matter will be treated in a
rather informal way. The definitions given in this chapter will be revisited in a
more formal way from Chapter 3.
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Figure 2.1: Public Key Encryption

2.2 Basic Public Key Cryptographic Schemes

The concept of public key cryptography was first introduced by Diffie and Hell-
man [45] in 1976. The main motivation for public key cryptography is to remove
the burden of key sharing in the conventional symmetric key cryptography in
which a separate secret key is needed for each pair of users to communicate in
private. More precisely, if there are n users who want to exchange secret data us-
ing the symmetric key cryptography, n(n−1)/2 keys are needed and this number
increases rapidly as the number of users grows. Yet, in public key cryptography,
each user creates a pair of keys, one of which is to be publicized while the one
is to be kept secret. The publicized key, referred to as “public key”, is used
as encryption key, but the secret key, referred to as “private key”, is used as
decryption key. As a result, there is no key sharing problem as in symmetric
key cryptography. Another remarkable achievement of public key cryptography
is that one can construct a digital signature scheme by using the private key as
signature generation key while using the public key as verification key.

2.2.1 Public Key Encryption

A public key encryption scheme is one of the fundamental public key crypto-
graphic schemes and can be described as follows.

• Key Generation: The receiver Bob creates his private and public key pair,
which we denote by skBob and pkBob respectively.
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• Encryption: Using Bob’s public key pkBob, the sender Alice encrypts her
message M , which we call a “plaintext”, and obtains a ciphertext C.

• Decryption: Upon receiving the ciphertext C from Alice, Bob decrypts it
using his private key skBob to recover the plaintext M .

Figure 2.1 illustrates a schematic outline of a public key encryption scheme.

Of course, Bob’s public key pkBob should not compromise the secrecy of the
private key skBob. This important property is guaranteed by the trapdoor one-
way function which can be informally defined as follows [78].

Trapdoor One-Way Function: A trapdoor one-way function ft(x) :
X → Y is a one-way function, that is, it is easy to compute ft(x) for
all x ∈ X but difficult to invert for almost all values in Y . However, if
the trapdoor information t is used, then for all values y ∈ Y it is easy to
compute x ∈ X such that y = ft(x).

In their seminal paper [45], Diffie and Hellman constructed a trapdoor one-way
function based on modulo exponentiation. This function made it possible for
them to design a surprising protocol in which the remote users who have not met
each other before can share the common secret key. This protocol is now known
as the “Diffie-Hellman key exchange protocol”.

However, the first practical realization of public key encryption was accomplished
by Rivest, Shamir, and Adleman [103] in 1978. Their public key encryption
scheme, which we will simply call “RSA encryption”, can be described as follows:

• Key Generation: The receiver Bob chooses large primes p and q at random;
computes N = pq; computes φ(N) = (p − 1)(q − 1); chooses a random
integer e < φ(N) such that gcd(e, φ(N)) = 1; computes the integer d such
that ed = 1 mod φ(N); publicizes his public key pkBob = (N, e) while keeps
his private key skBob = (p, q, d) secret.

• Encryption: Using Bob’s public key pkBob, the sender Alice encrypts her
message M < N by creating a ciphertext C such that

C = M e mod N.

• Decryption: Upon receiving the ciphertext C from Alice, Bob decrypts it
using his private key skBob and recovers the plaintext M by computing

M = Cd mod N.
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Notice that the one-wayness of the above RSA encryption scheme is based on the
intractability of computing the e-th root of a ciphertext C modulo integer N ,
which is related to the “Integer Factorization” problem.

Soon after Rivest, Shamir, and Adleman proposed the above encryption scheme,
ElGamal [49] constructed a new public key encryption scheme based on Diffie
and Hellman’s trapdoor one-way function proposed in [45].

2.2.2 Digital Signature

Another fundamental public key cryptographic scheme is a digital signature,
whose concept was first proposed by Diffie and Hellman [45]. As mentioned
earlier, the ability to construct a digital signature scheme is a great advantage of
public key cryptography over symmetric key cryptography. A digital signature
scheme can be described as follows.

• Key Generation: The signer Alice creates her private and public key pair,
which we denote by skAlice and pkAlice respectively.

• Signature Generation: Using her private key skAlice, Alice creates a signa-
ture σ on her message M .

• Signature Verification: Having obtained the signature σ and the message
M from Alice, the verifier Bob checks whether σ is a genuine signature on
M using Alice’s public key pkAlice. If it is, he returns “Accept”. Otherwise,
he returns “Reject”.

Figure 2.2 illustrates a schematic outline of a digital signature scheme.

Since only a single entity is able to sign a message and the resulting signature
is verified by anybody in digital signature, a dispute over who created the sig-
nature can be easily settled. This, often called “non-repudiation”, is one of the
important security services that digital signature schemes can provide. Indeed,
non-repudiation is an essential security requirement in electronic commerce ap-
plications.

In the same paper that proposed the RSA encryption scheme [103], Rivest,
Shamir, and Adleman also constructed a signature scheme, which we call “RSA
signature”. Below, we describe the RSA signature scheme.

• Key Generation: The signer Alice chooses large primes p and q at random;
computes N = pq; computes φ(N) = (p − 1)(q − 1); chooses a random
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Figure 2.2: Digital Signature

integer e < φ(N) such that gcd(e, φ(N)) = 1; computes the integer d such
that ed = 1 mod φ(N); publicizes her public key pkAlice = (N, e) while
keeps her private key skAlice = (p, q, d) secret.

• Signature Generation: Using her private key skAlice, Alice creates a signa-
ture on her message M < N by computing

σ = Md mod N.

• Signature Verification: Having obtained the signature σ and the message
M from Alice, Bob checks whether

M = σe mod N

using Alice’s public key pkAlice.

If the above equation holds, Bob returns “Accept”. Otherwise, he returns
“Reject”.

Notice that the unforgeability of the above RSA signature scheme is again based
on the intractability of computing the e-th root of a ciphertext C modulo integer
N . (However, the “unforgeability” here refers to a weak sense of unforgeability.
This issue will be discussed in more detail in Section 2.4.3.)

We remark that the construction of a signature scheme based on the “Discrete-
Logarithm” problem, which we will be looking into in Section 2.3.2, was given by
ElGamal [49].
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2.2.3 Identity-Based Encryption/Signature

The concept of identity-based encryption and signature was originally proposed
by Shamir [108] in 1984. In identity-based encryption or signature, one can
use the receiver or sender’s identifier information such as email or IP address
(instead of digital certificates) to encrypt a message or verify a signature. As a
result, identity-based cryptographic schemes significantly reduce the system com-
plexity and the cost for establishing and managing the public key authentication
framework known as Public Key Infrastructure (PKI).

More precisely, an identity-based encryption scheme can be described using the
following steps.

• Setup: The Private Key Generator (PKG), which is a trusted third party,
creates its master (private) and public key pair, which we denote by skPKG

and pkPKG respectively. (Note that pkPKG is given to all the interested
parties and remains as a constant system parameter for a long period.)

• Private Key Extraction: The receiver Bob authenticates himself to the PKG
and obtains a private key skIDBob

associated with his identity IDBob.

• Encryption: Using Bob’s identity IDBob and the PKG’s pkPKG, the sender
Alice encrypts her plaintext message M and obtains a ciphertext C.

• Decryption: Upon receiving the ciphertext C from Alice, Bob decrypts it
using his private key skIDBob

to recover the plaintext M .

Figure 2.3 illustrates a schematic outline of an identity-based encryption scheme.

As a mirror image of the above identity-based encryption, identity-based signa-
ture can be described as follows.

• Setup: The Private Key Generator (PKG), which is a trusted third party,
creates its master (private) and public key pair, which we denote by skPKG

and pkPKG respectively.

• Private Key Extraction: The sender Alice authenticates herself to the PKG
and obtains a private key skIDAlice

associated with her identity IDAlice.

• Signature Generation: Using her private key skIDAlice
, Alice creates a signa-

ture σ on her message M .
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Figure 2.3: Identity-Based Encryption

• Signature Verification: Having obtained the signature σ and the message
M from Alice, the verifier Bob checks whether σ is a genuine signature on
M using Alice’s identity IDAlice and the PKG’s public key pkPKG. If it is,
he returns “Accept”. Otherwise, he returns “Reject”.

In his original paper on identity-based cryptography [108], Shamir constructed
the first identity-based signature scheme using the RSA function. However, he
was unable to design an identity-based encryption scheme and posed constructing
it as an open problem. Only recently, Shamir’s problem was solved by Boneh and
Franklin [27] who used the special properties of elliptic curves called the “bilinear
pairings” to construct such a scheme. (Boneh and Franklin’s scheme will be
discussed in great detail in Chapter 5.) Thanks to their successful realization of
identity-based encryption, identity-based cryptography is now flourishing in the
cryptographic research.

We remark that the PKG in identity-based cryptography must be trusted un-
conditionally due to the fact that the PKG is in possession of the users’ private
keys. As a result, the use of identity-based cryptography may be limited to the
environment where the PKG is allowed to view the communicated messages in
certain circumstances, e.g., a company environment. To resolve this problem,
Boneh and Franklin [27] suggested that a master key of the PKG should be dis-
tributed into a number of other PKGs called “distributed PKGs”. Note that
Boneh and Franklin’s distributed PKGs technique will be extensively discussed
in Chapter 5.
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Apart from the very basic features of identity-based cryptography reviewed in
this subsection, there are a number of interesting problems to be explored in the
field of identity-based cryptography. Readers are referred to Chapter 7 of this
thesis and Chapter 13 of Mao’s book [78].

2.3 Computational Primitives

The security of a public key cryptographic scheme is relied on the hardness of a
certain computational problem. Although various computational problems have
been proposed so far, e.g., the braids [4] used in Ko et al.’s encryption scheme
[72] and the decoding linear (binary) error-correcting code problem used in the
McEliece encryption scheme [83], we only review the “Integer Factorization” and
“Discrete-Logarithm” problems, which are the most widely-used computational
problems in the conventional cryptographic schemes.

2.3.1 Integer Factorization

The Integer Factorization problem, which we will simply call the “IF problem”,
can be informally defined as follows:

IF: Given N = pq where p and q are large primes, find p and q.

Recall that the one-wayness of the RSA encryption scheme described in Section
2.2.1 and the unforgeability of the RSA signature scheme described in Section
2.2.2 lie on the intractability of computing the e-th root of a ciphertext C modulo
integer N = pq, which is related to the above IF problem. The reason why we
put the word “related” here is that equivalence between computing e-th root of
an element modulo integer N and solving the IF problem has not been proven
until now. What we just know is that if the IF problem can be easily (namely,
“in polynomial time”) solved, then computing d = e−1 mod φ(N) can be done
also easily since φ(N) = (p − 1)(q − 1) can be efficiently computed if p and
q are known. On the other had, no answer has been given yet for the question
“whether one must factor N to compute d = e−1 mod φ(N)”. For this reason, the
computational problem of the RSA encryption and signature schemes is specifically
called the “RSA problem”.

Indeed, factoring a large integer is one of the fascinating subjects in computa-
tional number theory. The “quadratic sieve”, “elliptic curve”, and “number field
sieve” methods developed by computational number theorists are currently used
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as factoring algorithms in practice. Among them, the number field sieve method,
which has been proposed most recently, is especially focused by many cryptogra-
phers due to its asymptotic running time faster than those of the quadratic sieve
and elliptic curve methods, and its effectiveness to parallelization as shown in
factoring a 512-bit RSA modulus [32].

We remark that the IF and its related computational problems were used to build
up various cryptographic schemes by Rivest et al. [103], Rabin [99], Okamoto
and Uchiyama [89], Pointcheval [96], and Paillier [92].

2.3.2 Discrete-Logarithm

Another widely-used computational problem, the Discrete-Logarithm problem,
which we will simply call the “DL problem”, can be informally defined as follows:

DL: Given a finite cyclic group G = {g0, g1, g2, . . . , gm−1} where m = |G| is
the order of G, and a random element r ∈ G, find the unique integer i ∈ ZZm

such that such that r = gi.

Motivated by the DL problem, Diffie and Hellman [45] designed the following
intriguing key exchange protocol: Alice and Bob share the common cyclic group
G, where |G| = m, and its generator g. Alice then chooses a uniformly at random
from ZZm, computes ga, and sends this to Bob. Similarly, Bob chooses b uniformly
at random from ZZm, computes gb, and sends this to Alice. Since Alice and Bob
have their private key a and b respectively, they can calculate the same (secret)
key gab.

Note, however, that the attacker for the above key exchange protocol possesses
two elements in the group G, that is, ga and gb. Since the attacker has the one
more additional information gb, the security of the Diffie-Hellman key exchange
protocol is not equivalent to the hardness of the DL problem. For this reason
similar to the case of the RSA problem, the computational problem used in the
Diffie-Hellman key exchange protocol is specifically called the “Computational
Diffie-Hellman (CDH) problem”, which can be described as follows:

CDH: Given a finite cyclic group G = {g0, g1, g2, . . . , gm−1} where m = |G|
is the order of G, and ga ∈ G and gb ∈ G for random a, b ∈ ZZm, computes
gab ∈ G.

After the emergence of the CDH problem, researchers realized that the CDH
problem by itself is not sufficient for many cryptographic schemes to be proven
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secure in that the attacker may have a chance to obtain some valuable information
about the key gab even though its entire part cannot be revealed. This is the
motivation for defining the following “Decisional Diffie-Hellman (DDH)” problem:

DDH: Given a finite cyclic group G = {g0, g1, g2, . . . , gm−1} where m = |G|
is the order of G, and ga ∈ G, gb ∈ G, and gc ∈ G for random a, b, c ∈ ZZm,
decide whether c = ab ∈ ZZm.

Note that if one can solve the DL problem easily, he can easily solve the CDH
problem too. Likewise, if one can solve the CDH problem easily, he can easily
solve the DDH problem. However, the reverse of this reasoning does not generally
hold. Readers are referred to [80] and [25] for more detailed discussions on this
issue.

Note also that in practice, the group G can be implemented using the subgroup of
ZZ∗p = {1, 2, . . . , p− 1} of order q such that p = aq + 1 for primes p and q > p1/10,
or the group of points on certain elliptic curves of order q [73, 82] for efficiency.

As attack algorithms for the DL problem in a general group G (e.g., regardless
of whether G is the subgroup of ZZ∗p or the group of points on elliptic curves),
Shank’s “baby-step, giant step” and Pollard’s “rho” methods are used. As a
subexponential algorithm for solving the DL problem in ZZ∗p, the “index calculus”
method is well known.

Finally, we remark that there have been a large number of cryptographic schemes
based on the above problems. Examples include the digital signature schemes
based on the DL problem such as ElGamal [49], Schnorr [104], and Digital Signa-
ture Standard (DSS) [86]; the public key encryption schemes based on the CDH
problem such as Pointcheval [95] and Baek-Lee-Kim [5]; the public key encryption
scheme based on the DDH problem such as ElGamal [49], Tsiounis-Yung [121],
and Cramer-Shoup [41].

2.4 Security Notions

2.4.1 Steps to Achieving Provable Security

As discussed in Chapter 1, provable security evaluates the security of a given
cryptographic scheme by presenting a reduction between the properly defined
security notion for the scheme and the underlying primitive which is known to
be secure. (In fact, the concept of a reduction is originally from the theory
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of computation. Informally speaking, it is a way of converting one problem to
another problem in such a way that a solution to the latter problem can be used
to solve the former one [114].) In [14], Bellare explains precisely how to achieve
provable security, which can be summarized as the following steps:

1. Set up a security goal, e.g. confidentiality via encryption or authenticity
via signature;

2. Construct a formal attack model and define what it means for a crypto-
graphic scheme to be secure;

3. Show by a reduction that the only way to break the security of crypto-
graphic schemes is to solve computationally hard problems or break other
primitives.

Actually, setting up security goals and constructing relevant attack models, in
other words, formulating right definitions for the security of cryptographic schemes
is important by itself. Over the last two decades, researchers have been proposing
various security notions (definitions of security) for cryptographic schemes either
in public key or symmetric key setting. In the next two subsections, we survey
some important confidentiality and unforgeability notions widely used in public
key cryptography.

2.4.2 Confidentiality Notion

To begin with, let us recall that the RSA encryption scheme described in Section
2.2.1 is secure in the “one-wayness” sense: Unless the attacker Marvin obtains
Bob’s private key, he cannot recover the whole part of plaintext.

However, we are not too sure whether the RSA encryption scheme will still be
secure in situations where something more than one-wayness is required. In fact,
the RSA encryption scheme is not secure in the following situation: Assume that
members of a committee use a confidential on-line poll to decide on some course of
action and the RSA encryption scheme is employed to encrypt the members’ votes.
But, there is an additional assumption that the committee members should use
one of the predetermined messages, “Yes” and “No”, to create their ciphertext.
After encrypting one of those messages, each of the members sends over the ci-
phertext to a chairperson, who is not supposed to know who votes for “Yes” or
“No”. However, the corrupted chairperson will know who has voted for which by
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re-encrypting the guessed plaintext (“Yes” or “No”) to see if the resulting cipher-
text matches the one in his hand since there are only two forms of ciphertexts
CYes and CNo which encrypt “Yes” and “No” respectively.

The above problem was actually the main motivation for Goldwasser and Micali’s
[62] notion of confidentiality for public key encryption called “semantic security
”, equivalently known as “(polynomial) indistinguishability of encryptions un-
der chosen-plaintext attack (IND-CPA) [16]”. The implication of this notion is
that a ciphertext should not reveal any partial information about the plaintext
apart from its length to any attacker whose computational power is polynomially
bounded.

Yet, one can imagine even a harsher situation where the attacker Marvin may be
provided with a decryption oracle (algorithm), from which he gets decryptions of
some ciphertexts of his choice even if he is not in possession of the decryption key.
This is so-called “chosen ciphertext attack”, appeared and evolved in the series
of papers by Naor and Yung [85], Rackhoff and Simon [100], and Dolev, Dwork,
and Naor [48]. When conducting chosen ciphertext attack, Marvin’s chance to
obtain useful information about a plaintext given its encryption which is called a
“target ciphertext” can be very high in some schemes. (Of course, it is assumed
that the attacker cannot get a decryption of a target ciphertext.)

In fact, the RSA encryption scheme described in Section 2.2.1 is very weak under
this attack as demonstrated in the following: Assume that Bob’s public and
private keys are (N, e) and (p, q, d) such that N = pq, where p and q are large
primes chosen at random, and ed = 1 mod φ(N) where φ(N) = (p − 1)(q − 1).
Suppose that Marvin has obtained a target ciphertext C = M e mod N which
encrypts M . Now, Marvin just chooses an arbitrary message R ∈ N , computes
C ′ = ReC, and queries it to the decryption oracle (algorithm) and gets M ′ = C ′d.
Marvin then computes M ′/R. Since

M ′ = C ′d = (ReC)d = RCd = RM,

M ′/R is the message M which is the plaintext of C!

As seen from the above two attacks, the RSA encryption scheme in Section 2.2.1
as it is cannot be used on its own. In practice, RSA-OAEP, a converted version
of the RSA encryption scheme using Bellare and Rogaway [18]’s “Optimal Asym-
metric Encryption Padding (OAEP)”, is widely used. Indeed, OAEP fixes the
above two security problems of the RSA encryption scheme. More precisely, it
makes the RSA encryption scheme provably secure in the “indistinguishability of
encryptions under chosen ciphertext attack (IND-CCA)” sense under the random
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oracle assumption which will be discussed in detail in Section 2.5. (We remark,
however, that the original proof given in [18] that OAEP applies to any one-way
trapdoor permutation was later found to be false by Shoup [110]. Shortly af-
ter Shoup’s work, Fujisaki, Okamoto, Pointcheval, and Stern [56] confirmed that
OAEP in fact applies to the sole RSA function.)

Now, we look into the IND-CCA notion in the context of modern cryptography.
In the current literature, the IND-CCA notion is usually described in terms of the
following game in which the attacker and the “Challenger” interact each other:

Phase 1: The Challenger generates a private/public key pair and all the
necessary common parameters of a given public key encryption scheme in
the prescribed manner. The Challenger then gives the public key and the
common parameters to the attacker while keeps the private key secret.

Phase 2: The attacker queries a number of ciphertexts to the Challenger
to obtain their decryptions. Upon receiving each of the ciphertexts, the
Challenger decrypts it using the private key he generated in Phase 1 and
returns the resulting decryption to the attacker.

Phase 3: The attacker chooses two equal-length plaintexts (M0,M1) and
gives them to the Challenger. Upon receiving M0 and M1, the Challenger
chooses one of them at random and computes its encryption. The Chal-
lenger returns the resulting ciphertext (called a “target ciphertext”) to the
attacker.

Phase 4: The attacker again queries a number of ciphertexts to the Chal-
lenger to obtain their decryptions, subject to the restriction that the at-
tacker cannot query the (target) ciphertext obtained in Phase 3. Upon
receiving each of the ciphertexts, the Challenger decrypts it using the pri-
vate key he generated in Phase 1 and returns the result (decryption) to the
attacker.

Phase 5: Finally, the attacker outputs his guess on which one of M0 and
M1 was chosen by the Challenger in Phase 3.

If no attacker can guess correctly with probability significantly greater than 1/2
in Phase 5, the given public key encryption scheme is said to be secure in the
IND-CCA sense.

We remark that it can be shown that the IND-CCA notion implies the IND-
CPA notion, that is, every public key encryption scheme meeting the IND-CCA
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notion also meets the IND-CPA notion. Hence, obtaining a public key encryption
scheme secure in the IND-CCA sense means that we have already obtained an
IND-CPA secure one. (Relationships among various notions of confidentiality of
public key encryption are formally discussed in [16].)

We also remark that the chosen ciphertext attack discussed in this section is
sometimes referred to in the literature as the “adaptive chosen ciphertext attack”
to emphasize that the attacker is allowed to query ciphertexts to decryption oracle
in an adaptive way before and after he obtains a target ciphertext. For this
reason, the IND-CCA notion described above is sometimes referred to as “IND-
CCA2” [16]. However, throughout this thesis, we simply use “chosen ciphertext
attack” and “IND-CCA” to refer to “adaptive chosen ciphertext attack” and
“IND-CCA2” respectively.

A final remark is that the above IND-CCA notion can be extended to the chosen
ciphertext security notion for identity-based encryption, called “IND-ID-CCA”
[27]. In this notion, the attacker is not only allowed to make decryption queries,
but also to make a number of private key extraction queries to the PKG to obtain
private keys corresponding to some identities of his choice. An encryption scheme
should remain secure under this attack to be IND-ID-CCA secure.

2.4.3 Unforgeability Notion

Care should be also taken to evaluate the security of a digital signature scheme
since the attacker can mount “chosen message attack”. In this attack, the forger
Marvin has access to Alice’s signature generation oracle (algorithm) from which
Marvin gets signatures of any messages of his choice. At the end of the attack,
he returns a new message-signature pair as a forgery. (That is, the message has
not been queried to the signature generation oracle before.) Note that this type
of forgery is called the “existential forgery”.

Indeed, the RSA signature scheme described in Section 2.2.2 is existentially forge-
able under chosen message attack: Assume that Alice’s public and private keys
are (N, e) and (p, q, d) such that N = pq, where p and q are large primes cho-
sen at random, ed = 1 mod φ(N) where φ(N) = (p − 1)(q − 1). Now, Mar-
vin queries chooses two messages M1 ∈ N and M2 ∈ N and gets signatures
σ1 = Md

1 and σ2 = Md
2 from the signature generation oracle. Marvin then com-

putes M ′ = M1M2 and σ′ = σ1σ2, and outputs (M ′, σ′) as a forgery. Since

σ′e = (σ1σ2)
e = (Md

1 Md
2 )e = M1M2,
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σ′ is a valid signature for the message M ′!

One may, however, claim that the existential forgery is a too strong security
requirement since the output message is likely to be meaningless. However, in the
current computing environment, not only meaningful messages but also arbitrary
bit streams such as keys, image files, program code [94] can be signed, so the
existential forgery can cause serious damage.

We remark that in order to prevent the above attack on the RSA signature scheme,
we need a hash function to digest the message before it is signed. In [19], it
was shown that if the hash function is assumed to be a random oracle, the RSA

signature scheme can be “existentially unforgeable under chosen message attack
(UF-CMA)”.

Now, we look into the UF-CMA notion in the context of modern cryptography
as we previously did for the IND-CCA notion. The UF-CMA notion was first
formalized by Goldwasser, Micali, and Rivest [63] and is usually described in
terms of the following attack game in which the attacker and the “Challenger”
interact each other:

Phase 1: The Challenger generates a private/public key pair and all the
necessary common parameters of a given digital signature scheme in the
prescribed manner. The Challenger then gives the public key and the com-
mon parameters to the attacker while keeps the private key secret.

Phase 2: The attacker queries a number of messages to the Challenger
to obtain signatures on them. Upon receiving each of the messages, the
Challenger generates a signature using the private key he generated in Phase
1 and returns the resulting signature to the attacker.

Phase 3: The attacker outputs a new message-signature pair. (Note that
the message has not been queried to the Challenge for signature generation
in Phase 2.)

The signature scheme is said to be secure in the UF-CMA sense if no attacker
can succeed in Phase 3 with great probability.

Similarly to the case of IND-CCA, the above UF-CMA can be extended to the
unforgeability notion for identity-based signature, which we call “UF-IDS-CMA”
[34, 66]. In this notion, the attacker is not only allowed to make signature gen-
eration queries, but also to make a number of private key extraction queries to
the PKG to obtain private keys corresponding to some identities of his choice. If
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a signature scheme remains secure under this attack, it is said to UF-IDS-CMA
secure. (Note that the UF-IDS-CMA will be discussed in detail in Chapter 6.)

The IND-CCA and UF-CMA notions rather informally introduced in the pre-
vious and this subsections serve as fundamental security notions in public key
cryptography. These notions will be used directly or further evolved to analyze
the various cryptographic schemes which will be presented in the rest of the chap-
ters. Before moving to the next chapter, we talk about the random oracle model,
which is a controversial but useful tool for designing efficient and provably secure
cryptographic schemes.

2.5 Random Oracle Model

After formulating security notions, the next step one should take in the provable
security approach is to show by a reduction that the only way to break the
security of a given cryptographic scheme is to solve a related computationally
hard problem. However, this is not always easy unless hash functions used in
the construction of cryptographic scheme are assumed to behave as completely
random functions.

The random oracle model, first appeared in [51] and popularized by Bellare and
Rogaway [20], gives a mathematical model of such ideal hash functions. In this
model, a hash function h : X → Y is chosen at random from SX ,Y which denotes
the set of all functions from X to Y , and evaluation of h on inputs in X can be
done only by querying the random oracle. According to Anderson [3], the random
oracle can be compared with a black box in which an elf is sitting with a source
of randomness and some means of storage, which are represented as a dice and a
scroll respectively. The elf accepts inputs of a certain type from the outside, then
looks up the scroll to see whether this query has been answered before. If so, the
elf returns the corresponding answer again; otherwise, he randomly generates an
answer by throwing the dice.

Hence, by the assumptions made in the random oracle model, we obtain the
following key property:

• Assume that h ∈ SX ,Y is chosen at random. Fix x ∈ X and y ∈ Y . Then
we have Pr[h(x) = y] = 1/|Y|.

However, a problem of the random oracle model is that the behavior of the
random oracles is so ideal that no realization is possible. What one can do is to
replace the random oracles by the conventional hash functions such as SHA-1 [87]
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or MD5 [102] when the cryptographic schemes that use them are implemented.
For this reason, the use of the random oracle model is somewhat controversial.
Canetti, Goldreich, and Halevi were even able to demonstrate that there exist
some special signature and encryption schemes which are secure in the random
oracle model but become insecure whenever the random oracles are specified [30].
However, there is also a strong trend that security proofs in the random oracle
at least give a certain level of security guarantees although not at the same level
as those of the standard provable security approach, and more importantly, the
schemes designed in the random oracle are usually very efficient [14]. Actually, it
is becoming a consensus that today’s standards should include the schemes with
proof in the random oracle model rather than those without.

In this thesis, we take this latter view on the random oracle model. So the
schemes presented in the rest of chapters are supported by proofs in the random
oracle model. However, we do support the criticism on the random oracle model
and agree with the opinion that more research should be done on the realization
of the random oracles or moving towards a more realistic model.
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Chapter 3

Security Analysis of Zheng and
Seberry’s Public Key Encryption
Scheme

3.1 Introduction

3.1.1 Motivation

Since Diffie and Hellman [45] proposed the concept of public key encryption,
design of secure yet efficient public key encryption schemes has been a challenging
task for many cryptographers. In addition to security and efficiency, simplicity
of public key encryption schemes has been regarded as of particular importance
due to the fact that a number of cryptographic software packages are actually
implemented by application programmers who are not experts in cryptography.

For these reasons, the three earliest, surprisingly simple and efficient schemes
proposed by Zheng and Seberry at Crypto ’92 [130] are still worth focusing, al-
though more than 10 years have passed since they were proposed. It is interesting
to notice that a number of recently proposed efficient and provably secure pub-
lic key encryption schemes, including DHIES [1] and REACT [91] bear a close
resemblance to one of the schemes proposed by Zheng and Seberry, which we
call a “Zheng-Seberry scheme”. This particular scheme is the focus of this chap-
ter. In spite of its design simplicity and efficiency, a problem remaining with
the Zheng-Seberry scheme is that it could not be analyzed using the provable
security approach discussed in the previous chapters: As shown by Lim and Lee
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[77], known plaintext attack is applicable to the Zheng-Seberry scheme, which in
effect makes it impossible to prove that the scheme is secure under the IND-CPA
or IND-CCA notion, where two challenge plaintexts are assumed to be known to
the attacker. In the same paper, however, Lim and Lee proposed a countermea-
sure for the attack and this was reflected in the new descriptions of the scheme
by Zheng [128]. But, no formal security analysis for this was presented in neither
[77] nor [128].

3.1.2 Contributions of This Chapter

The contributions of this chapter are twofold. First, we show that Lim and
Lee’s modified version of the Zheng-Seberry scheme is indeed provably secure
against chosen ciphertext attack in the random oracle model, relative to the Gap
Diffie-Hellman problem [90]. Second, we show, through a careful analysis, that
the security proof for the Zheng-Seberry scheme recently claimed by Soldera,
Seberry and Qu [115] is in fact false.

3.2 Preliminaries

In this section, we review chosen ciphertext security for public key encryption.
Compared with Chapter 2, the definitions given in this section are more formal.

3.2.1 Chosen Ciphertext Security Notion for Public Key
Encryption

We first review the definition of a public key encryption scheme, which we denote
by “PKE”.

Definition 1 (Public Key Encryption) A public key encryption scheme PKE
consists of the following algorithms:

• A randomized common parameter generation algorithm GK(k): Given a
security parameter k ∈ N, this algorithm generates a set of public common
parameters, e.g., descriptions of hash functions and a mathematical group.
The output of this algorithm denoted by cp includes such parameters as
well as the security parameter k.
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• A randomized key generation algorithm GK(cp): Given a security parameter
cp, this algorithm generates a key pair (sk, pk) where sk and pk denote the
private key and public key respectively.

• A randomized encryption algorithm E(cp, pk,m): Given a public key pk
and a plaintext m, this algorithm generates a ciphertext denoted by c.

• A deterministic decryption algorithm D(sk, c): Given a private key sk and
a ciphertext c, this algorithm outputs a plaintext m or a special symbol
“Reject”.

We now review the IND-CCA (indistinguishability of encryptions under chosen
ciphertext attack) notion for public key encryption. (Note that this notion is
sometimes referred to as “IND-CCA2” [16].)

Definition 2 (IND-CCA) Let PKE = (GC, GK, E, D) be a public key encryp-
tion scheme. Let ACCA be an attacker modelled as a probabilistic Turing machine.
Consider the following game in which the attacker ACCA interacts with the “Chal-
lenger”.

Phase 1: Given a security parameter k, the Challenger runs the common
parameter generation algorithm GC(k) and obtains a common parameter cp.
The Challenger then runs the key generation algorithm GK(cp) to generate
the receiver’s private/public key pair (sk, pk). The Challenger gives cp and
pk to ACCA.

Phase 2: ACCA submits a number of queries, each of which consists of a
ciphertext c, to the decryption oracle. On receiving c, the Challenger runs
D(cp, sk, c) and gives the resulting output to ACCA.

Phase 3: ACCA chooses two equal-length plaintexts (m0,m1). On receiving
these, the Challenger chooses β ∈ {0, 1} at random, computes a target
ciphertext c∗ = E(cp, pk,mβ), and gives it to ACCA.

Phase 4: ACCA continues to submit a number of queries to the decryp-
tion oracle. As in Phase 2, each of the queries consists of a ciphertext c.
However, a restriction in this phase is that c 6= c∗. On receiving c, the
Challenger runs D(cp, sk, c) and gives the resulting output to ACCA.

Phase 5: ACCA outputs a guess β̃ ∈ {0, 1}.
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We define ACCA’s success by the probability

SuccIND−CCA
ACCA,PKE (k)

def
= 2Pr[β̃ = β]− 1.

We denote by SuccIND−CCA
PKE (tCCA, qD) the maximum of the attacker ACCA’s suc-

cess over all attackers ACCA having running time tCCA and making at most qD

queries to the decryption oracle. Note that the running time and the number of
queries are all polynomial in the security parameter k.

The PKE scheme is said to be secure in the IND-CCA sense if SuccIND−CCA
PKE

(tCCA, qD) is negligible in k. (Throughput this thesis, a probability function
f : N → R[0,1] is said to be negligible in k if, for all c > 0, there exists k0 ∈ N
such that f(k) ≤ 1

kc whenever k ≥ k0, where R[0,1] = {x ∈ R|0 ≤ x ≤ 1}.)

3.2.2 Diffie-Hellman Primitives

In this section, we review the definitions of the Decisional Diffie-Hellman (DDH)
and Gap Diffie-Hellman (GDH) problems, which we will use later in this chapter.

As mentioned in Section 2.3.2, the DDH problem emerged from the difficulty
of proving the security of many Diffie-Hellman-based cryptographic schemes. In
what follows, we review the formal definition of the DDH problem.

Definition 3 (DDH) Let G be a cyclic group of order q ≥ 2k generated by
g ∈ G, where q is a prime and k is a security parameter. Let ADDH denote
an attacker assumed to be a probabilistic Turing machine taking the security
parameter k as input. Suppose that a and b are uniformly chosen at random
from ZZ∗q and ga and gb are computed.

ADDH is to solve the following problem:

• Given (G, q, g, ga, gb, gc), outputs 1 if c = ab and 0 otherwise.

We define the attacker ADDH’s success probability by

SuccDDH
G,ADDH(k)

def
=

∣∣∣ Pr[ADDH(G, q, g, ga, gb, gab) = 1]

− Pr[ADDH(G, q, g, ga, gb, gr) = 1]
∣∣∣

for random r 6= ab ∈ ZZq.
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We denote by SuccDDH
G (tDDH) the maximal success probability SuccDDH

G,ADDH(k)

over all attackers ADDH having running time tDDH which is polynomial in the
security parameter k.

The DDH problem is said to be computationally intractable in the group G if
SuccDDH

G (tDDH) is negligible in k.

In 2001, Okamoto and Pointcheval proposed another variant of the Diffie-Hellman
problem, called “Gap Diffie-Hellman (GDH)”. In this problem, the attacker is to
solve the Computational Diffie-Hellman (CDH) problem with the help of the DDH
oracle which tells whether a given tuple is Diffie-Hellman tuple or not. Note that
if the DDH oracle helped so much that the attacker can solve the CDH problem,
the GDH problem would not be meaningful. However, it has not been proven so
far that the DDH problem can be used to solve the CDH problem and hence the
GDH problem is a reasonable computational problem.

In fact, the GDH problem has been able to prove various cryptographic schemes
which had not been proven before. Examples include the undeniable signature
[36], designated confirmer signature [35], and DHIES [1] schemes. Also, the new
public key encryption schemes based on this problem have emerged, e.g., REACT
[91] and GEM [40]. Below, we review the formal definition of the GDH problem.

Definition 4 (GDH) Let G be a cyclic group of order q ≥ 2k generated by
g ∈ G, where q is a prime and k is a security parameter. Let AGDH denote
an attacker assumed to be a probabilistic Turing machine taking the security
parameter k as input. Suppose that a and b are uniformly chosen at random
from ZZ∗q and ga and gb are computed.

AGDH is to solve the following problem:

• Given (G, q, g, ga, gb), compute the Diffie-Hellman key gab of ga and gb with
the help of the Decisional Diffie-Hellman oracle ODDH

g (·, ·, ·), which, given
(gu, gv, gw) where g is the (fixed) generator of G, outputs 1 if w = uv and 0
otherwise.

We define AGDH’s success probability by

SuccGDH
G,AGDH(k)

def
= Pr[AGDH(G, q, g, ga, gb) = gab].

We denote by SuccGDH
G (tGDH , qDDH) the maximal success probability SuccGDH

G,AGDH(k)

over all attackers AGDH having running time tGDH and the number of queries to
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the DDH oracle is bounded by qDDH . The running time tDDH and the number
of DDH oracle queries qDDH are polynomial in the security parameter k.

The GDH problem is said to be computationally intractable if SuccGDH
G (tGDH ,

qDDH) is negligible in k.

3.3 The Modified Zheng-Seberry Scheme

Recall that in the Zheng-Seberry scheme [130], a plaintext message m is encrypted
by creating a ciphertext

c = (gr, G(yr)⊕ (m||H(m)),

where G, H are hash functions and y is a public key such that y = gx for a private
key x ∈ ZZ∗q. Throughout this paper, “||” denotes a concatenation.

The structure of the modified Zheng-Seberry scheme described in [77] is basically
the same as the original one described above. The only difference is that in the
modified scheme, the Diffie-Hellman key yr as well as the message m is provided
as input to the hash function H. Intuitively, this seems to prevent the known
plaintext attack presented by Lim and Lee. Indeed, we show in a later section
that this intuition is correct.

3.3.1 Description of the the Modified Zheng-Seberry Scheme

Now, we describe the modified Zheng-Seberry scheme, which we denote by “MZS”.
Note that in the description below, the plaintext message m is assumed to be
drawn from the space {0, 1}k0 for k0 ∈ IN.

• A randomized common parameter generation GC(k)

– Choose a group G of prime order q ≥ 2k.

– Choose a generator g of G.

– Find a real constant λ ≥ 1 such that λk is an element of IN.

∗ Let k1 = λk.

– Pick a hash function H : {0, 1}k0×G → {0, 1}k1 modelled as a random
oracle.

– Pick a hash function G : G → {0, 1}k0+k1 modelled as a random oracle.
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Figure 3.1: Padding Method of the Modified Zheng-Seberry Scheme

– Output a common parameter cp = (G, g, q, G, H, k, k0, k1).

• A randomized key generation algorithm GK(cp)

– Pick x uniformly at random from ZZ∗q.

– Compute y = gx.

– Output a public key pk = (cp, y) and a private key sk = (cp, x).

• A randomized encryption algorithm E(pk, m)

– Pick r uniformly at random from ZZ∗q.

– Compute c1 = gr and κ = yr.

– Compute µ = G(κ) and σ = H(m||κ).

– Compute c2 = µ⊕ (m||σ).

– Output a ciphertext c = (c1, c2).

• A deterministic decryption algorithm D(sk, c)
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– Parse c as (c1, c2).

– Compute κ = cx
1 and µ = G(κ).

– Compute t = c2 ⊕ µ.

∗ Let [t]k0 be the first k0-bits of t, starting with the first bit.

∗ Let [t]k1 be the remaining k1-bits of t, starting with the (k0 +1)-th
bit.

– Compute σ = H([t]k0||κ).

– If [t]k1 = σ, do the following:

∗ Define m as [t]k0 and output m.

– Else output “Reject”.

We refer readers to Figure 3.1 which illustrates the padding method of the MZS

scheme.

3.4 Security Analysis of the Modified Zheng-

Seberry

Scheme

In this section, we analyze the security of the MZS scheme. For careful analysis,
we use the proof methodology introduced by Shoup [110]: We start with the
real attack game where the attacker ACCA is to defeat the security of the Zheng-
Seberry scheme in the IND-CCA sense (Definition 2). We then modify this
game by changing its rules which describe how variables in the view of ACCA

are computed, and obtain a new game. We repeat the modification until we
simulate the view of ACCA completely and obtain a game related to the ability of
the attacker AGDH to solve the GDH problem (Definition 4). When a new game
is derived from a previous one, a difference of the views of the attacker in each
game might occur. This difference is measured by the technique presented in the
following lemma.

Lemma 1 Let A1, A2, B1 and B2 be events defined over some probability space.

If Pr[A1 ∧ ¬B1] = Pr[A2 ∧ ¬B2] and Pr[B1] = Pr[B2] = ε then we have |Pr[A1]−
Pr[A2]| ≤ ε.
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The proof is a straightforward calculation and can be found in [110]. Now, we
state and prove the following theorem.

Theorem 1 The modified Zheng-Seberry scheme MZS is IND-CCA secure in the
random oracle model, assuming the GDH problem in group G is computationally
intractable. More precisely, we obtain the following bound:

1

2
SuccIND−CCA

MZS (tCCA, qG, qH , qD) ≤ SuccGDH
G (tGDH , qDDH) +

qD

2k1−1
,

where tGDH = tCCA + qG + qH + qD(qG + qH)(TDDH + O(1)) and qDDH ≤ qG +
qH + qD(qG + qH).

Note that qG, qH and qD denote the number of queries made by the IND-CCA
attacker having running time tCCA to the random oracles G and H, and the
decryption oracle respectively. Note also that qDDH denotes the number of queries
made by the GDH attacker having running time tGDH to the DDH oracle ODDH

g

whose running time is bounded by TDDH .

Proof. Let ACCA be an IND-CCA attacker whose running time is polynomial in
a security parameter k. Also, let AGDH be an attacker trying to solve the GDH
problem, given (G, q, g, ga, gb).

As mentioned earlier, we start with the following game which is equivalent to the
real attack game.

• Game G0: This game is actually the same as the real attack game described
in Definition 2.

First, we run the common parameter generation algorithm of the MZS scheme
taking the security parameter k as input and obtain a common parameter
cp. Then, we run the key generation algorithm on input cp and obtain
a private key (cp, x) and a public key (cp, y), where y = gx. The public

key pk
def
= (cp, y) is given to ACCA. After ACCA submits a pair of plaintexts

(m0,m1), we create a target ciphertext c∗ = (c∗1, c
∗
2) as follows.

c∗1 = gr∗ ; c∗2 = G(κ∗)⊕ (mβ||σ∗),

where

κ∗ = yr∗ ; σ∗ = H(mβ||κ∗)
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for r∗ and β picked uniformly at random from ZZ∗q and {0, 1} respectively.
On input c∗, ACCA outputs β′ ∈ {0, 1}. We denote by S0 the event β′ = β
and use a similar notation Si for all Gi.

Since this game is the same as the real attack game, we have

Pr[S0] =
1

2
+

1

2
SuccIND−CCA

MZS,ACCA (k).

• Game G1: In this game, we modify the encryption oracle (creation of a
target ciphertext) presented in the previous game. Our modification obeys
the following rules.

R1-1 First, we choose κ+ ∈ G, c+
1 ∈ G, µ+ ∈ {0, 1}k0+k1 and σ+ ∈

{0, 1}k1 uniformly at random. Then, we replace c∗1, κ∗, G(κ∗) and
H(mβ||κ∗) in the target ciphertext c∗ by c+

1 , κ+, µ+ and σ+ respec-
tively. Accordingly, we replace c∗2 in c∗ by c+

2 = µ+⊕ (mβ||σ+). A new
target ciphertext is (c+

1 , c+
2 ) and is denoted by c∗+.

R1-2 Whenever the random oracle G is queried at κ+, we respond to
it with µ+.

R1-3 Whenever the random oracle H is queried at (m||κ+) for some
m ∈ {0, 1}k0 , we respond to it with σ+.

The attacker ACCA’s view has the same distribution in both Game G0 and
Game G1 since we have replaced one set of random variables by another
set of random variables which is different, yet has the same distribution.

In this game, we assume that the decryption oracle is perfect. That is,
receiving ACCA’s decryption query, c = (c1, c2) which is different from the
target ciphertext, we decrypt it in the same way as we do in the real attack
game. We refer to this rule as “R1-4”.

Accordingly, we have

Pr[S1] = Pr[S0].

• Game G2: In this game, we retain the rules R1-1 and R1-4, renaming
them as “R2-1” and “R2-4” respectively. However, we drop the rules R1-
2 and R1-3. That is, µ+ and σ+ are used only in the encryption oracle for
producing the target ciphertext c∗+ while in other cases when the decryption
oracle queries to the random oracles G and H, or ACCA directly queries to
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them, answers from G or H are taken. We refer to these rules regarding
the random oracles G and H as “R2-2” and “R2-3” respectively.

Since we have dropped the rule R1-2, the input to ACCA follows a distribu-
tion that does not depend on β. Hence, we get Pr[S2] = 1/2.

Also, note that Game G1 and Game G2 may differ if G is queried at κ+ or
H is queried at (m||κ+) for some m ∈ {0, 1}k0 . Let AskG2 ∨ AskH2 denote
an event that, in Game G2, G is queried at κ+ or H is queried at (m||κ+).
For notational convenience, let AskKey2 = AskG2 ∨ AskH2. We will use an
identical notation AskKeyi for all the remaining games.

Now, we have

|Pr[S2]− Pr[S1]| ≤ Pr[AskKey2].

• Game G3: In this game, we again modify the target ciphertext c∗+ =
(c+

1 , c+
2 ), where c+

2 = µ+ ⊕ (mβ||σ+) and µ+ = G(κ+), produced by the
rule R2-1 in Game G2. We replace this rule by the following new rule
R3-1.

R3-1 First, we replace y the public key element given to ACCA by gb,
and c+

1 by ga, where (ga, gb) are the parameters given to the attacker
AGDH. Now, we define κ+ as ya, µ+ as G(ya) and σ+ as H(mβ||ya).
That is, we use the same c+

2 in c∗+ for the second element of a new
target ciphertext c∗DH but we rename the values in it. Therefore, the

resulting target ciphertext denoted by c∗DH is (ga, c+
2 ), where c+

2
def
=

G(ya)⊕ (mβ||H(mβ||ya)).

However, we retain the rules R2-2, R2-3 and R2-4 in Game G2, renaming
them as “R3-2”, “R3-3” and “R3-4” respectively.

Thanks to the randomness of the oracle G and the uniformity of ga in the
group G, ACCA’s view has the same distribution in both Game G2 and Game
G3. Hence, we have

Pr[AskKey3] = Pr[AskKey2].

From now on, we deal with the decryption oracle which has been regarded
as perfect up to this game.

• Game G4: We retain all the rules R3-1, R3-2 and R3-3, renaming them as
“R4-1”, “R4-2” and “R4-3”, respectively. But we modify the rule R3-4
and obtain a new rule “R4-4” described in the following.
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We make the decryption oracle reject all ciphertexts c = (c1, c2) such that
the corresponding value (m||κ) has not been queried to the random oracle
H by ACCA. If c is a valid ciphertext and G(κ) has been queried then the
rule of this game causes a difference: If c is valid then we have [t]k1 =
[c2 ⊕ G(κ)]k1 = H(m||κ). But we have assumed that H(m||κ) had not
been queried and hence the event [c2 ⊕ G(κ)]k1 = H(m||κ) happens with
probability 1/2k1 since the output of the random oracle H is uniformly
distributed in {0, 1}k1 .

Summing up all the decryption queries, we have

|Pr[AskKey4]− Pr[AskKey3]| ≤ qD

2k1
.

• Game G5: We retain all the rules R4-1, R4-2 and R4-3, renaming them
as “R5-1”, “R5-2” and “R5-3”, respectively. But we put the following
additional rule to R4-4 and obtain a new rule “R5-4”.

We make the decryption oracle reject all ciphertexts c = (c1, c2) such that
the corresponding value κ has not been queried to the random oracle G by
ACCA. If c is a valid ciphertext and H(m||κ) has been queried then the rule
of this game causes a difference: If c is valid, we have [t]k1 = [c2⊕G(κ)]k1 =
H(m||κ). But we have assumed that G(κ) had not been queried and hence
the event [c2⊕G(κ)]k1 = H(m||κ) happens with probability 1/2k1 assuming
that ACCA correctly guesses the last k1-bits of the output of the random
oracle G.

Summing up all decryption queries, we have

|Pr[AskKey5]− Pr[AskKey4]| ≤ qD

2k1
.

• Game G6: Note that the cases when H(m||κ) or G(κ) has not been queried
are excluded in this game since these cases were already dealt with in the
previous game. That is, we assume that H(m||κ) and G(κ) have been
queried at some point.

We retain all the rules R5-1, R5-2 and R5-3, renaming them as “R6-1”,
“R6-2” and “R6-3”, respectively. But we add the following rule to R5-4
and obtain a new rule “R6-4”.

We replace the decryption oracle by a decryption oracle simulator which
can decrypt a submitted decryption query c = (c1, c2) without knowing the
private key.
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Before presenting the simulator, we define some conventions. We denote by
GList1 a list which consists of simple “query-answer” entries for the random
oracle G of the form 〈κ, µ〉 where µ = G(κ). We also denote by GList2 a list
which consists of the special “query-answer” entries for the random oracle
G which are of the form c||(?, µ). The symbol µ implicitly represents the
query-answer relation µ = G(κ), although the input κ is not explicitly stored
and hence is denoted by “?”. Note that new entries in the list GList2 are
added by the decryption oracle simulator. Similarly, we denote a list of all
“query-answer” pairs for the random oracle H by HList. More specifically,
HList consists of the pairs 〈(m||κ), σ)〉, where σ = H(m||κ). Notice that all
these lists are growing as ACCA’s attack proceeds.

Now, we describe a complete specification of the decryption oracle simula-
tor. Note in the following that the decryption oracle simulator can be con-
structed using AGDH’s DDH oracle ODDH

g (·, ·, ·) to check whether (c1, y, κ)
is Diffie-Hellman tuple, where g is a generator of group G, u is from the
submitted ciphertext c = (c1, c2) and y is the public key element replaced
by gb in Game G3.

– If there exists 〈κ, µ〉 ∈ GList1 such that
ODDH

g (c1, y, κ) = 1

∗ Compute t = v ⊕ µ.

∗ If there exists 〈(m||κ), σ〉 ∈ HList such that m = [t]k0 and σ = [t]k1

then output m, otherwise, reject c.

– Else if there exists c||(?, µ) ∈ GList2

∗ Compute t = c2 ⊕ µ.

∗ If there exists 〈(m||κ), σ〉 ∈ HList such that m = [t]k0 and σ = [t]k1

then output m, and reject c otherwise.

– Else generate µ uniformly at random from {0, 1}k0+k1

∗ Compute t = c2 ⊕ µ.

∗ Put c||(?, µ) into GList2.

∗ If there exists 〈(m||κ), σ〉 ∈ HList such that ODDH
g (c1, y, κ) = 1

and m = [t]k0 and σ = [t]k1 then output m, and reject c otherwise.

Note that the above decryption oracle simulator perfectly simulates the real
decryption oracle since H(m||κ) and G(κ) have been previously queried
before the current game starts. Thus, we get

Pr[AskKey6] = Pr[AskKey5].
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As defined in Game G3, AskKey6 denotes the event that the Diffie-Hellman key
ya(= gab) has been queried to the random oracle G or H. At this stage, we can
check which one of the queries to the random oracles G and H is a Diffie-Hellman
key of gab using AGDH’s DDH oracle ODDH

g . Also, note that we have used the
DDH oracle to simulate the decryption oracle. That is, we can solve the GDH
problem and hence we have

Pr[AskKey6] ≤ SuccGDH
G,AGDH(k).

Now, putting all the bounds we have obtained in each game together, we have

1

2
SuccIND−CCA

MZS (ACCA) = |Pr[S0]− Pr[S2]| ≤ qD

2k1
+

qD

2k1
+ Pr[AskKey6]

≤ qD

2k1−1
+ SuccGDH

G (AGDH).

Note that since k1 = λk ∈ IN for some real constant λ ≥ 1 as defined in the
description of MSZ, the term qD

2k1−1 is negligible in k.

Finally, we work out the number of the calls to the DDH oracle ODDH
g and ACCA’s

running time. In worst case, all of the queries to the random oracles G and H
should be checked using the oracle ODDH

g to find the correct Diffie-Hellman key
of ga and gb. The number of these queries are bounded by qG + qH . Also, up
to qG + qH queries are made to the oracle ODDH

g per each decryption query in
the decryption oracle simulator. Therefore, the total number of calls to the DDH
oracle ODDH

g is bounded by

qDDH ≤ qG + qH + qD(qG + qH).

The total running time of AGDH is bounded by

t′ = t + qG + qH + qD(qG + qH)(TDDH + O(1)),

where t and TDDH denote the running time of ACCA and the DDH oracle respec-
tively. ut
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3.5 Implementation Issues

One important aspect of implementing the MZS scheme is how to choose a suitable
group G. The choice is quite flexible. A prime-order subgroup of the multiplica-
tive group ZZ∗p where p is prime would be a possible one. Also, one can choose a
group of points on suitable elliptic curves instead. As is widely known, properly
chosen elliptic curves can provide a highly secure public key cryptosystem with
relatively small block size.

The other important issue is the implementation of the hash functions G and H,
which are assumed to be random oracles [20]. Recall that the inputs of the hash
function H are of the form (m||κ), where m is a bit string of length k0 and κ is
an element of the group G, represented as an integer. Since applications usually
work with data represented as octet (byte) strings rather than bit strings, we need
to convert any bit strings or integers used as variables in the scheme into octet
strings. According to the IEEE P1363 standard [67], we can use the BS2OSP
function to convert a bit string to an octet string. Also, using the I2OSP function,
we can convert an integer to an octet string. Therefore, (m||κ) in the scheme is
actually implemented as (BS2OSP (m)||I2OSP (κ)).

Construction of the hash function H as a random oracle can be quite flexible
but we recommend the Key Derivation Function 1 (KDF1) defined in the IEEE
P1363 standard.

Using the KDF1, H can be implemented as follows.

H(M) = hash(M ||I2OSP (0))|| · · · ||hash(M ||I2OSP (l − 1)),

where hash is a conventional hash function such as SHA-1 [87] with output length

hLen, M
def
= (BS2OSP (m)|| I2OSP (κ)) and l = dk1/hLene.

The hash function G can be implemented in a similar manner except for using a
different conventional hash algorithm for hash, such as MD5 [102].

3.6 Discussions on SQS’s Security Analysis

At ACISP 2002, Soldera, Qu, and Seberry (SQS) [115] proposed a slightly differ-
ent modification of the Zheng-Seberry scheme called “Secure ElGamal (SEG)”,
which can be described as follows.
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Let pk = (G, g, q, y), where y = gx, and sk = (G, g, q, x). Now, a plaintext
message m is encrypted by creating a ciphertext

c = (u, v) = (gr, yr · (m||H(m||yr))2),

where r is randomly chosen from ZZ∗q and H is a hash function modelled as a
random oracle. Decryption of c is similar to the MZS scheme, so we omit it here.

We now look into the proof of the SEG scheme. According to [115], the SEG
scheme described above is provably secure in the sense of IND-CCA in the random
oracle model assuming the DDH problem is intractable. However, we show that
the proof is incorrect.

Recall that in the DDH problem, given a tuple (ga, gb, gc) and a generator g, the
attacker is to decide whether c = ab. In the security proof of the SEG scheme, a
variant of the DDH is used. In this variation, the attacker is to distinguish the
distribution of random quadruples D = (g1, g2, u1, u2) ∈ G × G × G × G from the
distribution of quadruples R = (g1, g2, u1, u2) ∈ G × G × G × G, where g1 and
g2 are random, and u1 = gr

1 and u2 = gr
2 for random r ∈ ZZ∗q. If we let g1 = g

and g2 = gs then the distribution D becomes (g, gs, gr, gsr) and hence the above
“distinguishing D from R” problem becomes the standard DDH problem.

To show that the SEG scheme is secure in the sense of IND-CCA assuming that
the DDH problem is hard, we should simulate the view of the IND-CCA attacker
up to the point where we get the ability of the attacker solving the DDH problem
to achieve its goal.

In [115], the encryption oracle of the SEG scheme is simulated as follows: We
choose a private key xR randomly from ZZ∗q and compute ysim = gxR . Then,
we give (G, g, q, ysim) as a public key to the IND-CCA attacker. On receiving
a plaintext pair (m0, m1) from the IND-CCA attacker, we select β ∈ {0, 1} at
random and output a target ciphertext (c1, c2, c3), where c1 = u1, c2 = u2 and
c3 = cxR

1 · c2 · (mβ||H(mβ||cxR
1 ))2. Notice that u1 and u2 are from the distribution

D or R.

Obviously, there is a serious problem in the above simulation of the encryption
oracle. Note in the above simulation that the simulated target ciphertext has
an extra component c2. Since c2 is an element of the group G, the length of the
simulated target ciphertext (c1, c2, c3) is always 1.5 times longer than that of the
target ciphertext in the real attack. Hence, with non-negligible probability, the
IND-CCA attacker can distinguish the target ciphertext in the simulation from
that in the real attack by telling which one is longer.
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To make the above simulation correct, we should convert (c1, c2, c3) to one that
has the same length of the target ciphertext in the real attack. But, how to
do this is not precisely mentioned anywhere in the proof except the very vague
statement that “the transformation back is obvious”: Actually, throughout the
entire proof, they use the lengthened target ciphertext (c1, c2, c3) as if it were a
correctly simulated one.

There is another problem. It is claimed in the proof that “cxR
1 c2 is equivalent to

the output of the actual encryption oracle”. However, we show in the following
that this is not the case.

In the real attack, the target ciphertext is of the form

(u, v) = (gr, yr · (m||H(m||yr))2),

where y = gx, hence, the component yr yields a correct Diffie-Hellman key of
u = gr and y = gx since yr = gxr. On the other hand, in the simulation, even
if u1 and u2 are from the distribution D, cxR

1 c2 does not yield a Diffie-Hellman
key of any combination of ysim, c1 and c2: Suppose that g1 = g and g2 = gs for
random s ∈ ZZ∗q. Since u1 = gr

1 and u2 = gr
2, we have u1 = gr and u2 = gsr. Now,

we obtain

cxR
1 c2 = uxR

1 u2 = grxRgsr = grxR+sr.

Thus, the distribution (ysim, c1, c2, c
xR
1 c2) is equivalent to (gxR , gr, gsr, grxR+sr).

However, any three components of this distribution do not yield a Diffie-Hellman
tuple.

The implication of the above problem is even more serious: Since the combina-
tion (gr, gsr, grxR+sr) is not a Diffie-Hellman tuple, we cannot hope to solve the
problem of distinguishing D from R, that is, the DDH problem, using the ability
of the IND-CCA attacker.

So far, we have discussed the problem of SQS’s security analysis of the SEG given
in [115] rather informally. However, motivated by the work of Steinfeld, Baek,
and Zheng [117], it can be formally shown that the intractability of the “Strong
Diffie-Hellman (SDH)” problem, which is a variant of the GDH problem, is a
necessary condition for the scheme SEG to be IND-CCA secure in the random
oracle model, which in effect supports our claim given in the previous section:
If the proof in [115] were true (that is, the SEG scheme were IND-CCA secure
assuming that the DDH problem is computationally hard), it would be the case
that there exists a reduction from the DDH problem to the SDH problem. But
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this is impossible in that we are unable to simulate the DDH oracle that the
attacker for the SDH problem has access to [117].

As mentioned above, the SDH problem is a variant of the GDH problem defined
in Section 3.2.2. In the SDH problem, the attacker has access to the special DDH
oracle which on receiving (gu, gw), tells whether w = ub for a fixed group element
gb. Given (g, ga, gb), the attacker’s goal is, of course, to compute gab. Below, we
define the SDH problem more formally.

Definition 5 (SDH) Let G be a cyclic group of order q ≥ 2k generated by g ∈ G,
where q is a prime and k is a security parameter. Let ASDH denote an attacker
assumed to be a probabilistic Turing machine taking the security parameter k as
input. Suppose that a and b are uniformly chosen at random from ZZ∗q and ga and
gb are computed.

ASDH is to solve the following problem:

• Given (G, q, g, ga, gb), compute the Diffie-Hellman key gab of ga and gb with
the help of the fixed Decisional Diffie-Hellman (fDDH) oracle OfDDH

g,gb (·, ·),
which, given (gu, gw) where g is the (fixed) generator of G, outputs 1 if
w = ub and 0 otherwise.

We define ASDH’s success probability by

SuccSDH
G,ASDH(k)

def
= Pr[ASDH(G, q, g, ga, gb) = gab].

We denote by SuccSDH
G (tSDH , qfDDH) the maximal success probability SuccSDH

G,ASDH(k)

over all attackers ASDH having running time tSDH and the number of queries to
the fDDH oracle is bounded by qfDDH . The running time tfDDH and the number
of fDDH oracle queries qfDDH are polynomial in the security parameter k.

The SDH problem is said to be intractable in the group G if SuccSDH
G (tSDH , qfDDH)

is negligible in k.

We now state and prove the following theorem.

Theorem 2 The intractability of the SDH problem is a necessary condition for
the scheme SEG to be IND-CCA secure in the random oracle model. More pre-
cisely, we obtain the following bound:

SuccSDH
G (tSDH , qfDDH) ≤ SuccIND−CCA

SEG (tCCA, qH , qD) +
qfDDH + 1

2k1
,
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where tCCA = tSDH + qfDDHO(1) + O(k3), qH = qfDDH + 1, and qD = qfDDH for
the security parameter k ∈ IN.

Note that qfDDH denotes the number of queries made by the SDH attacker having

running time tSDH to the fDDH oracle OfDDH
g,gb . Note also that qH and qD denote

the number of queries made by the IND-CCA attacker having running time tCCA

to the random oracle H and the decryption oracle respectively.

Proof. Let ASDH denote an attacker for solving the Strong Diffie-Hellman prob-
lem (Definition 5). Let ACCA denote an attacker that defeats the IND-CCA
security of the SEG scheme. Assume that ASDH is given (G, q, g, ga, gb).

We now define a game G0 which is exactly the same as the game for SDH problem
described in Definition 5.

• Game G0: We denote by S0 the event that ASDH outputs the Diffie-Hellman
key gab of ga and gb. Denote the same event in Game Gi by Si.

Sine this game is the same as the real attack game of the SDH problem, we
obtain

Pr[S0] = SuccSDH
G,ASDH(k).

• Game G1: In this game, we first replace gb by ACCA’s public key y = gx

of the SEG scheme. We then get ACCA’s target ciphertext c∗ = (c∗1, c
∗
2) =

(gr∗ , yr∗ · (mβ||H(mβ||yr∗))2), where β is a random bit and replace ga by c∗1.
Since we have just replaced the set of random variables by another set of
random variables which is identically distributed, we obtain

Pr[S1] = Pr[S0].

• Game G2: In this game, we replace ASDH’s fDDH oracle OfDDH
g,gb by the

following simulator which uses the decryption oracle of the SEG scheme
that ACCA has access to.

– For each of new query (gu, gw) where

∗ Set c1 = gu.

∗ Choose m 6= mβ arbitrarily from {0, 1}k0 .

∗ Compute σ = H(m||gw).

∗ Compute c2 = κ(m||σ)2.
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– Query (c1, c2) as a ciphertext to the decryption oracle of the SEG
scheme, which decrypts the ciphertext under the private key x.

– If the decryption oracle returns a “Reject” message then output 0,
otherwise output 1.

Now, let DDHSimErr be the event that gw 6= cx
1 , where x is a private key

corresponding to y, but the simulator described above outputs 1.

Unless DDHSimErr happens, there is no difference between game G2 and
G1. Thus, we have |Pr[S2]− Pr[S1]| ≤ Pr[DDHSimErr].

It remains to upper bound DDHSimErr. Note that if the event DDHSimErr
occurs, it is the case that σ(= H(m||gw)) = H([t]k0||cx

1) where t =
√

c2/cx
1

and gw 6= cx
1 , which happens with probability 1/2k1 . Since AGDH makes

queries up to qfDDH , we have Pr[DDHSimErr] ≤ qfDDH−1

2k1
.

|Pr[S2]− Pr[S1]| ≤ qfDDH

2k1
.

• Game G3: The rules of this game are the same as Game G2 except when
ASDH outputs κ∗. If that event happens, we perform the following:

– Compute t =
√

c∗1/κ∗. (Let [t]k0 be the first k0-bits of t, starting with
the first bit. Let [t]k1 be the remaining k1-bits of t, starting with the
(k0 + 1)-th bit.)

– Compute σ∗ = H([t]k0||κ∗).
– If [t]k1 = σ∗, output β′ ∈ {0, 1} such that [t]k0 = mβ and β′ = β.

– Otherwise, choose β′ at random from {0, 1} and output it.

As in the previous game, we consider the event that σ∗ = H([t]k0||κ∗) =
H([t′]k0||κ′), where κ∗ 6= κ′, which happens with probability 1/2k1 . This
events makes differences between this game and the previous one, hence we
have

|Pr[S3]− Pr[S2]| ≤ 1

2k1
.

Now, splitting the even “β′ = β”, we get

Pr[β′ = β] = Pr[β′ = β|S3] Pr[S3] + Pr[β′ = β|¬S3] Pr[¬S3].
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Since Pr[β′ = β|S3] = 1 and Pr[β′ = β|¬S2] = 1
2
, we have

Pr[β′ = β] = Pr[S3] +
1

2
Pr[¬S3] =

1

2
+

1

2
Pr[S3].

Thus, we have

Pr[S3] = 2 Pr[β′ = β]− 1 = SuccIND−CCA
SEG,ACCA (k).

Putting all the bounds we have obtained in each game together, we get the
following.

SuccSDH
G,ASDH(k) ≤ qfDDH

2k1
+ SuccIND−CCA

SEG,ACCA (k)

Considering the running time tSDH and the number of queries qfDDH to the fDDH
oracle, we obtain

SuccSDH
G (tSDH , qfDDH) ≤ SuccIND−CCA

SEG (tCCA, qH , qD) +
qfDDH

2k1
,

where tCCA = tSDH + qfDDHO(1) + O(k3), qH = qfDDH + 1 and qD = qfDDH .

ut

3.7 Brief Summary of the Results

In this chapter, we formally proved that the intractability of the GDH problem is
sufficient for the modified Zheng-Seberry scheme MZS to be secure against chosen
ciphertext attack in the random oracle model. Through informal and formal
arguments, we also pointed out the flaws in Soldera et al.’s [115] security analysis
of Zheng and Seberry’s scheme.
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Chapter 4

Security Analysis of Signcryption

4.1 Introduction

4.1.1 Motivation

Over the last decades, a number of public key encryption schemes have emerged,
and evolved as demands for efficient schemes that meet a strong confidentiality
requirement such as chosen ciphertext security grow. The notable contributions
in this line of research include Zheng and Seberry’s [129] practical approaches
to construct public key encryption schemes that resist chosen ciphertext attack;
Bellare and Rogaway’s [18] padding method for giving the RSA function cho-
sen ciphertext security, which is known as “OAEP”; Fujisaki and Okamoto’s [55]
transformation that converts any IND-CPA secure public key encryption schemes
to IND-CCA secure ones; and Cramer and Shoup’s construction of a public key
encryption scheme provably secure against chosen ciphertext attack without re-
lying on the random oracle model [20].

Similarly to public key encryption schemes, constructing efficient digital signa-
ture schemes that meet a strong authenticity requirement such as unforgeability
against chosen message attack, has also been regarded as of prime importance.
Early constructions of the efficient digital signature schemes include “RSA” [103],
“ElGamal” [49], and “Schnorr” [104]. These schemes with some modifications
were later proved to be secure in the random oracle by Bellare and Rogaway
[19] (the RSA signature scheme from [103]), and Pointcheval and Stern [97] (the
ElGamal and Schnorr signature schemes from [49] and [104] respectively) under
the notion of existential unforgeablity against chosen message attack formalized
by Goldwasser, Micali, and Rivest [63].
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A natural question one can now ask is how to integrate public key encryption
and digital signature in an efficient way without sacrificing each other’s security,
in other words, how to efficiently provide communicating messages with confi-
dentiality and authenticity simultaneously as one secure cryptographic function.
In 1997, Zheng [124] gave a positive answer to the above question: He proposed
a significantly efficient cryptography scheme called signcryption which combines
the functionality of discrete-logarithm based public key encryption and digital
signature schemes.

Although Zheng’s original signcryption scheme has been focused by a number of
research works, e.g. [12, 58, 79, 106, 65, 126, 127], no security analysis of Zheng’s
signcryption through a framework of the provable security approach, as far as
we know, has been. In this chapter, we present precise confidentiality and un-
forgeablity models for generic signcryption schemes and provide rigorous proofs,
based on these models, that Zheng’s original signcryption scheme meets strong
security requirements with respect to message confidentiality and unforgeability
under known cryptographic assumptions.

4.1.2 Related Work

Compared with the public key setting, research on the integration of message
confidentiality and authenticity has been quite active in the symmetric setting.
A series of research works has appeared on using modes of block ciphers to give
both message confidentiality and integrity [70, 101]. Also, security issues related
to the composition of symmetric key encryption and message authentication code
(MAC) were considered by Bellare and Namprepre [17]. They concluded that only
“Encrypt-then-MAC (EtM)” composition is generically secure against chosen
ciphertext attack and existentially unforgeable against chosen message attack.
Krawczyk [74] also considered the same problem when building a secure channel
over insecure networks. Interestingly, his conclusion was that the “MAC-then-
Encrypt (MtE)” composition is also secure, under the assumption that encryption
method is either a secure CBC mode or a stream cipher that XORs the data with
a random pad.

In the public key setting, Tsiounis and Yung [121] proposed a variant of the
ElGamal encryption scheme where Schnorr’s signature is used to provide non-
malleability. However, the security goal of their scheme is to provide confiden-
tiality, consequently the strong origin authentication is not supported in their
scheme. We remark that this scheme was recently analyzed again by Schnorr and
Jakobsson [105] under the generic model plus the random oracle model. We also
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remark that the security proof of Tsiounis and Yung’s scheme given in [121] was
later found to be flawed [111]: The Schnorr signature scheme that was used as a
“proof of knowledge” in their public key encryption scheme, makes it impossible
to efficiently simulate the responses to the chosen ciphertext attacker’s decryption
queries. (Readers are referred to [112] for more details.)

The first attempt to provide a formal security analysis of signcryption schemes
was made by Steinfeld and Zheng [116]. They proposed a signcryption scheme
based on the integer factorization problem and provided a formal security model
and security proof for the unforgeability of their scheme. But, the same for the
confidentiality was not provided. (We remark, however, that following the work
presented in this chapter, the analysis of the factoring-based signcryption scheme
in [116] has been extended to cover both confidentiality and unforgeability in the
“Multi-User” setting [2] that will be discussed later in this chapter.)

Recently and independently of our work, similar security notions to ours were
defined by An, Dodis and Rabin (ADR) [2], who analyzed the security of generic
compositions of black-box signature and public key encryption schemes. Our
unforgeability notion FiSO-UF-CMA, which will be presented precisely in Sec-
tion 4.2.3, corresponds to the “Two-User Insider” setting defined by ADR in [2],
whereas our confidentiality notion FSO/FUO-IND-CCA, which will be defined
precisely in Section 4.2.2, corresponds to the weaker “Multi-User Outsider” set-
ting of ADR. In Section 4.1.3, we discuss our models and their relationship to
those defined by ADR in greater detail.

4.1.3 Differences between Our Security Model and Other
Models

Differences between Symmetric and Public Key Models

To address the significant difference between security implication of the compo-
sitions of encryption and authentication in the symmetric setting and that in the
public key setting, we consider confidentiality of the “Encrypt-then-MAC (EtM)”
and “Encrypt-and-MAC (EaM)” compositions in the symmetric setting, and the
security of the directly corresponding simple public key versions “Encrypt-then-
Sign (EtS)” and “Encrypt-and-Sign (EaS)” (defined in the natural way, with the
signer’s public key appended). We point out that while the symmetric composi-
tion EtM is secure against chosen ciphertext attack (indeed, EtM is generically
secure as shown in [17]), the simple public key version EtS is completely inse-
cure against chosen ciphertext attack, even if the underlying encryption scheme
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is secure against chosen ciphertext attack. The reason is that in the public key
versions, a ciphertext in the composed scheme contains an additional component
(which does not present in the symmetric versions), namely the sender’s signature
public key. The fact that this component is easily malleable implies the insecurity
of the public key version EtS under chosen ciphertext attack.

As an example, assume that Alice encrypts and signs her message m following
the EtS composition. That is, she encrypts the message m using a public key
encryption algorithm EpkB

(·) and computes c = EpkB
(m). Then she signs on

c using her digital signature algorithm SskA
(·) to produce σ = SskA

(c). Now
the ciphertext C is (c, σ). However, an attacker Marvin now generates his own
public and private key pair (pkM , skM) and signs on c obtained by eavesdropping
the ciphertext C en route from Alice to Bob. Namely, she can produce C ′ =
(c, SskM

(c)) where SskM
is Marvin’s digital signature algorithm. Then he hands

in his public key pkM (which may be contained in Marvin’s digital certificate)
to Bob. Now notice that C ′ which is different from C is completely verified as
a valid ciphertext using Marvin’s public key pkM and Bob decrypts it into m.
Hence Marvin succeeds in his chosen ciphertext attack on the EtS scheme even if
the underlying public key encryption scheme is strong, say, secure against chosen
ciphertext attack.

Discussion of Our Models in the Context of Other Public Key Models

We now discuss the relationship between security models for signcryption schemes
defined by An, Dodis and Rabin (ADR) [2] and our security notions as defined in
Section 4.2. First, we review the classification of security models for signcryption
schemes defined by ADR [2].

Two-User and Multi-User Settings. The first classification of security models for
signcryption schemes depends on the assumed application setting. In the Two-
User setting, it is assumed that there are only two users of the scheme: a single
sender Alice with key pair (skA, pkA) and a single receiver Bob with key pair
(skB, pkB). Hence in this setting, the receiver’s public key that Alice uses to
signcrypt all her messages is Bob’s public key pkB which is fixed for the entire
session. Similarly, the sender’s public key that Bob uses to unsigncrypt all his
signcryptexts Alice’s public key pkA which is also fixed for the session. In contrast,
in the Multi-User setting, we assume that there are many users of the scheme
besides the attacked users Alice and Bob. Therefore in this setting, the receiver’s
public key that Alice uses to signcrypt her messages can be any receiving party’s
public key pkR (not necessarily Bob’s pkB). Similarly, the sender’s public key
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that Bob uses to unsigncrypt his signcryptexts can be any sending party’s public
key pkS (not necessarily Alice’s pkA). In particular, in this setting the attacker
is given the power to choose his own receiver and sender’s public keys when
accessing Alice and Bob’s signcryption and unsigncryption oracles respectively.
This power does not exist in the Two-User setting.

Insider and Outsider Settings. The second classification of security models for
signcryption schemes depends on the identity of the attacker. In the Outsider
setting, the attacker is assumed to be a third-party distinct from both the attacked
users Alice and Bob. In order to break confidentiality in this setting, the goal of
the attacker is to recover some information on a message signcrypted by Alice to
Bob, assuming the signcryptext has not been unsigncrypted by Bob. To break
unforgeability in this setting, the goal of the attacker is to forge a signcryptext
from Alice to Bob on a message which has not been signcrypted by Alice. Note
that in the outsider setting, since the attacker is a third-party, he only knows the
public keys of Alice and Bob. In contrast, in the Insider setting, the attacker is
assumed to be a second-party, meaning that the attacker is either Alice (attacking
Bob’s confidentiality) or Bob (attacking Alice’s unforgeability). To break Bob’s
confidentiality in this setting, Alice’s goal is to obtain some information on a
message signcrypted to Bob with Alice’s public key as the sender’s public key,
assuming the signcryptext has not been unsigncrypted by Bob with Alice’s public
key as the sender’s public key (note that in this setting, the attacker Alice may
know the sender’s secret key). To break Alice’s unforgeability in this setting,
Bob’s goal is to forge a valid signcryptext from Alice to Bob on a message which
has never been signcrypted by Alice to Bob (note that in this setting, the attacker
Bob may know the receiver’s private key).

Relation to Our Confidentiality Notion. One can easily notice that the strongest
confidentiality notion for signcryption schemes is the confidentiality in the “Multi-
User Insider” setting. However, Zheng’s original signcryption scheme [124] is
completely insecure in this setting because the Diffie-Hellman key gxAxB (which
is easily recoverable by the sender Alice) from Alice and Bob’s public keys gxA

and gxB suffices to unsigncrypt any signcryptexts from Alice to Bob. As also
discussed in [2], this model, however, is not of significant importance in normal
circumstances since it in effect assumes that the sender Alice is trying to decrypt
a signcryptext which was sent by herself. Hence, this model appears only useful
in special situations where an attacker who breaks into Alice’s system obtains
her private key in order to decrypt a message previously signcrypted by Alice
to Bob. But, this insecurity can be considered as a positive feature, called past
message recovery by Zheng [125], whereby Alice can store past signcryptexts and
unsigncrypt them in the future when desired.
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From the discussions above, we believe that for most applications it suffices for a
signcryption scheme to achieve confidentiality in the “Multi-User Outsider” set-
ting. Our independently defined confidentiality notion “FSO/FUO-IND-CCA”
for this setting matches the corresponding definition by ADR [2].

Relation to Our Unforgeability Notion. Since signcryption offers unforgeablity of
signcryptext for the sender Alice, it is essential that even the receiver Bob cannot
impersonate Alice and forge valid signcryptexts from Alice to himself. To ensure
that our unforgeability notion for signcryption covers this aspect, we allow the
forger in our attack model to have access to Bob’s private key as well as the
corresponding public key. That is, our unforgeablity notion corresponds to the
unforgeability in the “Insider” setting. In this thesis, we only consider the case
when two users are involved in the signcryption process, so our independently
defined unforgeability notion, which we call “FiSO-UF-CMA”, matches the un-
forgeablity in the “Two-User Insider” setting of ADR. (We remark, however, that
in our recent paper [7], the FiSO-UF-CMA notion has been extended to the even
stronger notion that matches the unforgeability in the “Multi-User Insider” set-
ting, and has been shown that Zheng’s original signcryption scheme is still secure
under this notion.)

Like the model proposed by ADR [2], our model also does not explicitly provide
non-repudiation, meaning the ability of a receiver of a valid signcryptext to con-
vince a third-party that a given sender has sent this signcryptext. However, as
also pointed out in [2], unforgeability in the FiSO-UF-CMA sense guarantees that
the receiver cannot forge any valid signcryptext by the sender, so non-repudiation
can always be achieved using a protocol running between the receiver and the
third-party, which convinces the third-party of the validity of a signcryptext with
respect to a given message and sender and receiver public keys. A solution which
does not compromise the receiver’s private key to the third-party, is to use a zero-
knowledge proof of signcryptext validity. Specific protocols for Zheng’s scheme
are presented by Zheng in [125].

On the Power of Attackers in the Multi-User Setting. The extra power given to
the attacker in the Multi-User setting is the ability to access flexible signcryption
oracle which allows the attacker to specify a receiver’s public key in addition to
a message, and the flexible unsigncryption oracle which allows the attacker to
specify a sender’s public key in addition to a signcryptext. In practice, such an
attack might be mounted by the attacker Marvin by requesting a new public key
certificate from the Certificate Authority (CA) each time he wants to query Alice’s
signcryption oracle with a new public key of his choice. Hence, signcryption
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schemes that meet our confidentiality notion remain secure under such a strong
attack.

4.1.4 Contributions of This Chapter

One of the most attractive features of Zheng’s original signcryption scheme might
be its efficiency in terms of computation. More precisely, the dominant cost in
both signcryption and unsigncryption algorithms is approximately only a single
exponentiation in the underlying subgroup. This high efficiency is achieved by
sharing this exponentiation for both the encryption and signature “portions” of
the computation, and is therefore at least 2 times more efficient than a generic
composition (using one of the generic compositions presented in [2]) of discrete-
logarithm based signature and encryption schemes, each of which would presum-
ably perform (at least) one separate exponentiation.

Our results demonstrate that despite its high efficiency, Zheng’s scheme still meets
strong security requirements with respect to known cryptographic assumptions
and the random oracle model for the underlying hash functions. Specifically,
our main results can be summarized as follows. First, we prove, in the random
oracle model, that Zheng’s original signcryption scheme meets our confidentiality
notion for signcryption schemes, “FSO/FUO-IND-CCA”, which corresponds to
ADR’s confidentiality notion in the “Multi-User Outsider” setting, under the
assumption that the Gap Diffie-Hellman (GDH) problem [90] in a prime-order
subgroup of ZZ∗p for p prime is computationally intractable, and the assumption
that the underlying one-time symmetric encryption scheme is secure. Second, we
prove, in the random oracle model, that Zheng’s scheme meets our unforgeability
notion, “FiSO-UF-CMA”, which corresponds to ADR’s unforgeability notion in
the “Two-User Insider” setting, assuming that the Discrete-Logarithm problem
in the underlying subgroup is computationally hard.

Of course, one should remark that a disadvantage of Zheng’s scheme is its reliance
on specific number-theoretic computational complexity assumptions, and on the
random oracle model. These assumptions can both be avoided, at the cost of effi-
ciency, by using a generic encryption-signature composition scheme and applying
ADR’s results in [2].



52

4.2 Our Security Notions for Signcryption

4.2.1 Formal Definition of Generic Signcryption

First, we formally define a generic signcryption scheme, which we denote by
“SCR”.

Definition 6 (Generic Signcryption) A generic signcryption scheme SCR con-
sists of the following algorithms:

• A randomized common parameter generation algorithm GC(k): Given a
security parameter k ∈ N, this algorithm generates a set of public common
parameters, e.g., descriptions of hash functions and a mathematical group.
The output of this algorithm denoted by cp includes such parameters as
well as the security parameter k.

• A randomized user key-pair generation algorithm GK(cp): Given a security
parameter cp, this algorithm generates a single user’s key pair (sk, pk) where
sk and pk denote the private key and public key respectively.

• A randomized signcryption algorithm SC(cp, skA, pkB,m): Given a common
parameters sequence cp, a sender’s secret key skA, a receiver’s public key
pkB, and a message m ∈ SPm (SPm is the message space), this algorithm
generates a signcryptext C.

• A deterministic unsigncryption algorithm USC(cp, skB, pkA, C): Given a
common parameters sequence cp, a receiver’s secret key skB, a sender’s
public key pkA, and a signcryptext C, this algorithm returns either a mes-
sage m or a “Reject” symbol.

Figure 4.1 illustrates a schematic outline of a generic signcryption scheme.

4.2.2 FSO/FUO-IND-CCA: Our Confidentiality Notion
for Signcryption

Following the discussions in Section 4.1.3, we provide an attack model for con-
fidentiality of the generic signcryption scheme SCR, which we call the “Flexi-
ble Signcryption Oracle/Flexible Unsigncryption Oracle (FSO/FUO)”-model. In
this model, the attacker Marvin’s goal is to break the confidentiality of messages
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Figure 4.1: Generic Signcryption

between the sender Alice and the receiver Bob. Marvin is given Alice’s pub-
lic key pk∗A and Bob’s public key pk∗B, and has access to a flexible signcryption
oracle, as well as a flexible unsigncryption oracle: On receiving (pkR,m) where
pkR denotes a receiver’s public key generated by Marvin at will (Marvin may
choose the receiver’s public key as Bob’s public key pk∗B, say, pkR = pk∗B.) and m
denotes a plaintext, the flexible signcryption oracle returns a signcryptext after
performing signcryption under Alice’s private key sk∗A. On the other hand, the
flexible unsigncryption oracle, on receiving (pkS, C) where pkS denotes a sender’s
public key generated by Marvin at will (Similarly to the flexible signcryption
oracle, Marvin may choose the sender’s public key as Alice’s public key pk∗A, say,
pkS = pk∗A.) and C denotes a signcryptext, returns a plaintext after perform-
ing unsigncryption under Bob’s private key sk∗B. In other words, the flexible
signcryption and unsigncryption oracles are not constrained to be executed only
under pk∗B and pk∗A respectively – Bob and Alice’s public key can be replaced by
the public keys generated by Marvin. Accordingly, the FSO/FUO-model gives
Marvin the full chosen ciphertext power with the ability to choose the sender and
receiver’s public key as well as the signcryptext.

Using the notion of indistinguishability (abbreviated by “IND”) of encryptions
[62], we formalize the security against chosen ciphertext attack for signcryption
with respect to the FSO/FUO-model. Following the presentation style in [16],
we call our notion “FSO/FUO-IND-CCA”. Below, we formally define FSO/FUO-
IND-CCA.

Definition 7 (FSO/FUO-IND-CCA) Let SCR = (GC, GK, SC, USC) be a
generic signcryption scheme. Let ACCA be an attacker modelled as a probabilistic
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Turing machine taking the security parameter k as input. Consider the following
game in which the attacker ACCA interacts with the “Challenger”.

Phase 1: The Challenger runs the common parameter generation algo-
rithm GC(k) and obtains a common parameter cp. The Challenger then
runs the user key-pair generation algorithm GK(cp) twice to generate Al-
ice’s private/public key pair (sk∗A, pk∗A) and Bob’s private/public key pair
(sk∗B, pk∗B). The Challenger gives cp, pk∗A, and pk∗B to ACCA.

Phase 2: ACCA submits a number of queries to the signcryption and un-
signcryption oracles. Each of the queries to the signcryption oracle consists
of a receiver’s public key and a plaintext, which we denote by (pkR,m). On
the other hand, each of the queries to the unsigncryption oracle consists
of a sender’s public key and a signcryptext, which we denote by (pkS, C).
On receiving (pkR,m), the Challenger runs SC(cp, sk∗A, pkR,m) and gives
the resulting output to ACCA. On receiving (pkS, C), the Challenger runs
USC(cp, sk∗B, pkS,m) and gives the resulting output to ACCA.

Phase 3: ACCA chooses two equal-length plaintexts (m0,m1). On receiving
these, the Challenger chooses β ∈ {0, 1} at random, runs SC(cp, sk∗A, pk∗B,mβ),
and gives ACCA the resulting target signcryptext C∗.

Phase 4: ACCA continues to submit a number of queries to the signcryption
and unsigncryption oracles. As Phase 2, each of the queries to the sign-
cryption oracle consists of a receiver’s public key and a plaintext, which
we denote by (pkR,m). Each of the queries to the unsigncryption ora-
cle consists of a sender’s public key and a signcryptext, which we denote
by (pkS, C). However, a restriction here is that (pkS, C) 6= (pk∗A, C∗).
On receiving (pkR,m), the Challenger runs SC(cp, sk∗A, pkR,m) and gives
the resulting output to ACCA. On receiving (pkS, C), the Challenger runs
USC(cp, sk∗B, pkS,m) and gives the resulting output to ACCA.

Phase 5: ACCA outputs a guess β̃ ∈ {0, 1}.

We define ACCA’s success by the probability

Succ
FSO/FUO−IND−CCA

ACCA,SCR (k) = 2Pr[β̃ = β]− 1.

We denote by Succ
FSO/FUO−IND−CCA
SCR (tCCA, qSC , qUSC) the maximum of the at-

tacker ACCA’s success over all attackers ACCA having running time tCCA and mak-
ing at most qSC signcryption queries and qUSC unsigncryption queries. Note that
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the running time and the number of queries are all polynomial in the security
parameter k.

The SCR scheme is said to be FSO/FUO-IND-CCA secure if Succ
FSO/FUO−IND−CCA
SCR

(tCCA, qSC , qUSC) is negligible in k.

4.2.3 FiSO-UF-CMA: Our Unforgeability Notion for
Generic Signcryption Schemes

We now present our unforgeability notion of generic signcryption. We call this
notion “FiSO-UF-CMA”, which represents the unforgeability against chosen mes-
sage attack for signcryption with respect to the a fixed signcryption oracle model.

More precisely, the attack model for FiSO-UF-CMA can be described as fol-
lows. The forger Marvin’s goal is to forge a valid signcryptext from Alice to
Bob. Marvin is given Bob’s private/public key pair (sk∗B, pk∗B) as well as Alice’s
public key pk∗A. In addition, Marvin is given access to signcryption oracle which
performs signcryption under Alice’s private key and Bob’s public key, namely
SC(cp, sk∗A, pk∗B, ·). Marvin can choose any message m and query the signcryp-
tion oracle to get a signcryptext by Alice on message m to Bob. At the end of
the attack, Marvin is considered successful in his forgery if he produces a forgery
message m∗ and a forgery signcryptext C∗ and such that: (1) Marvin did not
query the forgery message m∗ to the signcryption oracle SC(cp, sk∗A, pk∗B, ·), and
(2) C∗ is a valid signcryptext from Alice to Bob, that is, USC(cp, sk∗B, pk∗A, C∗)
does not reject. A formal definition for this follows.

Definition 8 (FiSO-UF-CMA) Let SCR = (GC, GK, SC, USC) be a generic
signcryption scheme. Let ACMA be an attacker (a forger) modelled as a proba-
bilistic Turing machine taking the security parameter k as input. Consider the
following game in which the attacker ACMA interacts with the “Challenger”.

Phase 1: The Challenger runs the common parameter generation algo-
rithm GC(k) and obtains a common parameter cp. The Challenger then
runs the user key-pair generation algorithm GK(cp) twice to generate Al-
ice’s private/public key pair (sk∗A, pk∗A) and Bob’s private/public key pair
(sk∗B, pk∗B). The Challenger gives cp, pk∗A, and (sk∗B, pk∗B) to ACMA.

Phase 2: ACMA submits a number of queries to the (fixed) signcryption
and unsigncryption oracles. Each of the queries to the signcryption oracle
consists of a message m. On the other hand, each of the queries to the
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unsigncryption oracle consists of and a signcryptext C. On receiving m,
the Challenger runs SC(cp, sk∗A, pk∗B,m) and gives the resulting output to
ACMA. On receiving (pkS, C), the Challenger runs USC(cp, sk∗B, pk∗A, C) and
gives the resulting output to ACMA.

Phase 3: ACMA outputs a forgery (m∗, C∗) such that: such that: (1) m∗

was not queried to the signcryption oracle SC(cp, sk∗A, pk∗B, ·), and (2) C∗ is
a valid signcryptext from Alice to Bob, that is, USC(cp, sk∗B, pk∗A, C∗) does
not reject.

We define ACMA’s success by the probability

SuccFiSO−UF−CMA
ACMA,SCR (k) = Pr[ACMA outputs (m∗, C∗)].

We denote by SuccFiSO−UF−CMA
SCR (tCMA, qSC) the maximum of the attacker ACMA’s

success over all attackers ACMA having running time tCMA and making at most
qSC signcryption queries. Note that the running time and the number of queries
are all polynomial in the security parameter k.

The SCR scheme is said to be FiSO-UF-CMA secure if SuccFiSO−UF−CMA
SCR (tCMA, qSC)

is negligible in k.

Note that the FiSO-UF-CMA notion is the unforgeability notion given in [6]. If
one uses An et al.’s term, our unforgeability notion can be said to defined in
“Two-User Insider” setting, as explained in Section 4.1.3.

Finally, we remark that the reason why we do not give the attacker access to the
sender’s unsigncryption oracle is that we implicitly assume the well-established
practice that users generate independent key-pairs for sending and receiving. In
this setting, it is clear that the sender’s unsigncryption oracle cannot help a forger
because the forger can simulate such an oracle by himself.

4.3 Zheng’s Original Signcryption Scheme

In this section, we give a full description of Zheng’s original signcryption scheme
[124].
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4.3.1 Bijective One-time Symmetric Key Encryption

As a preliminary, we define a bijective one-time symmetric key encryption scheme
which is used in Zheng’s original signcryption scheme. Normally, one-time sym-
metric key encryption schemes are used in building hybrid public key encryption
schemes [42]. The one-time symmetric key encryption in Zheng’s signcryption
scheme plays the same role as the one used in hybrid public key encryption: A
symmetric key is used only once to encrypt a single message.

Definition 9 (Bijective One-time Symmetric Key Encryption) A bijec-
tive one-time symmetric key encryption scheme, denoted by “OT SE” consists of
the following algorithms:

• A deterministic encryption algorithm E(k, τ, m): Given a security parame-
ter k, a symmetric key τ ∈ SPτ , and a message m ∈ SPm, this algorithm
generates a ciphertext c ∈ SPc. (Note that SPm, SPτ , and SPc denote re-
spectively the message, key, and ciphertext spaces whose size varies as the
security parameter k. Note also that the function defined by E is one-to-one
on SPm and onto SPc.)

• A deterministic decryption algorithm D(k, τ, c): Given a security parameter
k, a symmetric key τ ∈ SPτ , and a ciphertext c ∈ SPc, this algorithm
returns a a message m ∈ SPm. (Note that the function defined by D is also
one-to-one on SPc and onto SPm.)

Note that we do not need the security against chosen plaintext attack for the
one-time symmetric key encryption scheme to prove the confidentiality of Zheng’s
signcryption scheme. An appropriate security notion for the one-time symmetric
key encryption scheme will be given in a later section. Note, however, that we will
use in our proof of security the fact this scheme is bijective, meaning in particular
the decryption function is one-to-one on the ciphertext space SPc (and hence also
encryption is deterministic).

We remark that the one-time pad is a good candidate for implementing the above
bijective one-time symmetric encryption in that it is computationally efficient and
unconditionally secure. In this case, the key size can be reduced by expanding a
short key using a pseudorandom generator.
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4.3.2 Description of Zheng’s Original Signcryption Scheme

Now, we describe Zheng’s original signcryption scheme, known as “Shorthand
Digital Signature Scheme (SDSS1)” [124]. To simplify the security analysis, how-
ever, we have slightly modified it. The change is that in our description, the
Diffie-Hellman Key K is directly hashed by the hash function H rather than be-
ing hashed by the other hash function G first and hashed again by H as described
in [124].

Zheng’s original signcryption scheme, which we denote by “ZSCR”, consists of the
following algorithms:

• A common parameter generation algorithm GC(k)

– Choose at random primes p and q such that |p| = k, q > 2lq(k), and
q|(p − 1), where | · | denotes the number of bits in the binary repre-
sentation of an input; lq : IN → IN denotes a function determining the
length of q.

– Choose a random g ∈ ZZ∗p such that Ordp(g) = q, where Ordp(g)
denotes the order of g in the multiplicative group ZZ∗p.

– Choose a hash function G : {0, 1}∗ → {0, 1}lG(k). (lG : IN → IN is a
function determining the length of the output of G.)

– Choose a hash function H : {0, 1}∗ → ZZq.

– Choose a bijective one-time symmetric key encryption scheme OTSE =
(E, D) with message/key/ciphertext spaces SPm/{0, 1}lG/SPc.

– Return cp = (k, p, q, g, G, H, OTSE)

• A key-pair generation algorithm GK(cp)

– Choose x uniformly at random from ZZ∗q.

– Compute y = gx

– Set sk = (x, y) and pk = y.

– Return (sk, pk).

• A Signcryption algorithm SC(cp, skA, pkB,m)

– Parse skA as (xA, yA); Parse pkB as yB.

– If yB /∈ 〈g〉, then return “Reject”.

– Choose x uniformly at random from ZZq.
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– Compute K = yx
B and τ = G(K).

– Compute c = Eτ (m) and r = H(m, yA, yB, K).

– If r + xA = 0, then return “Reject”. Otherwise, compute s = x/(r +
xA).

– Set C = (c, r, s).

– Return C.

• A Unsigncryption algorithm USC(cp, skB, pkA, C)

– Parse skB as (xB, yB); Parse pkA as yA.

– If yA /∈ 〈g〉, then return “Reject”.

– Parse C as (c, r, s).

– If r /∈ ZZq or s /∈ ZZ∗q or c /∈ SPc, then return “Reject”. Otherwise, do
the following.

∗ Compute ω = (yAgr)s ; K = ωxB ; τ = G(K).

∗ Compute m ← Dτ (c).

∗ If H(m, yA, yB, K) = r, then return m. Otherwise, return “Re-
ject”.

Note that the hash functions G : {0, 1}∗ → {0, 1}lG(k) and H : {0, 1}∗ → ZZq are
modelled as random oracles [20] in the security analysis. Note also that the key
length of the symmetric encryption is actually lG(k).

We remark that another type of Zheng’s signcryption scheme, SDSS2, can be
described and analyzed in a very similar manner presented in this chapter, so we
only deal with the SDSS1-type of Zheng’s signcryption scheme in this thesis.

4.4 Security Analysis of Zheng’s Original Sign-

cryption Scheme

In this section, we prove the confidentiality and unforgeability of Zheng’s sign-
cryption by providing reductions from known cryptographic assumptions. Al-
though we provide a concrete analysis of our reductions, our main goal is to
demonstrate the security of signcryption against polynomial-time attackers. Hence
we did not attempt to optimize the insecurity bounds for our reductions.

In what follows, we review the computational primitives that will be used in our
confidentiality and unforgeability proofs for Zheng’s original signcryption scheme.
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4.4.1 Computational Primitives

The Generalized Gap-Diffie Hellman Problem

As already introduced in the previous section, the “Gap problem” is a computa-
tional problem proposed by Okamoto and Pointcheval [90], in which an attacker
is to solve an inverting problem with the help of an oracle that solves a related
decisional problem.

For our proof of confidentiality of Zheng’s original signcryption in FSO/FUO-
IND-CCA sense, we will need a “generalized Gap Diffie-Hellman (gGDH)” prob-
lem [90] which is a slightly generalized version of the GDH problem defined in
Chapter 3 in a sense that in the gGDH problem, the attacker is given, in addi-
tion to the group element ga and gb for random a, b ∈ ZZ∗q, access to a Decisional
Diffie-Hellman (DDH) oracle ODDH that given (ḡ, ḡu, ḡv, z) ∈ 〈g〉×〈g〉×〈g〉×〈g〉
checks whether z = ḡuv or not. That is, in the gGDH problem, the DDH oracle
that the attacker has access to takes a Diffie-Hellman tuptle with respect to an
unfixed generator ḡ rather than the fixed generator g in the GDH problem de-
fined in the previous chapter. (However, it is possible that ḡ = g, ḡu = ga, and
ḡv = gb.)

A precise definition of gGDH problem is as follows.

Definition 10 (gGDH) Let p and q are primes such that |p| = k, q|(p − 1),
and q > 2lq(k), where lq : IN → IN denotes a function determining the length of q.
Assume that g ∈ ZZ∗p satisfies Ordp(g) = q. Let AgGDH denote an attacker assumed
to be a probabilistic Turing machine taking the security parameter k as input.
Suppose that a and b are uniformly chosen at random from ZZ∗q and ga and gb are
computed.

AgGDH is to solve the following problem:

• Given (k, p, q, g, ga, gb), compute the Diffie-Hellman key gab of ga and gb

with the help of the Decisional Diffie-Hellman oracle ODDH(·, ·, ·, ·), which,
given (ḡ, ḡu, ḡv, z), outputs 1 if z = ḡuv and 0 otherwise.

We quantify AgGDH’s success in solving the gGDH problem by the probability

SuccgGDH
AgGDH,ZZ∗p

(k)
def
= Pr[AgGDH outputs gab].

We denote by SuccgGDH
ZZ∗p

(tgGDH , qODDH ) the maximum of the attacker AgGDH’s

success over all attackers AgGDH having running time tgGDH and making at most
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qODDH queries to the oracle ODDH . Note that the running time and the number
of queries are all polynomial in the security parameter k.

The gGDH problem is said to be computationally intractable if SuccgGDH
ZZ∗p

(tgGDH ,

qODDH ) is negligible in k.

The Discrete-Logarithm Problem

For our proof of unforgeability of Zheng’s original signcryption scheme, we will
need the following “Discrete-Logarithm (DL)” problem.

Definition 11 (DL) Let p and q are primes such that |p| = k, q|(p − 1), and
q > 2lq(k) where lq : IN → IN denotes a function determining the length of
q. Assume that g ∈ ZZ∗p satisfies Ordp(g) = q. Let ADL denote an attacker
modelled as a probabilistic Turing machine taking the security parameter k as
input. Suppose that y is uniformly chosen at random from ZZ∗p.

ADL is to solve the following problem:

• Given (k, p, q, g, y), find a ∈ ZZ∗q such that y = ga.

We quantify ADL’s success in solving the DL problem by the probability

SuccDL
ADL,ZZ∗p

(k)
def
= Pr[ADL outputs a ∈ ZZ∗q].

We denote by SuccDL
ZZ∗p (tDL) the maximum of the attacker ADL’s success over all

attackers ADL having running time tDL. Note that the running time and the
number of queries are all polynomial in the security parameter k.

The DL problem is said to be computationally intractable if SuccDL
ZZ∗p (tDL) is

negligible in k.

4.4.2 Security Notion for Bijective One-time Symmetric
Encryption

We now define a security notion for the one-time symmetric key encryption
scheme OT SE presented in Section 4.3.1. As mentioned earlier, we do not need
the security against chosen-plaintext attacks for OT SE . We merely need the se-
curity against a passive attack which we call “indistinguishability under passive
attack (IND-PSA)”. We now formally define IND-PSA as follows.
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Definition 12 (IND-PSA) Let OT SE = (E, D) be a bijective one-time sym-
metric key encryption scheme. Let APSA be an attacker modelled as a probabilistic
Turing machine taking the security parameter k as input. Consider the following
game in which the attacker APSA interacts with the “Challenger”.

Phase 1: Given a security parameter k, the Challenger picks key τ at
random from SPτ .

Phase 2: APSA chooses two equal-length plaintexts (m0,m1). If these are
given to the encryption algorithm then the Challenger chooses β ∈ {0, 1} at
random, computes Eτ (mβ), and gives APSA the resulting target signcryptext
c∗.

Phase 3: APSA outputs a guess β̃ ∈ {0, 1}.

We define APSA’s success by the probability

SuccIND−PSA
APSA,OT SE(k) = 2Pr[β̃ = β]− 1.

We denote by SuccIND−PSA
SCR (tPSA) the maximum of the attacker APSA’s success

over all attackers APSA having running time tPSA. Note that the running time
and the number of queries are all polynomial in the security parameter k.

The OT SE scheme is said to be secure in the IND-PSA sense if SuccIND−PSA
OT SE

(tPSA) is negligible in k.

4.4.3 Confidentiality Proof

For confidentiality proof of Zheng’s original signcryption scheme ZSCR, we adopt
Shoup’s methodology presented in [110]: We start with the real attack game
where the attacker ACCA tries to defeat the security of the ZSCR scheme in the
sense of FSO/FUO-IND-CCA defined in Section 4.2.2. We then modify this game
by changing its rules and obtain a new game. Note here that the rules of each
game are to describe how variables in the view of ACCA are computed. We repeat
the modification until we obtain games related to the ability of the attackers
APSA and AgGDH to defeat the security of the one-time symmetric key encryption
scheme OT SE and to solve the gGDH problem respectively. When a new game
is derived from a previous one, a difference of the views of the attacker in each
game might occur. This difference is measured by the technique presented in the
following lemma.
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Lemma 2 Let A1, A2, B1 and B2 be events defined over some probability space.

If Pr[A1 ∧ ¬B1] = Pr[A2 ∧ ¬B2] and Pr[B1] = Pr[B2] = ε then we have |Pr[A1]−
Pr[A2]| ≤ ε.

The proof is a straightforward calculation and can be found in [110]. We now
state and prove the following theorem.

Theorem 3 If the gGDH problem is computationally intractable and the bijective
one-time symmetric key encryption scheme OTSE used in Zheng’s original sign-
cryption scheme is IND-PSA secure then Zheng’s original signcryption scheme
ZSCR is FSO/FUO-IND-CCA secure in the random oracle model. Concretely, the
following bound holds:

Succ
FSO/FUO−IND−CCA
ZSCR ( tCCA, qSC , qUSC , qG, qH)

≤ 2SuccgGDH
ZZ∗p

(tgGDH , qODDH ) + SuccIND−PSA
OTSE (tOTSE)

+ qSC

(qG + qH + 2qSC + qUSC + 2

2lq(k)−1

)
+

qH + 2qUSC

2lq(k)−1
,

where tgGDH = tCCA+O(q2
G+1)+O(q2

H +1)+O(k3qSC)+O((k3+qG+qH)qUSC)+
tOTSE(qSC + qUSC), qODDH = (qSC + qUSC)(qG + qH) and tOTSE = O(tgGDH). Note
that qG and qH) denote the number of queries made by the FSO/FUO-IND-CCA
attacker to the random oracles G and H used in ZSCR. Other parameters are
as defined in the definitions of FSO/FUO-IND-CCA, IND-PSA, and the gGDH
problem.

Proof. Our aim is to keep modifying the real attack game of FUO/FSO-IND-
CCA presented in Definition 7 until we get to the stage where one can defeat the
IND-PSA of OT SE (Definition 12) and solve the gGDH problem (Definition 10).

We denote the FSO/FUO-IND-CCA attacker by “ACCA” and use denote the at-
tacker for the gGDH problem by “AgGDH”. Given (k, p, q, g, ga, gb) for random
a, b ∈ ZZ∗q, AgGDH’s goal is to compute the Diffie-Hellman key gab with the help of
the DDH oracle ODDH(·, ·, ·, ·).
We start with the following game.

• Game G0: This game is the same as the real attack game presented in
Definition 7.

First, we run the common parameter/oracle generation algorithm GC of
ZSCR on input a security parameter k and obtain a common parameter cp =
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(p, q, g, G, H, OTSE), where p and q are primes such that |p| = k, q > 2lq(k),
and q|(p − 1); g is an element in ZZ∗p such that Ordp(g) = q; G : {0, 1}∗ →
{0, 1}lG(k) and H : {0, 1}∗ → ZZq are hash functions modelled as the random
oracles [20]; OTSE is the bijective one-time symmetric key encryption scheme
that consists of the encryption function E and the decryption function D.
We then run the key generation algorithm GK on input cp and k twice,
and obtain Alice and Bob’s (fixed) private/public key pairs. Here, Alice’s
private key consists of (x∗A, y∗A) where y∗A = gx∗A , and her public key is y∗A
itself. Similarly, Bob’s private key consists of (x∗B, y∗B) where y∗B = gx∗B , and
y∗B itself is his public key.

We give the public key pair (y∗A, y∗B) to ACCA. Once ACCA submits a pair
of plaintexts (m0,m1) where |m0| = |m1|, we pick β ∈ {0, 1} uniformly at
random and create a target signcryptext C∗ = (c∗, r∗, s∗) as follows.

c∗ = Eτ∗(mβ); r∗ = H(mβ, y∗A, y∗B, K∗); s∗ = x∗/(r∗ + x∗A),

where

K∗ = y∗B
x∗ ; τ ∗ = G(K∗)

for x∗ picked uniformly at random from ZZ∗q. On input C∗, ACCA outputs
β′ ∈ {0, 1} at the end. We denote by S0 the event β′ = β and use a similar
notation Si for all games Gi.

Since this game is the same as the real attack game, we have

Pr[S0] =
1

2
+

1

2
Succ

FSO/FUO−IND−CCA

ACCA,ZSCR
(k).

• Game G1: In this game, we modify the target signcrytext C∗ presented in
the previous game. The modification obeys the following rules.

R1-1 First, we choose τ+ ∈ {0, 1}lG(k), r+ ∈ ZZq, and s+ ∈ ZZ∗q
uniformly at random. We then compute c+ = Eτ+(mγ) for random
γ ∈ {0, 1} and replace c∗, r∗, s∗, and G(K∗) in the target signcryptext
C∗ by c+, r+, s+, and τ+ respectively. A new target signcryptext is
now (c+, r+, s+) and is denoted by C∗

+.

R1-2 Whenever the random oracle G is queried at K∗ = (y∗B)s+(r++x∗A)

(as defined by r+ and s+), we respond with τ+.

R1-3 Whenever the random oracle H is queried at (mβ, y∗A, y∗B, K∗),
where K∗ = (y∗B)s+(r++x∗A), we respond with s+.
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R1-4 We assume that the signcryption and unsigncryption oracles
are perfect. That is, on receiving ACCA’s signcryption query (yR, m) or
unsigncryption query (yS, C) 6= (y∗A, C∗), where yS and yR respectively
denote sender and receiver’s pubic keys arbitrarily selected by ACCA,
and m and C denote a message and a signcryptext respectively, we
signcrypt (yR,m) using the private key x∗A or unsigncrypt (yS,m) using
the private key x∗B in the same way as we do in the real attack game.

Since we have replaced one set of random variables by another set of random
variables which is different, yet has the same distribution, the attacker
ACCA’s view has the same distribution in both Game G0 and Game G1

except for the event that (mβ, y∗A, y∗B, K∗) is queried to H in Phase 3 (of the
real attack game of FSO/FUO-IND-CCA) because we only know mβ at the
end of Phase 3. The error is however small and is at most qH/2lq(k) because
K∗ is independent of the attacker’s view in find stage.

Accordingly, we have

|Pr[S1]− Pr[S0]| ≤ qH

2lq(k)
.

• Game G2: In this game, we retain the rules R1-1 and R1-4, renaming
them as “R2-1” and “R2-4” respectively. However, we drop the rules R1-
2 and R1-3 meaning that τ+ and s+ are used only in producing the target
signcryptext C∗

+ while in other cases when the signcryption or unsigncryp-
tion oracle queries to the random oracles G and H, or ACCA directly queries
to them, answers from G or H are taken. We refer to these rules regarding
the random oracles G and H as “R2-2” and “R2-3” respectively.

Since we have dropped the rule R1-2, τ+ is not used anywhere in Game
G2 except in computing c∗. Hence if β′ = β then ACCA has broken the
IND-PSA security of the bijective one-time symmetric encryption scheme.
Hence, we have

Pr[S2] =
1

2
+

1

2
SuccIND−PSA

APSA,OT SE(k).

Now, let AskKey2 denote an event that, in Game G2, G is queried at K∗

by ACCA (rather than by the signcryption or unsigncryption oracles) or H
is queried at (m, y′, y′′, K∗) for some (m, y′, y′′) by ACCA (again, rather than
by the signcryption or unsigncryption oracles). We will use an identical
notation AskKeyi for all the remaining games.



66

Notice that Game G1 and Game G2 may differ if G is queried at K∗, where
K∗ = (y∗B)s+(r++x∗A), or H is queried at (mβ, y∗A, y∗B, K∗). Therefore, besides
AskKey2, we need to consider the following events for which A’s view may
differ in Game G2.

– SCBad: G is queried at K∗ or H is queried at (mβ, y∗A, y∗B, K∗) by the
signcryption oracle.

– USCBad: G is queried at K∗ or H is queried at (mβ, y∗A, y∗B, K∗) by the
unsigncryption oracle.

But, SCBad has a negligible probability in Game G1: Namely due to the
uniform distribution of K computed by the signcryption in the group 〈g〉,
the probability that K hits K∗ is less than 1/2lq(k) per each signcryption
query. Consequently we have Pr[SCBad] ≤ qSC/2lq(k).

We now show that ACCA’s view is not changed from Game G1 to Game G2

except for a negligible subset of the USCBad event as well. For each un-
signcryption query (yS, c, r, s) processed by the unsigncryption oracle there
are two cases to consider (Analysis of these events are given right after the
description of each event.):

– Case 1 : In processing (yS, c, r, s), the unsigncryption oracle queries K∗

to G and (mβ, y∗A, y∗B, K∗) to H, but ACCA did not query (mβ, y∗A, y∗B, K∗)
to H.

∗ In Game G1, such unsigncryption queries (yS, c, r, s) are always
rejected by the unsigncryption oracle. The reason is that malling
with the target signcryptext is impossible: if such a query (yS, c, r, s)
was accepted then it would have to be equal to the challenge
(y∗A, c+, r+, s+), which is disallowed from being queried. To show
this result, we note that by validity, we must have r = r+. Then
from equality of the H-queries we must have yS = y∗A and K∗ =
(y∗B)s+(r++x∗A) = (y∗B)s(r++x∗A), which implies that also s = s+ be-
cause y∗B has order q. Finally, from equality of the H-queries
we have Dτ+(c) = Dτ+(c+) = mβ, which implies that also c =
c+, thanks to the one-to-one decryption function D of the bi-
jective symmetric encryption scheme. Thus we conclude that
(yS, c, r, s) = (y∗A, c+, r+, s+), so malling is impossible, as claimed.

∗ In Game G2, since ACCA did not query (mβ, y∗A, y∗B, K∗) to H, we
know that H was not previously queried at (mβ, y∗A, y∗B, K∗) so H’s
response is independent of r∗ and uniform in ZZq, and hence the
unsigncryption oracle accepts only with probability 1/2lq(k).
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– Case 2 : In processing (yS, c, r, s), the unsigncryption oracle queries K∗

to G and (m, yS, y∗B, K∗) to H for some for some (m, yS) 6= (mβ, y∗A),
but ACCA did not query (m, yS, y∗B, K∗) to H.

∗ In Game G1, since ACCA did not query (m, yS, y∗B, K∗) to H, we
know that H was not previously queried at (m, yS, y∗B, K∗) so H’s
response is independent of r+ and uniform in ZZq, and hence the
unsigncryption oracle accepts only with probability 1/2lq(k). If
accepted, ACCA gets Dτ+(c).

∗ In Game G2, since ACCA did not query (m, yS, y∗B, K∗) to H, we
know that H was not previously queried at (m, yS, y∗B, K∗) so H’s
response is independent of r+ and uniform in ZZq, and hence the
unsigncryption oracle accepts only with probability 1/2lq(k). If
accepted, ACCA gets DG(K∗)(c).

In either case 1 or case 2, the unsigncryption query (yS, c, r, s) is an-
swered differently in Game G2 compared to Game G1 for only a subset
of outcomes in USCBad of probability at most 1/2lq(k), and hence at
most qUSC/2lq(k) over all unsigncryption queries.

Thus, finally we get

|Pr[S2]− Pr[S1]| ≤ Pr[AskKey2] +
qSC + qUSC

2lq(k)
.

• Game G3: We replace the rule R2-1 in Game G2 by the following new rule
R3-1.

R3-1 First, we define K∗ as (y∗B)a, τ+ as G((y∗B)a), and s+ as H(mβ, y∗A,
y∗B, K+). We then replace Bob’s public key y∗B by gb and replace Alice’s

public key y∗A by (gag−r+s+
)

1
s+ , where (ga, gb) for random a, b ∈ ZZ∗q are

the parameters given to the attacker AgGDH. (Note that we get the
same target signcryptext C∗

+ = (c+, r+, s+) from this rule, but its
components are redefined.)

However, we retain the rules R2-2, R2-3 and R2-4 in Game G2, renaming
them as “R3-2”, “R3-3” and “R3-4”, respectively.

Thanks to the randomness of the oracle G and the uniformity of ga and gb

in 〈g〉, ACCA’s view has the same distribution in both Game G2 and Game
G3. Hence, we have

Pr[AskKey3] = Pr[AskKey2].
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• Game G4: In this game, we modify the rule R3-4 and obtain a new rule
R4-4. However, we retain the rules R3-1, R3-2 and R3-3 in Game G3,
renaming them as “R4-1”, “R4-2” and “R4-3” respectively.

R4-4 In this rule, we replace the random oracles G and H by the ran-
dom oracle simulators GSim and HSim. Note that two types of “query-
answer” lists GList1 and GList2 are maintained for the simulation of
the random oracle G. GList1 consists of simple “input-output” entries
for G of the form (K, τ). GList2 (whose new entries are added by either
the signcryption oracle simulator) consists of the special input-output
entries for G which are of the form yR||ω||(?, τ). This implicitly rep-
resents the input-output relation τ = G(ωlogg yR), although the input
ωlogg yR is not explicitly stored and hence is denoted by “?”. Simi-
larly to GSim, the simulator HSim also maintains two input-output
lists HList1 and HList2. HList1 consists of simple input-output entries
for H, which are of the form (µ, r). HList2 (whose new entries are
added by either the signcryption or unsigncryption oracle simulators
in later games) consists of the special input-output entries for H which
are of the form yR||ω||((m, yS, yR, ?), r) and implicitly represents the
input-output relation H(m, yS, yR, K) = r, where K = ωlogg yR is not
explicitly stored and hence is denoted by “?”. Complete specifications
for GSim and HSim are as follows.

Random Oracle Simulator GSim

GSim(K)
If ODDH(g, ω, yR, K) = 1
for some yR||ω||(?, τ) ∈ GList2

Return τ
Else if (K, τ) exists in GList1

Return τ

Else τ
R← {0, 1}lG(k)

Return τ
Add (K, τ) to GList1
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Random Oracle Simulator HSim

Hsim(m, yS, yR, K)
If ODDH(g, ω, yR, K) = 1 and
yR||ω||(m, yS, yR, ?), r) ∈ HList2

Return r
Else if ((m, yS, yR, K), r)
exists in HList1 Return r
Else choose r at random from ZZq

Return r
Add ((m, yS, yR, K), r) to HList1

Notice that the above simulation for the random oracles G and H are perfect.
Hence, we have

Pr[AskKey4] = Pr[AskKey3].

• Game G5: We retain all the rules R4-1, R4-2 and R4-3, renaming them
as “R5-1”, “R5-2” and “R5-3” respectively. But we further modify R4-4
and obtain a new rule “R5-4”.

R5-4 In this rule, we replace the signcryption oracle by the signcryp-
tion oracle simulator SCSim. On the other hand, we assume that the
unsigncryption oracle is perfect.

Signcryption Oracle Simulator SCSim

SCSim(y∗A, (yR,m))
If yR /∈ 〈g〉 Return “Reject”
Choose τ at random from {0, 1}lG(k)

Choose r at random from ZZq

Compute c = Eτ (m)
Choose s at random from ZZ∗q
Compute ω = (y∗Agr)s

Add yR||ω||(?, τ) to GList2
Add yR||ω||((m, y∗A, yR, ?), r) to HList2
C ← (c, r, s)
Return C
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Note that in the above signcryption oracle simulator,if neither (K, τ) nor
((m, y∗A, yR, K), r) exists in GList1 and HList1 respectively, the simulated
signcryptext is distributed the same as the signcryptext in Game G4, but
a simulation error occurs otherwise.

Thanks to the uniform distribution of K in the subgroup of ZZ∗p, whose
order is q, and since GList1 and HList1 contain all queries to G and H both
by the attacker,and the signcryption and unsigncryption oracles, we have
Pr[(K, τ) ∈ GList1] ≤ qG+qSC+qUSC

2lq(k) and Pr[((m, y∗A, yR, K), r) ∈ HList1] ≤
qH+qSC+qUSC

2lq(k) . Also there is an error because in this game all signcryption
queries are random but in the previous game, those with r + x∗A caused a
“Reject” to be output by the signcryption oracle. Hence, we have Pr[r +
x∗A = 0] ≤ 1

2lq(k) .

Since there are up to qSC signcryption queries, the total probability of
outcomes leading to signcryption oracle simulation error is upper-bounded
by:

qSC

(qG + qH + 2qSC + qUSC + 1

2lq(k)

)
.

Summing up all decryption queries, we have

|Pr[AskKey5]− Pr[AskKey4]| ≤ qSC

(qG + qH + 2qSC + qUSC + 1

2lq(k)

)
.

• Game G6: We retain all the rules R5-1, R5-2 and R5-3, renaming them
as “R6-1”, “R6-2” and “R6-3” respectively. But we modify R5-3 and
obtain the following new rule “R6-4”.

R6-4 We replace the unsigncryption oracle by a unsigncryption oracle
simulator USCSim which can unsigncrypt a submitted unsigncryption
query (yS, C) where C = (c, r, s), without knowing the private key.
Notice that the unsigncryption oracle simulator makes use of AgGDH’s
DDH oracle ODDH to check whether a given tuple is Diffie-Hellman
one.
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Unsigncryption Oracle Simulator USCSim

USCSim(y∗B, yS , C)
If y /∈ 〈g〉 Return “Reject”
Parse C as (c, r, s)
Compute ω = (ySgr)s

If ω = ga Return “Reject”
If there exists (K, τ) ∈ GList1 such that
ODDH(g, ω, y∗B,K) = 1 or
there exists yR||ω′||(?, τ) ∈ GList2 such that
ODDH(ω, ω′, yR, y∗B) = 1

Compute m = Dτ (c)
Else Choose τ at random from {0, 1}lG(k);

Add y∗B||ω||(?, τ) to Glist2;
Compute m = Dτ (c)

If there exists ((m, yS , y∗B,K), r) ∈ HList1 such that
ODDH(g, ω, y∗B,K) = 1 or
there exists yR||ω′||((m, yS , yR, ?), r) ∈ HList2 such that
ODDH(ω, ω′, yR, y∗B) = 1

Return m
Else Return “Reject”

In the above simulation, if K(= (ySgr)sx∗B) has not been queried to G and
(m, yS, y∗B, K) has not been queried to H but C is a valid signcryptext then
a difference between Game G5 and Game G6 occurs: If C = (c, r, s) is
valid, we have m = DG(K)(c) where K = (ySgr)s, and r = H(m, yS, y∗B, K).
Since we have assumed that G(K) or H(m, yS, y∗B, K) has not been queried,
the event r = H(m, yS, y∗B, K) happens with probability 1/2lq(k) since the
output of the random oracle H is uniformly distributed in ZZq.

Summing up over all the unsigncryption queries, we have

|Pr[AskKey6]− Pr[AskKey5]| ≤ qUSC

2lq(k)
.

Since Game G3, AskKey6 has denoted the event that the Diffie-Hellman key
(y∗B)a(= gab) has been queried to the random oracle G or H. At this stage, we can
check which one of the queries to the random oracles G and H is a Diffie-Hellman
key of gab using AgGDH’s DDH oracle ODDH . Furthermore, note that we have
used the DDH oracle to simulate the unsigncryption oracle. That is, we have
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now reached the stage where we can solve the gGDH problem and hence we have

Pr[AskKey6] ≤ SuccgGDH
ZZ∗p,AgGDH(k).

Putting all the bounds we have obtained in each game together, we obtain

1

2
Succ

FSO/FUO−IND−CCA

ACCA,ZSCR
(k) = |Pr[S0]− Pr[S2]|

≤ qH

2lq(k)
+

1

2
SuccIND−PSA

APSA,OTSE
(l) +

qSC + qUSC

2lq(k)

+ qSC

(qG + qH + 2qSC + qUSC + 1

2lq(k)

)

+
qUSC

2lq(k)
+ Pr[AskKey6]

≤ 1

2
SuccIND−PSA

APSA,OT SE(l)

+ qSC

(qG + qH + 2qSC + qUSC + 2

2lq(k)

)

+
qH + 2qUSC

2lq(k)
+ SuccgGDH

ZZ∗p,AgGDH(k).

The advantage bound claim of the theorem follows upon taking maximums over
all attackers with the appropriate resource parameters. The running time counts
can be readily checked.

ut

4.4.4 Unforgeability Proof

We now show that Zheng’s original signcryption scheme ZSCR is FiSO-UF-CMA
(Definition 8) secure.

As a proof methodology, we use Ohta and Okamoto’s [88] “ID reduction tech-
nique”: We first convert a forger that conducts chosen message attack against
ZSCR to an attacker that conducts passive attack against an identification scheme
derived from ZSCR. We then use this attacker to construct a matrix which con-
tains a heavy row which will be defined later. Using the heavy row, we can
construct an attacker that finds a discrete-logarithm of the Alice’s public key
with non-negligible probability.

Now, we present the following identification scheme IZSCR derived from ZSCR.
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Suppose that a common parameter cp = (k, p, q, g), where k is a security pa-
rameter; p and q are random primes such that |p| = k, q > 2lq(k), and q|(p − 1)
(lq : IN → IN is a function determining the length of q); g is an element of ZZ∗p
such that Ordp(g) = q, is given to the Prover and the Verifier.

The Prover then chooses xP at random from ZZq, computes yP = gxP , and pub-
lishes yP . Similarly, The Verifier randomly chooses xV from ZZq and computes
yV = gxV , and publishes yV . Now the Prover and the Verifier perform the follow-
ing protocols.

Step 1: The Prover randomly chooses x from ZZq, computes K = yx
V and

sends K to the Verifier.

Step 2: On receiving K from the Prover, the Verifier randomly chooses r
from ZZq and sends r to the Prover.

Step 3: The Prover computes s = x/(r + xP ) ∈ ZZq and sends s to V .

Step 4: The Verifier computes K ′ = (yP gr)sxV and returns “Accept” if
K ′ = K, otherwise, returns “Reject”.

Now we define a security notion for IDZSCR similar to the one defined in [88].
We call our notion “SI-PSV (security of an identification scheme against passive
attack)”.

Definition 13 (SI-PSV) Let IDZSCR be an identification scheme derived from
Zheng’s original signcryption scheme. Let AIDPSV be an attacker modelled as a
probabilistic Turing machine modelled as a probabilistic Turing machine taking
the security parameter k as input. Consider the following game in which the
attacker AIDPSA interacts with the “Challenger” that controls the Prover and the
Verifier.

Phase 1: The Challenger runs the common parameter generation algo-
rithm GC(k) of IDZSCR, and obtains a common parameter cp = (k, p, q, g).
The Challenger then runs the user key-pair generation algorithm GK(cp)
twice to generate private/public key pairs (x∗P , y∗P ) and (x∗V , y∗V ), where
y∗P = gx∗P and y∗V = gx∗V . The Challenger gives cp and (x∗P , y∗P ) to the
Prover, and gives cp and (x∗V , y∗V ) to the Verifier. Finally, the Challenger
gives cp, y∗P , and (x∗V , y∗V ) to AIDPSV.
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Phase 2: Given (cp, y∗P , x∗V , y∗V ), AIDPSV acts as a Prover as follows. In
Step 1 of IDZSCR, AIDPSV sends arbitrary value drawn from ZZ∗p to the Chal-
lenger. The Challenger then forwards this value as a message in Step 1 of
IDZSCR to the Verifier. On receiving a response to this message from the
Verifier, the Challenger just sends that response back to AIDPSV. In Step 3
of IDZSCR, AIDPSV sends arbitrary value drawn from ZZ∗p to the Challenger.
The Challenger then forwards this value as a message in Step 3 of IDZSCR
to the Verifier.

We define AIDPSV’s success by the probability

SuccSI−PSV
AIDPSV,IDZSCR

(k) = Pr[The Verifier outputs “Accept”].

We denote by SuccSI−PSV
IDZSCR (tIDPSV ) the maximum of the attacker AIDPSV’s success

over all attackers AIDPSV having running time tIDPSV . Note that the running time
and the number of queries are all polynomial in the security parameter k.

The IDZSCR scheme is said to be secure in the SI-PSV sense if SuccSI−PSV
IDZSCR (tIDPSV )

is negligible in k.

We now show that the scheme ZSCR is FiSO-UF-CMA secure assuming that the
DL problem (Definition 11) is computationally intractable.

As a first step, we reduce the SI-PSV security of IDZSCR to the FiSO-UF-CMA
security of ZSCR.

Lemma 3 Suppose that an FiSO-UF-CMA attacker for the scheme ZSCR, whose
running time is bounded by tCMA, issues up to qSC queries to the signcryption
oracle, qG and qH to the random oracles G and H respectively. Using this attacker
as a subroutine, we can construct a SI-PSV attacker for the scheme IDZSCR,
whose running time is bounded by tIDPSV . Concretely, we obtain the following
advantage bound:

1

qH

(
SuccFiSO−UF−CMA

ZSCR (tCMA, qSC , qG, qH)− 1

2lq(k)

)
≤ SuccSI−PSV

IDZSCR (tIDPSV ),

where tIDPSV = tCMA + O(qSC + qG + qH) + O(k3) for a security parameter k.

Proof. Let ACMA denote an attacker (forger) that defeats the FiSO-UF-CMA
security of the ZSCR scheme. Assume that the common parameter cp = (k, p, q,



75

g, G, H, OTSE) of ZSCR, Alice’s public key y∗A and Bob’s public and private key
pairs (y∗B, x∗B) are provided as input to ACMA.

Our aim is to simulate the view of ACMA in the real attack game denoted by
G0 until we obtain a game in which the attacker AIDPSV for the IDZSCR scheme
defeats the SI-PSV security of IDZSCR.

• Game G0: As mentioned, this game is identical to the real attack game
described in Definition 8. We denote by S0 the event that ACMA succeeds in
forging a signcryptext and use a similar notation Si for all games Gi. Since
Game G0 is the same as the real attack game, we have

Pr[S0] = SuccFiSO−UF−CMA
ZSCR,ACMA (k).

• Game G1: We modify the previous game G0 and obtain a new game G1

as follows:

We respond to ACMA’s queries in accordance with the following rules.

R1-1 If ACMA makes a new query Ku to the random oracle G, we
choose τu uniformly at random from {0, 1}lG(k) and respond with τu.
We then update the entry of “query-answer” list GList with 〈Ku, τu〉.
If the same query Ku is asked, we search for the corresponding value
τu in GList and respond with it.

R1-2 We choose j uniformly at random from [1, . . . , qH ], where qH

denotes the maximum number of queries to the random oracle H. If
ACMA makes a query µj to the random oracle H, we respond with
H(µj). On the other hand, if ACMA makes a new query µi where i 6= j
to the random oracle H, then we choose ri uniformly at random from
ZZq and respond with ri. We then update the entry of “query-answer”
list HList with 〈µi, ri〉. If the same query µi is asked, we search for the
corresponding answer for ri in HList and respond with it.

R1-3 If ACMA makes a query (y∗B,mv) to its signcryption oracle, then
we run SC(cp, x∗A, y∗B,mv) and give the resulting output to ACMA.

R1-4 Once ACMA submits a forgery (m∗, C∗) where C∗ = (c∗, r∗, s∗),
we check if there exists 〈Ku′ , τu′〉, where u′ ∈ [1, . . . , qG] (qG denotes
the number of queries to the random oracle G), in the entries in GList
such that (y∗Agr∗)s∗x∗B = Ku′ . If there exists such an entry, we set
K∗ = Ku′ . Otherwise, we choose K∗ at random from ZZ∗q.
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Having obtained K∗, we check if (m∗, y∗A, y∗B, K∗) = µj and r∗ = H(µj).
If this test holds, we return (m∗, C∗), otherwise, we return “Abort” and
terminate the game.

Now, we define the following event.

– AskH: There exists i ∈ [1, . . . , qH ] such that (m, y∗A, y∗B, K) = µi for
some m ∈ SPm and random K ∈ ZZ∗q. (Or equivalently, (m, y∗A, y∗B, K)
has been asked to the random oracle H).

From the rules defined above, we obtain

Pr[S1] ≥
qH∑
i=1

Pr[(i = j) ∧ ACMA outputs (m∗, C∗) ∧ AskH]

=

qH∑
i=1

Pr[i = j] Pr[ACMA outputs (m∗, C∗) ∧ AskH]

= Pr[i = j]

qH∑
i=1

Pr[ACMA outputs (m∗, C∗) ∧ AskH]

=
1

qH

(
Pr[ACMA outputs (m∗, C∗)]

− Pr[ACMA outputs (m∗, C∗) ∧ ¬AskH]
)

=
1

qH

(
Pr[S0]− 1

2lq(k)

)

Note that Pr[ACMA outputs (m∗, C∗)∧¬AskH] = 1
2lq(k) due to the uniformity

of outputs of the random oracle H.

• Game G2: In this game, we retain the rules R1-1, R1-2, and R1-4, re-
naming them as “R2-1”, “R2-2”, and “R2-4” respectively. But we modify
R1-3 and obtain a new rule “R2-3”.

R2-3 If ACMA makes a new query (y∗B,mi) to its signcryption oracle,
then we search HList for an entry 〈µi, ri〉 such that µi = (mi, y

∗
A, y∗B, Ki)

for some Ki ∈ ZZ∗q. If there exists one, we do the following.

∗ Search GList for an entry 〈Ki, τi〉. If there exists one, compute
ci = Eτi

(mi). Otherwise, choose τi at random from {0, 1}lG(k) and
compute ci = Eτi

(mi).

∗ Choose si at random from ZZq.
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If there does not exist 〈µi, ri〉 such that µi = (mi, y
∗
A, y∗B, Ki) in HList,

we do the following.

∗ Choose ri at random from ZZq and put 〈µi, ri〉 into HList.

∗ Extract Ki from µi. Then, search GList for an entry 〈Ki, τi〉. If
there exists one, compute ci = Eτi

(mi). Otherwise, choose τi at
random from {0, 1}lG(k) and compute ci = Eτi

(mi).

∗ Choose si at random from ZZq.

Note that either case, we obtain Ci = (ci, ri, si). We then return this
as an answer for the query (y∗B,mi). Finally, we put 〈(y∗B,mi), Ci〉 into
a “query-answer” list SCList for the signcryption oracle SC. Of course,
the same query (y∗B,mi) is asked to the signcryption oracle twice, we
search SCList for the corresponding entry 〈(y∗B,mi), Ci〉 and answer
with Ci.

Note that the above rule makes no change in ACMA’s view in Game G1.
Hence, we get

Pr[S2] = Pr[S1].

• Game G3: In this game, we further modify the rules of the previous game
to obtain a game in which AIDPSV conducts a passive attack on the IDZSCR

scheme.

We now describe the modification as follows: We retain the rules R2-1 and
R2-3, renaming them as “R3-1”, “R3-2” respectively. But we modify
R2-2 and R2-4 obtain new rules “R3-2” and “R3-4” respectively.

R3-2 We choose j uniformly at random from [1, . . . , qH ]. If ACMA

makes a query µj to the random oracle H, then we perform the follow-
ing.

∗ Parse µj as (mj, y
∗
A, y∗B, Kj).

∗ Send Kj to the Verifier of IDZSCR.

∗ When the Verifier makes a random challenge r̃ ∈ ZZq, forward it
to ACMA as an answer to its query µj (to the random oracle H).

On the other hand, if ACMA makes a new query µi where i 6= j to
the random oracle H, then we choose ri uniformly at random from ZZq

and respond with ri. We then update the entry of “query-answer” list
HList with 〈µi, ri〉. If the same query µi is asked, we search for the
corresponding value ri in HList and respond with it.
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R3-4 Once ACMA submits a forgery (m∗, C∗) where C∗ = (c∗, r∗, s∗),
we check if there exists 〈Ku′ , τu′〉, where u′ ∈ [1, . . . , qG], in the entries
in GList such that (y∗Agr∗)s∗x∗B = Ku′ . If there exists such entry, we set
K∗ = Ku′ . Otherwise, we choose K∗ at random from ZZ∗q.
Having obtained K∗, we check if (m∗, y∗A, y∗B, K∗) = µj and r∗ = r̃.
If this test holds, we send s∗ to the Verifier of IDZSCR, otherwise, we
return “Abort” and terminate the game.

If ACMA outputs a valid signcryptext, then the Verifier accepts AIDPSV’s
proof. Hence, we have

Pr[S3] = SuccSI−PSV
AIDPSV,IDZSCR

(k).

Putting all the bounds we have obtained in each game together, we obtain

1

qH

(
SuccFiSO−UF−CMA

ZSCR,ACMA (k)− 1

2lq(k)

)
≤ SuccSI−PSV

AIDPSV,IDZSCR
(k).

ut

We now proceed to show that one can construct an attacker that finds discrete-
logarithm of Alice’s public key y∗A = gx∗A using AIDPSV as a subroutine. We first
define a “Heavy Row” as follows.

Definition 14 (Heavy Row) Assume that there is an attacker AIDPSV that con-
ducts the passive attack against the IDZSCR scheme with SuccSI−PSV

AIDPSV,IDZSCR
(k) ≥

4
2lq(k) , where k and lq(k) are as defined in the description of the ZSCR scheme. Let

Φ(RA, r) be a boolean matrix whose rows and columns correspond to AIDPSV’s
private random strings and the Verifier’s all possible choices of random challenge
r respectively. Its entries are 0 if the Verifier rejects AIDPSV’s proof, and 1 if
the Verifier accepts AIDPSV’s proof. A row of Φ(RA, r) is said to be heavy if the
fraction of 1’s along the row is at least 1

2
SuccSI−PSV

AIDPSV,IDZSCR
(k).

We now state and prove the following lemma called the “Heavy Row Lemma”
[88].

Lemma 4 The 1’s in Φ(RA, r) are located in heavy rows of Φ(RA, r) with a
probability of at least 1

2
.

Proof. By definition of heavy row, the fraction of 1’s in a row which corresponds
to one column is at least 1

2
SuccSI−PSV

AIDPSV,IDZSCR
(k).
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Now, let LocHeavyRow denote an event that the 1’s in Φ(RA, r) are located
in heavy rows of Φ(RA, r). Since “1” appears 1/SuccSI−PSV

AIDPSV,IDZSCR
(k) times in

Φ(RA, r), we have

Pr[LocHeavyRow] ≥ 1

SuccSI−PSV
AIDPSV,IDZSCR

(k)
· 1

2
SuccSI−PSV

AIDPSV,IDZSCR
(k) =

1

2
.

ut

Now, suppose that a FiSO-UF-CMA attacker for ZSCR succeeds in forging sign-
cryptext with the probability greater than (4qH+1)/2lq(k), where qH is the number
of queries to the random oracle H. Then, by Lemma 3, we have

SuccSI−PSV
IDZSCR (tIDPSV ) ≥ 1

qH

(
SuccFiSO−UF−CMA

ZSCR (tCMA, qSC , qG, qH)− 1

2lq(k)

)

≥ 4

2lq(k)
.

It just remains to show that using the SI-PSV attacker for IDZSCR, whose suc-
cess probability is at least 4/2lq(k), one can construct an attacker that finds the
discrete-logarithm x∗ ∈ ZZ∗q of Alice’s public key y∗ = gx∗ ∈ ZZ∗p with non-negligible
probability.

Lemma 5 Using a SI-PSV attacker for the scheme IDZSCR, whose success prob-
ability is at least (greater than or equal to) 4/2lq(k) and running time is bounded
by tIDPSV , as a subroutine, we can construct an attacker that finds the discrete-
logarithm x∗ ∈ ZZ∗q of gx∗ ∈ ZZ∗p. Concretely, we obtain the following bound:

SuccSI−PSV
IDZSCR (tIDPSV ) ≤ 2

√
SuccDL

ZZ∗p (tDL),

where tDL = O(tIDPSV ) + O(k3).

Proof. Let AIDPSV denote an attacker that defeats the SI-PSV security of the
IDZSCR scheme. Assume that the common parameter cp = (k, p, q, g) of IDZSCR,
the Prover’s public key y∗P and the Verifier’s public/private key pair (y∗V , x∗V ) are
provided as input to AIDPSV.

Our aim is to simulate the view of AIDPSV in the real attack game denoted by G0

to obtain a new game G1 in which the attacker ADL finds the discrete-logarithm
x∗ ∈ ZZ∗q of y∗ = gx∗ ∈ ZZ∗p.
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• Game G0: As mentioned, this game is the real attack game in which an
attacker AIDPSV attacks the scheme IDZSCR in the SI-PSV sense. We denote
by S0 the event that AIDZSCR succeeds in masquerading itself as the Prover
of IDZSCR and making the Verifier accept AIDZSCR’s outputs. Since Game
G0 is the same as the real attack game, we have

Pr[S0] = SuccSI−PSV
AIDPSV,IDZSCR

(k).

• Game G1: In this game, we modify the previous game as follows.

– Replace the Prover’s public key y∗P that AIDPSV has access to by y∗ =
gx∗ which ADL tries to find its discrete-logarithm.

– Form Φ(RA, r) as AIDPSV attacks IDZSCR in SI-PSV sense. More pre-
cisely, we record all the (K, r, s)’s where K, r, and s are the values
exchanged from AIDPSV and the Verifier and give 1 if the Verifier out-
puts “Accept” and give 0, otherwise.

– Search for an entry ~a0(= (K0, r0, s0)) with 1 in Φ(RA, r). By Φ0(RA, r),
denote the entry ~a0 is located.

– Search for an entry ~a1(= (K1, r0, s0)) with 1 in Φ0(RA, r).

– Compute x∗ = s0r0−s1r1

s0−s1
∈ ZZ∗q and return x∗ as ADL’s answer.

Note that for ~a0 = (K0, r0, s0), K0 = (y∗P gr0)s0x∗V = (y∗gr0)s0x∗V . Similarly,
for ~a1 = (K1, r1, s1), K1 = (y∗P gr1)s1x∗V = (y∗gr1)s1x∗V . Since ~a0 and ~a1 are
the entries with 1, both of which are in Φ0(RA, r), we have K0 = K1. Thus
we can obtain the discrete-logarithm x∗ of y∗(= gx∗) by computing,

x∗ =
s0r0 − s1r1

s0 − s1

∈ ZZ∗q.

Now, let E0 denote an event that the entry ~a0 is found in Φ(RA, r). Since
this happens whenever AIDPSV succeeds, we have

Pr[E0] ≥ Pr[S0].

We then denote by E1 an event that the entry ~a1 is found in Φ0(RA, r) . By
Lemma 14 (heavy row lemma) and the fact that the fraction of 1’s along a
heavy row is at least 1

2
Pr[S0], we have

Pr[E1] ≥ 1

2
· 1

2
Pr[S0] =

1

4
Pr[S0].
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Hence, if we denote by S1 the event that ADL outputs x∗ in this game, we
obtain

SuccDL
ADL,ZZ∗p

(k) = Pr[E0] Pr[E1] ≥ 1

4
Pr[S0]

2 =
1

4
(SuccSI−PSV

AIDPSV,IDZSCR
(k))2.

Considering the running time, we obtain the bound in the lemma statement. ut

Combining the results of Lemmas 3 and 5, we finally obtain the following theorem.

Theorem 4 If the DL problem is computationally intractable, then Zheng’s orig-
inal signcryption scheme ZSCR is FiSO-UF-CMA secure in the random oracle
model. Concretely, for a FiSO-UF-CMA attacker for ZSCR succeeds in forging
signcryptext with the probability greater than (4qH +1)/2lq(k), the following bound
holds:

1

qH

SuccFiSO−UF−CMA
ZSCR (tCMA, qSC , qG, qH) ≤ 2

√
SuccDL

ZZ∗p (tDL) +
1

qH2lq(k)
,

where qSC is the number of queries to the signcryption oracle SC; qG and qH are
the number of queries to the random oracles G and H; tDL = O(tCMA + qSC +
qG + qH) + O(k3).

4.5 Brief Summary of the Results

In this chapter, we extensively discussed issues related to the integration of mes-
sage confidentiality and authenticity in the symmetric and public key settings. We
then proved that Zheng’s original signcryption scheme is “FSO/FUO-IND-CCA”
secure in the random oracle model, relative to the (generalized) GDH problem.
Although our FSO/FUO-IND-CCA notion is similar to the well known “IND-
CCA” notion defined for standard public key encryption schemes, it is stronger
than the direct adaptation of IND-CCA to the setting of signcryption, since we
allow an attacker to query both the signcryption oracle and the unsigncryption
oracle in a flexible way. We also proved that Zheng’s ’s original signcryption
scheme satisfies our strong unforgeability notion called “FiSO-UF-CMA” in the
random oracle model assuming that the standard DL problem is computationally
intractable.



82

Chapter 5

Identity-Based Threshold
Decryption from the Bilinear
Map

5.1 Introduction

5.1.1 Motivation

Threshold decryption is particularly useful where the centralization of the power
to decrypt is a concern. And the motivation for identity (ID)-based encryption
originally proposed by Shamir [108] is to provide confidentiality without the need
of exchanging public keys or keeping public key directories. A major advantage
of ID-based encryption is that it allows one to encrypt a message by using a
recipient’s identifiers such as an email address.

A combination of these two concepts will allow one to build an “ID-based thresh-
old decryption” scheme. One possible application of such a scheme can be con-
sidered in a situation where an identity denotes the name of the group sharing a
decryption key. As an example, suppose that Alice wishes to send a confidential
message to a committee in an organization. Alice can first encrypt the message
using the identity (name) of the committee and then send over the ciphertext.
Let us assume that Bob who is the committee’s president has created the iden-
tity and hence has obtained a matching private decryption key from the Private
Key Generator (PKG). Preparing for the time when Bob is away, he can share
his private key out among a number of decryption servers in such a way that
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any committee member can successfully decrypt the ciphertext if, and only if,
the committee member obtains a certain number of decryption shares from the
decryption servers.

Another application of the ID-based threshold decryption scheme is to use it
as a building block to construct a mediated ID-based encryption scheme [46].
The idea is to split a private key associated with the receiver Bob’s ID into two
parts, and give one share to Bob and the other to the Security Mediator (SEM).
Accordingly, Bob can decrypt a ciphertext only with the help of the SEM. As
a result, instantaneous revocation of Bob’s privilege to perform decryption is
possible by instructing the SEM not to help him any more.

5.1.2 Contributions of This Chapter

The contributions of this chapters are twofold. First, we construct an ID-based
threshold decryption scheme which can be well-applicable to the situations de-
scribed in the previous section. Our scheme has two advantages over the schemes
appeared in the literature previously, which will be discussed in detail in Section
5.3: 1) Our scheme meets a strong security requirement, that is, our schemes
gives chosen ciphertext security which is proven in the random oracle model [20],
assuming the Bilinear Diffie-Hellman problem [27] is computationally intractable;
2) Our scheme has a useful feature that the private key associated with an ID
rather than the master key of the PKG is shared among decryption servers. Sec-
ond, we apply our ID-based threshold decryption scheme to design a mediated
ID-based encryption scheme secure against more powerful attacks than those
considered previously in the literature.

5.2 Preliminaries

5.2.1 The Admissible Bilinear Map

To begin with, we review the admissible bilinear map which payed the central
role in Boneh and Franklin’s ID-based encryption scheme [27].

The admissible bilinear map, which we denote by ê, is defined over two groups of
the same prime-order q denoted by G and F in which the Computational Diffie-
Hellman (CDH) problem is hard. We will use an additive notation to describe
the operation in G while we will use a multiplicative notation for the operation
in F . In practice, the group G is implemented using a group of points on certain
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elliptic curves, each of which has a small MOV exponent [81] while the group F
will be implemented using a subgroup of the multiplicative group of a finite field,
that is, using the Weil pairing (whose elementary property is described in [21])
or the Tate pairing [53]. The admissible bilinear map ê : G × G → F has the
following properties.

• Bilinear: ê(aR1, bR2) = ê(R1, R2)
ab, where R1, R2 ∈ G and a, b ∈ ZZ∗q.

• Non-degenerate: ê does not send all pairs of points in G ×G to the identity
in F . (Hence, if R is a generator of G then ê(R, R) is a generator of F .)

• Computable: For all R1, R2 ∈ G, the map ê(R1, R2) is efficiently com-
putable.

Throughout the rest of this thesis, we will simply use the term “Bilinear map”
to refer to the admissible bilinear map defined above. We remark that the recent
results [13, 57] show that the Bilinear map implemented using the Tate pairing
offers better performance than the one implemented using the Weil pairing.

5.2.2 Boneh and Franklin’s ID-Based Encryption Scheme

We now describe Boneh and Franklin’s basic version of ID-based encryption
scheme called “BasicIdent” which only gives semantic security (equivalently known
as indistinguishability under chosen-plaintext attack). Below, we denote G \ {O}
where O is the identity element of G, and ZZq \ {0} by G∗ and ZZ∗q respectively.
Also, we denote a security parameter by k ∈ IN.

• A randomized key/common parameter generation algorithm GC(k): This
algorithm is run by the PKG to generate its master/public key pair and all
the necessary common parameters.

– Choose a group G of prime order q, whose generator is P . Specify the
Bilinear map ê : G × G → F .

– Pick a master key s uniformly at random from ZZ∗q and compute Ppub =
sP .

– Choose two hash functions H1 : {0, 1}∗ → G∗ and H2 : F → {0, 1}l,
where l denotes the length of a plaintext.

– Keep s as secret and publish a common parameter cp = (G, q, P , Ppub,
ê, H1, H2).
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• A deterministic private key extraction algorithm EX(cp, ID): This algorithm
is run by the PKG on receiving a private key extraction query from any
user who wants to extract a private key that matches to an identity ID.

– Given ID, compute QID = H1(ID) and DID = sQID.

– Output DID.

• A randomized encryption algorithm E(cp, ID,M): This algorithm is run by
any user who wants to encrypt a message M using the receiver’s identity
ID.

– Compute QID = H1(ID).

– Pick r uniformly at random from ZZ∗q.

– Compute U = rP and V = H2(ê(QID, YPKG)r)⊕M .

– Return a ciphertext C = (U, V ).

• A deterministic decryption algorithm D(cp,DID, C): This algorithm is run
by the user who possesses a private key associated with an identity ID, to
decrypt C.

– Parse C as (U, V ).

– Compute M = V ⊕ H2(ê(DID, U)).

– Return M .

Note that in [27], Boneh and Franklin converted BasicIdent into “FullIdent” using
the Fujisaki- Okamoto transform [55] to give chosen ciphertext security.

5.3 Related Work and Discussions

5.3.1 Threshold Decryption in the Non-ID-Based Setting

Earlier Constructions. The first construction of a threshold decryption scheme in
the non-ID-based setting dates back to 1989. In [44], Desmedt and Frankel pro-
posed a threshold decryption scheme based on the ElGamal encryption scheme
[49]. Later, De Santis et al. [43] proposed a scheme based on the RSA problem
[103]. However, the problem of those schemes is that they seem to be secure
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against chosen-plaintext attack but not known to be secure against chosen ci-
phertext attack.

Chosen-Ciphertext Security for Threshold Decryption. In 1993, Lim and Lee [77]
made an important observation on the security of threshold decryption that it is
difficult to build a threshold decryption scheme withstanding chosen ciphertext
attack without making it publicly checkable.

However, it was Shoup and Gennaro [111]’s work that first formalized a chosen
ciphertext security notion for threshold decryption schemes and constructed two
provably secure yet practical threshold decryption schemes. According to [112],
they had tried to build up a publicly checkable threshold decryption scheme,
which is necessary to construct a threshold decryption scheme secure against
chosen ciphertext attack, by making the IND-CPA secure ElGamal-type thresh-
old scheme publicly checkable using a non-interactive zero-knowledge proof of
knowledge of discrete-logarithm which is similar to the Schnorr signature [104].
In fact, this method had been used by Tsiounis and Yung to design their public
key encryption scheme [121]. But Shoup and Gennaro soon realized that it is dif-
ficult to prove such publicly checkable schemes (including Tsiounis and Yung’s)
are secure against chosen ciphertext attack, even in the random oracle model,
due to the exponential blowing up of running time of rewinding the attacker to
extract a knowledge. (For a more detailed account on this, readers are referred to
[112].) They finally used a non-interactive zero-knowledge proof of membership
to fix the problem, but this made their schemes somewhat less efficient.

After Shoup and Gennaro’s work, Canetti and Goldwasser [29] proposed a thresh-
old decryption scheme derived from Cramer and Shoup [41]’s famous public key
encryption scheme provably secure against chosen ciphertext attack without de-
pending on the random oracle model. Even though Cramer and Shoup’s scheme
is not publicly checkable, Canetti and Goldwasser used the algebraic property of
the scheme that the receiver can check the validity of a ciphertext by using one
part of the private key, before decrypting the ciphertext using the second part of
the private key. However, the problem of their approach is that the servers must
keep a large number of pre-shared secrets.

More recently, Fouque and Pointcheval [52] proposed a generic method to convert
any public key encryption which is indistinguishable [62] against chosen-plaintext
attack (IND-CPA) to the threshold decryption scheme secure against chosen ci-
phertext attack in the random oracle model. They observed that Naor and Yung
[85]’s twin-encryption technique and the random oracle can yield an efficient
non-interactive zero-knowledge proof of membership and as a result, threshold
decryption schemes can be constructed. The main advantage of Fouque and
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Pointcheval’s conversion method is its generic nature that can be applied to vari-
ous computational primitives such as integer factorization, but it has a drawback
in that the converted threshold decryption schemes are complex and suffer a sig-
nificant increase of the size of ciphertexts due to the use of the twin-encryption
method.

5.3.2 Threshold Decryption in the ID-Based Setting

Boneh and Franklin’s “Distributed PKG”. In order to prevent a single PKG from
full possession of the master key in ID-based encryption, Boneh and Franklin [27]
suggested that the PKG’s master key should be shared among a number of PKGs
using the techniques of threshold cryptography, which they call “Distributed
PKG”. More precisely, the PKG’s master key x is distributed into a number of
PKGs in such a way that each of the PKG holds a share xi ∈ ZZ∗q of a Shamir’s
(t, n) secret-sharing [107] of x ∈ ZZ∗q and responds to a user’s private key extraction
request with Di

ID = xiQID, where QID = H1(ID). If the technique of [60] is used,
one can ensure that the master key is jointly generated by PKGs so that the
master key is not stored or computed in any single location.

As an extension of the above technique, Boneh and Franklin suggested that the
distributed PKGs should function as decryption servers for threshold decryption.
That is, each PKG responds to a decryption query C = (U, V ) in BasicIdent with
ê(xiQID, U). However, we argue that this method is not quite practical in practice
since it requires each PKG to be involved at all times (that is, on-line) in the
generation of decryption shares because the value “U” changes whenever a new
ciphertext is created. Obviously, this creates a bottleneck on the PKGs and also
violates one of the basic requirements of an ID-based encryption scheme, “the
PKG can be closed after key generation”, which was envisioned by Shamir in his
original proposal of ID-based cryptography [108]. Moreover, there is a scalability
problem when the number of available distributed PKGs is not matched against
the number of decryption servers required, say, there are only 3 available PKGs
while a certain application requires 5 decryption servers.

Therefore, a better approach would be sharing a private key associated with an
identity rather than sharing a master key of the PKG. In addition to its easy
adaptability to the situation where an identity denotes a group sharing a decryp-
tion key as described in Section 5.1, an advantage of this approach is that one can
fully utilize Boneh and Franklin’s Distributed PKG method without the above-
mentioned scalability problem, dividing the role of “distributed PKGs” from that
of “decryption servers”. That is, an authorized dealer (a representative of group,
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such as “Bob” described in Section 5.1, or a single PKG) may ask an identity to
each of the “distributed PKGs” for a partial private key associated the identity.
Having obtained enough partial private keys, the dealer can construct the whole
private key and distribute it into the “decryption servers” in his domain at will
while the master key remains secret from any parties.

Dodis and Yung, and Libert and Quisquiter’s Work. To our knowledge, other
papers that have treated “threshold decryption” in the context of ID-based cryp-
tography are [47] and [75].

Dodis and Yung observed in [47] how threshold decryption can be realized in
Gentry and Silverberg [61]’s “hierarchical ID-based encryption” setting. Inter-
estingly, their approach is to share a private key (not the master key of the
PKG) obtained from a user at a higher level. Although this was inevitable in the
hierarchical ID-based encryption setting and its advantage in general ID-based
cryptography was not mentioned in [47], it is more sound approach than sharing
the master key of the PKG as we discussed above. However, their threshold de-
cryption scheme is very-sketched and chosen ciphertext security for the scheme
was not considered in [47].

More recently, Libert and Quisquater [75] also constructed an ID-based threshold
decryption scheme. However, their approach was to share a master key of the
PKG, which is different from ours. Moreover, our scheme gives chosen ciphertext
security while Libert and Quisquater’s scheme does not.

Other Related Work. Although not being directly related to “ID-based threshold
decryption”, there have been interesting applications of Boneh and Franklin’s
Distributed PKG.

Recently, Chen, Harrison, Soldera, and Smart [38] illustrated how the distributed
PKGs in Boneh and Franklin’s ID-based encryption can be applied to the real
world situations. Furthermore, they dealt with general cases of disjunction and
conjunction of the multiple PKGs/identities exploiting, the algebra of the Bilinear
maps. Subsequently, more complicated cases of the disjunction and conjunction
of the multiple PKGs and their applications to access controls were discussed by
Smart [113].

Khalili, Katz and Arbaugh [71] also discussed the use of the distributed PKGs
in Boneh and Franklin’s scheme, especially focusing on its application to ad-hoc
networks.



89

5.4 Security Notion for ID-based Threshold De-

cryption

5.4.1 High Level Description of ID-based Threshold De-
cryption

We denote a generic (t, n) ID-based threshold decryption scheme by “IDT HD”,
which consists of algorithms GC, EX, DK, E, D, SV, and SC.

Like other ID-based cryptographic schemes, we assume the existence of a trusted
PKG. The PKG runs the key/common parameter generation algorithm GC to
generate its master/public key pair and all the necessary common parameters.
The PKG’s public key and the common parameters are given to every interested
party.

On receiving a user’s private key extraction request which consists of an identity,
the PKG then runs the private key extraction algorithm EX to generate the
private key associated with the requested identity.

An authorized dealer who possesses the private key associated with an identity
can run the private key distribution algorithm DK to distribute the private key
into n decryption servers. DK makes use of an appropriate secret-sharing tech-
nique to generate shares of the private key as well as verification keys that will
be used for checking the validity of decryption shares. Each share of the private
key and its corresponding verification key are sent to an appropriate decryption
server. The decryption servers then keep their private key shares secret but pub-
lish the verification keys. It is important to note here that the entity that runs
DK can vary flexibly depending on the cryptographic services that the PKG can
offer. For example, if the PKG has an only functionality of issuing private keys,
the authorized dealer that runs DK would be a normal user (such as Bob in the
example given in Section 5.1) other than the PKG. However, if the PKG has
other functionalities, for example, organizing threshold decryption, the PKG can
run DK.

Given a user’s identity, any user that wants to encrypt a plaintext can run the
encryption algorithm E to obtain a ciphertext. A legitimate user that wants
to decrypt a ciphertext gives it to the decryption servers requesting decryption
shares. The decryption servers then run the decryption share generation algo-
rithm D taking the ciphertext as input and send the resulting decryption shares
to the user. Note that the validity of the shares can be checked by running the
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Figure 5.1: (3,4)-Identity-Based Threshold Decryption

decryption share verification algorithm SV. When the user collects valid decryp-
tion shares from at least t servers, the plaintext can be reconstructed by running
the share combining algorithm SC.

Figure 5.1 illustrates the scenario of (3, 4)-ID-based threshold decryption. Below,
we formally define IDT HD.

Definition 15 (ID-Based Threshold Decryption) The IDT HD scheme con-
sists of the following algorithms.

• A randomized key/common parameter generation algorithm GC(k): Given
a security parameter k ∈ N, this algorithm computes the PKG’s mas-
ter/public key pair (skPKG, pkPKG). Then, it generates necessary common
parameters, e.g., descriptions of hash functions and mathematical groups.
The output of this algorithm denoted by cp includes such parameters and
the PKG’s public key pkPKG. Note that cp is given to all interested entities
while the matching master key skPKG of pkPKG is kept secret.

• A private key extraction algorithm EX(cp, ID): Given an identity ID, this
algorithm generates a private key associated with ID, denoted by skID.
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• A randomized private key distribution algorithm DK(cp, skID, n, t): Given
a private key skID associated with an identity ID, a number of decryption
servers n and a threshold parameter t, this algorithm generates n shares
of skID and provides each one to decryption servers Γ1, Γ2, . . . , Γn. It also
generates a set of verification keys that can be used to check the validity
of each shared private key. We denote the shared private keys and the
matching verification keys by {ski}1≤i≤n and {vki}1≤i≤n, respectively. Note
that for each 1 ≤ i ≤ n, the pair (ski, vki) is sent to the decryption server
Γi, then Γi publishes vki but keeps ski as secret.

• A randomized encryption algorithm E(cp, ID,M): Given a public identity
ID and a plaintext M , this algorithm generates a ciphertext denoted by C.

• A decryption share generation algorithm D(cp, ski, C): Given a ciphertext
C and a shared private key ski of a decryption server Γi, this algorithm
generates a decryption share δi,C . Note that the value of δi,C can be a
special symbol “Invalid Ciphertext”.

• A decryption share verification algorithm SV(cp, {vki}1≤i≤n, C, δi,C): Given
a ciphertext C, a set of verification keys {vki}1≤i≤n, and a decryption share
δi,C , this algorithm checks the validity of δi,C . The output of this algorithm
is either “Valid Share” or “Invalid Share”.

• A share combining algorithm SC(cp, C, {δi,C}i∈Φ): Given a ciphertext C and
a set of decryption shares {δi,C} where Φ ⊂ {1, . . . , n} such that |Φ| ≥ t
(| · | denotes the cardinality), this algorithm outputs a plaintext M . Note
that the combining algorithm is allowed to output a special symbol “Invalid
Ciphertext”, which is distinct from all possible plaintexts.

5.4.2 Chosen-Ciphertext Security for ID-Based Thresh-
old Decryption

We now define a security notion for the IDT HD scheme against chosen ciphertext
attack, which we call “IND-IDTHD-CCA”.

Definition 16 (IND-IDTHD-CCA) Let ACCA be an attacker assumed to be
a probabilistic Turing machine. Suppose that a security parameter k is given
to ACCA as input. Now, consider the following game in which the attacker ACCA

interacts with the “Challenger”.
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Phase 1: The Challenger runs the PKG’s key/common parameter gener-
ation algorithm taking a security parameter k as input. The Challenger
gives ACCA the resulting common parameter cp which includes the PKG’s
public key pkPKG. However, the Challenger keeps the master key skPKG

secret from ACCA.

Phase 2: ACCA issues a number of private key extraction queries. We
denote each of these queries by ID. On receiving the identity query ID,
the Challenger runs the private key extraction algorithm on input ID and
obtains a corresponding private key skID. Then, the Challenger returns skID
to ACCA.

Phase 3: ACCA corrupts t− 1 out of n decryption servers.

Phase 4: ACCA issues a target identity query ID∗. On receiving ID∗, the
Challenger runs the private key extraction algorithm to obtain a private
key skID∗ associated with the target identity. The Challenger then runs
the private key distribution algorithm on input skID∗ with parameter (t, n)
and obtains a set of private/verification key pairs {(skID∗i

, vkID∗i
)}, where

1 ≤ i ≤ n. Next, the Challenger gives ACCA the private keys of corrupted
decryption servers and the verifications keys of all the decryption servers.
However, the private keys of uncorrupted servers are kept secret from ACCA.

Phase 5: ACCA issues arbitrary private key extraction queries and arbitrary
decryption share generation queries to the uncorrupted decryption servers.
We denote each of these queries by ID and C respectively. On receiving ID,
the Challenger runs the private key extraction algorithm to obtain a private
key associated with ID and returns it to ACCA. The only restriction here is
that ACCA is not allowed to query the target identity ID∗ to the private key
extraction algorithm. On receiving C, the Challenger runs the decryption
share generation algorithm taking C and the target identity ID∗ as input
to obtain a corresponding decryption share and returns it to ACCA.

Phase 6: ACCA outputs two equal-length plaintexts (M0,M1). Then the
Challenger chooses a bit β uniformly at random and runs the encryption
algorithm on input cp, Mβ and ID∗ to obtain a target ciphertext C∗ =
E(cp, ID∗,Mβ). Finally, the Challenger gives (C∗, ID∗) to ACCA.

Phase 7: ACCA issues arbitrary private key extraction queries and arbitrary
decryption share generation queries. We denote each of these queries by ID

and C respectively. On receiving ID, the Challenger runs the private key
extraction algorithm to obtain a private key associated with ID and returns
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it to ACCA. As Phase 5, the only restriction here is that ACCA is not allowed
to query the target identity ID∗ to the private key extraction algorithm. On
receiving C, the Challenger runs the decryption share generation algorithm
on input C to obtain a corresponding decryption share and returns it to
ACCA. Differently from Phase 5, the target ciphertext C∗ is not allowed to
query in this phase.

Phase 8: ACCA outputs a guess β̃ ∈ {0, 1}.

We define the attacker ACCA’s success by

SuccIND−IDTHD−CCA
IDT HD,ACCA (k) = 2 · Pr[β̃ = β]− 1.

We denote by SuccIND−IDTHD−CCA
IDT HD (tIDCCA, qE, qD) the maximum of the attacker

ACCA’s success over all attackers ACCA having running time tIDCCA and making
at most qE private key extraction queries and qD decryption share generation
queries. Note that the running time and the number of queries are all polynomial
in the security parameter k.

The ID-based threshold decryption scheme IDT HD is said to be IND-IDTHD-
CCA secure if SuccIND−IDTHD−CCA

IDT HD (tIDCCA, qE, qD) is negligible in k.

5.5 Our ID-Based Threshold Decryption Scheme

5.5.1 Building Blocks

First, we present necessary building blocks that will be used to construct our ID-
based threshold decryption scheme. We remark that since our ID-based thresh-
old decryption scheme is also of the Diffie-Hellman (DH)-type, it follows Shoup
and Gennaro [112]’s framework for the design of DH-based threshold decryption
schemes to some extent. However, our scheme has a number of features that
distinguishes itself from the schemes in [112] due to the special property of the
underlying group G.

Publicly Checkable Encryption

Publicly checkable encryption is a particularly important tool for building thresh-
old decryption schemes secure against chosen ciphertext attack as discussed by
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Lim and Lee [77]. The main reason is that in the threshold decryption, the at-
tacker has decryption shares as additional information as well as a ciphertext,
hence there is a big chance for the attacker to get enough decryption shares to
recover the plaintext before the validity of the ciphertext is checked. (Readers
are referred to [77] and [112] for more detailed discussions on this issue.)

Note that public checkability of ciphertexts in threshold decryption schemes is
usually given by non-interactive zero-knowledge (NIZK) proofs, e.g., [112, 52].
However, we emphasize that in our scheme, this can be done without a NIZK
proof, by simply creating a tag on the ElGamal [49] ciphertext as follows.

Let M ∈ {0, 1}l be a message. Then, encrypt M by creating a ciphertext
C = (U, V,W ) = (rP, H2(κ) ⊕ M, rH3(U, V )) where κ = ê(H1(ID), YPKG)r for
hash functions H1 : {0, 1}∗ → G∗, H2 : F → {0, 1}l, and H3 : G∗ × {0, 1}l → G∗.
Without recovering M during the decryption process (that is, leaving the cipher-
text C intact), the validity of C can be checked by testing if ê(P, W ) = ê(U,H3),
where H3 = H3(U, V ) ∈ G∗. Note that this validity test exploits the fact that the
Decisional Diffie-Hellman (DDH) problem can be solved in polynomial time in
the group G, and passing the test implies that (P, U,H3,W ) is a Diffie-Hellman
tuple since (P, U,H3,W ) = (P, rP, sP, rsP ) assuming that H3 = sP ∈R G∗ for
some s ∈ ZZ∗q.

We remark that using the above property of the Bilinear map, we could develop
the non-ID-based threshold decryption scheme which is simple and provides short
ciphertexts [9].

Secret-Sharing over G

Recall that the distributed PKGs of Boneh and Franklin’s ID-based encryption
scheme can be achieved by sharing the PKG’s master key x. Indeed, this can be
done using Shamir’s secret-sharing technique [107] as the master key x is a single
element in ZZ∗q and hence Shamir’s technique can directly be used to distribute
an element in ZZ∗q.

However, in order to distribute a private key DID ∈ G, we need some trick. In
what follows, we show one can easily share a point on G by modifying Shamir’s
(t, n) secret-sharing scheme. (Note that although “Shamir’s secret-sharing over
G” was mentioned in [47], how to realize it was not described. So we explicitly
describe it for clarity.)



95

Distribution Phase: Let q be a prime order of a group G of points on
elliptic curve. Let S ∈ G∗ be a secret-point to share. Suppose that we have
chosen integers t and n satisfying 1 ≤ t ≤ n < q.

First, we pick R1, R2, . . . , Rt−1 at random from G∗. Then, we define a
function F : IN ∪ {0} → G such that F (u) = S +

∑t−1
l=1 ulRl.

Now, we compute Si = F (i) ∈ G for 1 ≤ i ≤ n and send (i, Si) to the i-th
member of the group of cardinality n. Note that when i = 0, we obtain the
secret itself, that is, S = F (0). (We assume that the “multiplication-by-m
map for a positive integer m” denoted by mP is extended to all integer
m ∈ ZZ by defining 0P = O where O is the identity element of G, and
(−m)P = −(mP ) [21].) Note that in practice, “picking Rl at random from
G∗” can be implemented by computing rlP for randomly chosen rl ∈ ZZ∗q,
where P ∈ G∗ is a generator of G.

Reconstruction Phase: Let Φ ⊂ {1, . . . , n} be a set such that |Φ| ≥ t,
where | · | denotes the cardinality of the given set. The function F (u) can
be reconstructed by computing

F (u) =
∑
j∈Φ

cΦ
ujSj where cΦ

uj =
∏

ι∈Φ,ι6=j

u− ι

j − ι
∈ ZZq.

Notice that cΦ
uj ∈ ZZq is the Lagrange interpolation coefficient used in Shamir’s

secret sharing scheme: If we write S = sP and Rl = rlP for for some s, rl ∈ ZZ∗q
and 1 ≤ l ≤ t − 1 (but, we do not know s and rl), we have F (u) = sP +
ur1P + · · · + ut−1rt−1P = (s + r1u + · · · + rt−1u

t−1)P . Hence, the Lagrange
coefficients cΦ

uj’s reconstruct the original function F (u). In practice, we recover
the secret S directly (without reconstructing F (u)) by computing

∑
j∈Φ cΦ

0jSj

where cΦ
0j =

∏
ι∈Φ,ι6=j

ι
ι−j

. Note that the computation of cΦ
ij ∈ ZZq can be done in

polynomial time.

Zero Knowledge Proof for the Equality of Two Discrete-Logarithms
Based on the Bilinear Map

To ensure that all decryption shares are consistent, that is, to give robustness
to threshold decryption, we need a certain checking procedure. In contrast to
the validity checking method of ciphertexts discussed in Section 5.5.1, we need a
non-interactive zero-knowledge proof system since the share of the key κ is the
element of the group F , where the DDH problem is believed to be hard.
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Motivated by [37] and [112], we construct a zero-knowledge proof of membership

system for the language LEDLogF
P,P̃

def
= {(µ, µ̃) ∈ F × F| logg µ = logg̃ µ̃} where

g = ê(P, P ) and g̃ = ê(P, P̃ ) for generators P and P̃ of G (the groups G and F ,
and the Bilinear map ê are as defined in Section 5.2.2) as follows.

Suppose that (P, P̃ , g, g̃) and (κ, κ̃) ∈ LEDLogF
P,P̃

are given to the Prover and the

Verifier, and the Prover knows a secret S ∈ G∗. The proof system which we call
“ZKBM” works as follows.

• The Prover chooses a non-identity element T uniformly at random from G
and computes γ = ê(T, P ) and γ̃ = ê(T, P̃ ). The Prover sends γ and γ̃ to
the Verifier.

• The Verifier chooses h uniformly at random from ZZ∗q and sends it to the
Prover.

• On receiving h, the Prover computes L = T + hS ∈ G and sends it to
the Verifier. The Verifier checks if ê(L, P ) = γκh and ê(L, P̃ ) = γ̃κ̃h. If
the equality holds then the Verifier returns “Accept”, otherwise, returns
“Reject”.

We state the following lemma regarding the security of ZKBM.

Lemma 6 The ZKBM protocol satisfies completeness, soundness and zero-knowledge
against the honest Verifier.

Proof. As preliminaries, we first prove the following two claims.

Claim 1 Let P and P̃ be generators of G. Then ê(P, P̃ ) is a generator of F .

Proof. The proof will use the basic fact from the elementary abstract algebra
that if a is a generator of a finite cyclic group G of order n, then the other
generators of G are the elements of the form ar, where gcd(r, n) = 1.

First, note that the two groups G and F are cyclic because their order q is a
prime. Since P̃ is another generator of G by assumption, we can write P̃ = uP ,
where gcd(u, q) = 1. Then, by the bilinear property of ê, we have ê(P, P̃ ) =
ê(P, uP ) = ê(P, P )u. Also, by the non-degenerate property of ê, ê(P, P ) is a
generator of F . Hence, ê(P, P̃ ) is also a generator of F since ê(P, P̃ ) = ê(P, P )u

and gcd(u, q)=1. ut
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Claim 2 Let P and P̃ be generators of G. Then, (κ, κ̃) ∈ LEDLogF
P,P̃

if and only if

there exists a non-identity element S ∈ G such that κ = ê(S, P ) and κ̃ = ê(S, P̃ ).

Proof. By Claim 1, g and g̃ are generators of F . Now, suppose that (κ, κ̃) ∈
LEDLogF

P,P̃
. Then, by definition of LEDLogF

P,P̃
, there exists x ∈ ZZ∗q such that gx = g̃x.

Since g = ê(P, P ) and g̃ = ê(P, P̃ ), gx = g̃x implies ê(P, P )x = ê(P, P̃ )x. But,
since ê(P, P )x = ê(xP, P ) and ê(P, P̃ )x = ê(xP, P̃ ) by the bilinear property of ê,
we obtain κ = ê(S, P ) and κ̃ = ê(S, P̃ ) by letting S = xP . The proof of converse
is also easy. ut

Now, we show that the protocol is complete. That is, if the Prover and the
Verifier follow the protocol without cheating, the Verifier accepts the Prover’s
claim with overwhelming probability: Assume that (κ, κ̃) ∈ LEDLogF

P,P̃
. By Claim

2, we have κ = ê(S, P ) and κ̃ = ê(S, P̃ ) for some S ∈ G. Assume that the Prover
sends (γ, γ̃) where γ = ê(T, P ) and γ̃ = ê(T, P̃ ) for random T ∈ G to the honest
Verifier. Now, observe from the above protocol that ê(L, P ) = ê(T + hS, P ) and
that γκh = ê(T, P )ê(S, P )h = ê(T, P )ê(hS, P ). By the bilinear property of ê, we
have ê(T, P )ê(hS, P ) = ê(T + hS, P ). Thus, we obtain ê(L, P ) = γκh and this
implies that the above protocol satisfies completeness property.

Second, we show the soundness of the protocol: Assume that (κ, κ̃) /∈ LEDLogF
P,P̃

.

Namely, we have κ = ê(S, P ) and κ̃ = ê(S ′, P̃ ) for some S 6= S ′ ∈ G. Assume that
a cheating Prover sends (γ, γ̃) where γ = ê(T, P ) and γ = ê(T ′, P̃ ) to the honest
Verifier. If the Verifier is to accept this, we should have that ê(L, P ) = γκh and
ê(L, P̃ ) = γ̃κ̃h, which implies T + hS = T ′ + hS ′. Now suppose that T = tP ,
T ′ = t′P ; S = xP and S ′ = x′P for t, t′, x, x′ ∈ ZZ∗q. Then, T + hS = T ′ + hS ′

implies (t− t′)+h(x−x′) = 0. However, this happens with probability 1/q, since
we have assumed that S ′ 6= S which implies x′ 6= x.

Finally, we can construct a simulator which simulates the communication between
the Prover and the Verifier provided that the Verifier behaves honestly. More
precisely, the simulator chooses h̄ and L̄ uniformly at random from ZZ∗q and G
respectively. Then, it computes γ̄ = ê(L̄, P )/κh̄ and ¯̃γ = ê(L̄, P̃ )/κ̃h̄. The output
of the simulator is a tuple (γ̄, ¯̃γ, h̄, L̄). It can be easily verified that the simulated
values are identically distributed as those in the real communication if the Verifier
behaves honestly. As a result, the above protocol becomes a zero-knowledge proof
against a honest Verifier. ut
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Notice that ZKBM can easily be converted to a NIZK proof, making the random
challenge an output of a random oracle [20]. Note that the above protocol can
be viewed as a proof that (g, g̃, κ, κ̃) is a Diffie-Hellman tuple since if (κ, κ̃) ∈
LEDLogF

P,P̃
then κ = gx and κ̃ = g̃x for some x ∈ ZZ∗q and hence (g, g̃, κ, κ̃) =

(g, g̃, gx, g̃x) = (g, gy, gx, gxy) for some y ∈ ZZ∗q.

5.5.2 Description of Our ID-Based Threshold Decryption
Scheme

We now describe our ID-based threshold decryption scheme. We call our scheme
“IDTHDBM”, meaning “ID-based threshold decryption scheme from the bilinear
map”. The IDTHDBM scheme consists of the following algorithms.

• GC(k): Given a security parameter k, this algorithm generates two groups
G and F of the same prime order q ≥ 2k and chooses a generator P of
G. Then, it specifies the Bilinear map ê : G × G → F and the hash
functions H1, H2, H3 and H4 such that H1 : {0, 1}∗ → G∗; H2 : F → {0, 1}l;
H3 : G∗×{0, 1}l → G∗; H4 : F ×F ×F → ZZ∗q, where l denotes the length of
a plaintext. Next, it chooses the PKG’s master key x uniformly at random
from ZZ∗q and computes the PKG’s public key YPKG = xP . Finally, it returns
a common parameter cp = (G, q, P , ê, H1, H2, H3, H4, YPKG) while keeping
the master key x secret.

• EX(cp, ID): Given an identity ID, this algorithm computes QID = H1(ID)
and DID = xQID. Then, it returns the private key DID associated with ID.

• DK(cp, ID, DID, t, n) where 1 ≤ t ≤ n < q: Given a private key DID, the
number of decryption servers n and a threshold parameter t, this algorithm
first picks R1, R2, . . . , Rt−1 at random from G∗ and constructs F (u) = DID+∑t−1

j=1 ujRj for u ∈ {0} ∪ IN. It then computes each server Γi’s private key
Si = F (i) and verification key yi = ê(Si, P ) for 1 ≤ i ≤ n. Subsequently, it
secretly sends the distributed private key Si and the verification key yi to
server Γi for 1 ≤ i ≤ n. Γi then keeps Si as secret while making yi public.

• E(cp, ID,m): Given a plaintext M ∈ {0, 1}l and an identity ID, this algo-
rithm chooses r uniformly at random from ZZ∗q, and subsequently computes
QID = H1(ID) and κ = ê(QID, YPKG)r. It then computes

U = rP ; V = H2(κ)⊕M ; W = rH3(U, V )
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and returns a ciphertext C = (U, V, W ).

• D(cp, Si, C): Given a private key Si of each decryption server and a cipher-
text C = (U, V,W ), this algorithm computes H3 = H3(U, V ) and checks if
ê(P, W ) = ê(U,H3).

If C has passed the above test, this algorithm computes κi = ê(Si, U),
κ̃i = ê(Ti, U), ỹi = ê(Ti, P ), λi = H4(κi, κ̃i, ỹi), and Li = Ti + λiSi for
random Ti ∈ G, and outputs δi,C = (i, κi, κ̃i, ỹi, λi, Li). Otherwise, it returns
δi,C =(i, “Invalid Ciphertext”).

• SV(cp, {yi}1≤i≤n, C, δi,C): Given a ciphertext C = (U, V,W ), a set of veri-
fication keys {y1, . . . , yn}, and a decryption share δi,C , this algorithm com-
putes H3 = H3(U, V ) and checks if ê(P, W ) = ê(U,H3).

If C has passed the above test then this algorithm does the following:

- If δi,C is of the form (i, “Invalid Ciphertext”) then return “Invalid
Share”.

- Else parse δi,C as (i, κi, κ̃i, ỹi, λi, Li) and compute λ′i = H4(κi, κ̃i, ỹi).

- Check if λ′i = λi, ê(Li, U)/κ
λ′i
i = κ̃i and ê(Li, P )/y

λ′i
i = ỹi.

- If the test above holds, return “Valid Share”, else output “Invalid
Share”.

Otherwise, does the following:

- If δi,C is of the form (i, “Invalid Ciphertext”), return “Valid Share”,
else output “Invalid Share”.

• SC(cp, C, {δj,C}j∈Φ): Given a ciphertext C and a set of valid decryption
shares {δj,C}j∈Φ where |Φ| ≥ t, this algorithm computes H3 = H3(U, V )
and checks if ê(P, W ) = ê(U,H3).

If C has not passed the above test, this algorithm returns “Invalid Cipher-
text”. (In this case, all the decryption shares are of the form (i, “Invalid

Ciphertext”).) Otherwise, it computes κ =
∏

j∈Φ κ
cΦ0j

j and M = H2(κ)⊕ V ,
and returns M .

It is easy to see that if C is a valid ciphertext and |Φ| ≥ t then SC(C, {δj}j∈Φ) =
m: Indeed, if C = (U, V, W ) has passed all the validity checks above,

∏
j∈Φ

κ
cΦ0j

j =
∏
i∈Φ

ê(Sj, U)cΦ0j =
∏
j∈Φ

ê(Sj, rP )cΦ0j = ê(
∑
j∈Φ

cΦ
0jSj, rP )
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= ê(DID, P )r = ê(xQID, P )r = ê(QID, xP )r

= ê(QID, YPKG)r = dr = κ,

where cΦ
0j is the Lagrange coefficient defined in Section 5.5.1. Hence, H2(κ)⊕V =

H2(κ)⊕ (H1(d
r)⊕M) = M .

5.5.3 Security Analysis of Our ID-Based Threshold De-
cryption Scheme

Bilinear Diffie-Hellman Problem

Before analyzing our scheme, we review the Bilinear Diffie-Hellman (BDH) prob-
lem, which is a new class of computational problem introduced by Boneh and
Franklin [27].

Definition 17 (BDH) Let G and F be two groups of a prime order q ≥ 2k,
where k is security parameter. Let P ∈ G∗ be a generator of G. Suppose that
there exists a bilinear map ê : G×G → F . Let ABDH be an attacker modelled as a
probabilistic Turing machine taking the security parameter k as input. Suppose
that a, b, and c are uniformly chosen at random from ZZ∗q and aP , bP , and cP
are computed.

ABDH is to solve the following problem:

• Given (G, q, ê, P, aP, bP, cP ), compute ê(P, P )abc.

We define ABDH’s success by

SuccBDH
G,ABDH(k) = Pr[ABDH outputs ê(P, P )abc].

We denote by SuccBDH
G (tBDH) the maximal success probability SuccBDH

G,ABDH(k) over
all attackers having running time bounded by tBDH which is polynomial in the
security parameter k.

The BDH problem is said to be computationally intractable if SuccBDH
G (tBDH) is

negligible in k.
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Proof of Security

Regarding the security of the IDTHDBM scheme, we obtain the following theorem
implying that the IDTHDBM scheme is IND-IDTHD-CCA secure in the random
oracle model assuming that the BDH problem is computationally intractable.

Theorem 5 Suppose that an IND-IDTHD-CCA attacker for the scheme IDTHDBM
issues up to qE private key extraction queries, qD decryption share generation
queries, qH1, qH2, qH3, and qH4 queries to to the random oracles H1, H2, H3, and
H4 respectively. Using this attacker as a subroutine, we can construct an attacker
for solving the BDH problem in the group G, whose running time is bounded by
tBDH . Concretely, we obtain the following advantage bound:

1

qH1

SuccIND−IDTHD−CCA
IDTHDBM (tIDCCA, qE, qD, qH1 , qH2 , qH3 , qH4)

≤ 2SuccBDH
G (tBDH) +

qD + qDqH4

2k−1
,

where tBDH = tIDCCA + max(qE, qH1)O(k3) + qH1 + qH2O(k3) + qH4qDO(k3) for a
security parameter k.

To prove the above theorem, we derive a non-ID-based threshold decryption
scheme called “THDBM” from the IDTHDBM scheme, which will be described shortly.
We then show in Lemma 7 that the IND-THD-CCA security of the THDBM scheme,
which will be defined after the description of THDBM, implies the IND-IDTHD-
CCA security of the IDTHDBM scheme. Next, we show in Lemma 8 that the
intractability of the BDH problem implies the THD-IND-CCA security of the
THDBM scheme. Combining Lemmas 7 and 8, we obtain Theorem 5.

As mentioned, we describe the THDBM scheme. Actually, THDBM is very similar to
IDTHDBM except for some differences in the key/common parameter generation
and encryption algorithms. We only describe these two algorithms here.

• GK(k, t, n): Taking a security parameter k as input, this algorithm generates
two groups G and F of the same prime order q ≥ 2k and chooses a generator
P of G. Then, it specifies the Bilinear map ê : G × G → F and the
following hash functions H2, H3, and H4 such that H2 : F → {0, 1}l; H3 :
G∗ × {0, 1}l → G∗; H4 : F → ZZ∗q, where l denotes the length of a plaintext.
Next, it chooses x uniformly at random from ZZ∗q and computes Y = xP .
Then, it chooses Q uniformly at random from G∗ and computes D = xQ.
Note that (Y, D) will be a public/private key pair. Now, given a private key
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D, the number of decryption servers n and a threshold parameter t, this
algorithm picks R1, R2, . . . , Rt−1 at random from G and computes F (x) =
D +

∑t−1
j=1 xjRj. Then, it computes each server’s private key Si = F (i) for

1 ≤ i ≤ n and verification key yi = ê(Si, P ) for 1 ≤ i ≤ n. Finally, it
outputs a common parameter cp = (G, q, P, ê, H2, H3, H4, Y,Q), and sends
the verification/private key pair (yi, Si) to each decryption server Γi for
1 ≤ i ≤ n. Upon receiving (yi, Si), each decryption server publishes yi

where 1 ≤ i ≤ n.

• E(cp,m): Given a plaintext message m ∈ {0, 1}l, this algorithm chooses r
uniformly at random from ZZ∗q and computes d = ê(Q, Y ), κ = dr in turn.
Then, it computes U = rP , V = H2(κ) ⊕ m and W = rH3(U, V ), and
outputs a ciphertext C = (U, V, W ).

We now review the chosen ciphertext security notion of (non-ID-based) threshold
decryption. First, we denote a generic (t, n) threshold decryption scheme in the
non-ID-based setting by “T HD”. The T HD scheme consists of a key/common
parameter generation algorithm GK, an encryption algorithm E, a decryption
share generation algorithm D, a decryption share verification algorithm SV, and
a share combining algorithm SC.

By running GC, a trusted dealer generates a public key and its matching private
key, and shares the private key among a n decryption servers. The dealer also
generates (public) verification keys that will be used for share verification. Given
the public key, a sender encrypts a plaintext by running E. A user who wants
to decrypt a ciphertext gives the ciphertext to the decryption servers requesting
decryption shares. The decryption servers then run D to generate corresponding
decryption shares. The user can check the validity of the shares by running
SV. When the user collects valid decryption shares from at least t servers, the
ciphertext can be decrypted by running SC.

We now review the security notion for the threshold decryption scheme against
chosen ciphertext attack, which we call “IND-THD-CCA”, defined in [112].

Definition 18 (IND-THD-CCA) Let BCCA be an attacker assumed to be a
probabilistic Turing machine. Suppose that a security parameter k is given to
BCCA as input. Now, consider the following game in which the attacker BCCA

interacts with the “Challenger”.

Phase 1: BCCA corrupts a fixed subset of t− 1 servers.
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Phase 2: The Challenger runs the key/common parameter generation al-
gorithm GK taking a security parameter k as input. The Challenger gives
BCCA the resulting private keys of the corrupted servers, the public key, the
verification key and the common parameter. However, the Challenger keeps
the private keys of uncorrupted servers secret from BCCA.

Phase 3: BCCA adaptively interacts with the uncorrupted decryption servers,
submitting ciphertexts and obtaining decryption shares.

Phase 4: BCCA chooses two equal-length plaintexts (M0,M1). If these are
given to the encryption algorithm then the Challenger chooses β ∈ {0, 1}
at random and returns a target ciphertext C∗ = E(cp, pk, Mβ) to BCCA.

Phase 5: BCCA adaptively interacts with the uncorrupted decryption servers,
submitting ciphertexts and obtaining decryption shares. However, the tar-
get ciphertext C∗ is not allowed to query to the decryption servers.

Phase 6: BCCA outputs a guess β̃ ∈ {0, 1}.

We define the attacker BCCA’s success by

SuccIND−THD−CCA
T HD,BCCA (k) = 2 · Pr[β̃ = β]− 1.

We denote by SuccIND−THD−CCA
T HD (tCCA, qD) the maximum of the attacker BCCA’s

success over all attackers BCCA having running time tCCA and making at most qD

decryption share generation queries. Note that the running time and the number
of queries are all polynomial in the security parameter k.

The scheme T HD is said to be IND-THD-CCA secure if SuccIND−THD−CCA
T HD (tCCA,

qD) is negligible in k.

We now prove the following lemma.

Lemma 7 Suppose that an IND-IDTHD-CCA attacker for the IDTHDBM scheme
issues up to qE private key extraction queries, qD decryption share generation
queries, qH1, qH2, qH3, and qH4 queries to the random oracles H1, H2, H3, and
H4 respectively. Using this attacker as a subroutine, we can construct an IND-
THD-CCA attacker for the THDBM scheme, whose running time and the number
of decryption share generation queries and the random oracle queries to H2, H3,
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and H4 are bounded by tCCA, q′D and q′H2
, q′H3

, and q′H4
respectively. Concretely,

we obtain the following advantage bound:

1

qH1

SuccIDTHD−IND−CCA
IDTHDBM (tIDCCA, qE, qD, qH1 , qH2 , qH3 , qH4)

≤ SuccTHD−IND−CCA
THDBM (tCCA, q′D, q′H2

, q′H3
, q′H4

),

where tCCA = tIDCCA + max(qE, qH1)O(k3), q′D = qD, q′H2
= qH2, q′H3

= qH3 and
q′H4

= qH4 for a security parameter k. Here, tIDCCA denotes the running time of
the IDTHD-IND-CCA attacker.

Proof. For notational convenience, we assume that the same group parameters
{G, q, ê, P} and security parameter k are given to attackers for IDTHDBM and
THDBM.

Let ACCA denote an attacker that defeats the IND-IDTHD-CCA security of the
IDTHDBM scheme. We assume that ACCA has access to the common parameter
cpIDTHDBM = (G, q, P , ê, H1, H2, H3, H4, YPKG) of the IDTHDBM scheme, where
YPKG = x′P for random x′ ∈ ZZ∗q. We also assume that ACCA has access to its
decryption servers and a set of verification keys.

Let BCCA denote an attacker that defeats the THD-IND-CCA security of the
THDBM scheme. We assume that BCCA has access to the common parameter cpTHDBM
= (G, q, P , ê, H2, H3, H4, Y , Q) of the THDBM scheme, where Y = xP for random
x ∈ ZZ∗q and Q has been randomly chosen from G. Also, we assume that BCCA has
access to its decryption servers and a set of verification keys.

Our aim is to simulate the view of ACCA in the real attack game denoted by G0

until we obtain a game denoted by G1, which is related to the ability of the
attacker BCCA to defeat the THD-IND-CCA security of the THDBM scheme.

• Game G0: As mentioned, this game is identical to the real attack game
described in Definition 16. We denote by E0 the event that ACCA’s output
β̄ ∈ {0, 1} is equal to β ∈ {0, 1} chosen by the Challenger. We use a similar
notation Ei for all Games Gi. Since Game G1 is the same as the real attack
game, we have

Pr[E0] =
1

2
+

1

2
SuccIND−IDTHD−CCA

IDTHDBM,ACCA (k).

• Game G1: First, we replace YPKG of ACCA’s common parameter cpIDTHDBM
by Y of BCCA’s common parameter cpTHDBM setting YPKG = Y . We also
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replace ACCA’s decryption servers by BCCA’s decryption servers. We then
randomly choose an index µ from the range [1, 2, . . . , qH1 ] where qH1 denotes
the maximum number queries to the random oracle H1 made by ACCA. By
IDµ, we denote the µ-th query to the random oracle H1. We hope IDµ

would be a target identity ID∗ that ACCA outputs in Phase 4 of the real
attack game of IND-IDTHD-CCA described in Definition 16.

Now, we simulate ACCA’s random oracle H1, which can be queried at any
time during the attack. Whenever H1 is queried at ID, we perform the
following:

– If the query ID exists in the entry 〈(ID, τ), QID〉 ∈ H1List, return QID to
ACCA. (Note that H1List is the “input-output” list for the simulation
of H1.)

– Otherwise, do the following.

∗ If ID = IDµ, set QID = Q and return QID to ACCA. (Note that Q
is from BCCA’s common parameter cpTHDBM.)

∗ Else (ID 6= IDµ), do the following.

· Choose τ uniformly at random from ZZ∗q.

· Compute QID = τP and return QID to ACCA.

If ACCA issues ID as a private key extraction query, we perform the following:

– If the query ID exists in the entry 〈(ID, QID), τ)〉 ∈ H1List, extract τ
from it, compute DID = τY , and return DID to ACCA.

– Otherwise, do the following.

∗ If ID = IDµ, terminate the whole game. (Note, however, that if
IDµ = ID∗, this query is not allowed.)

∗ Else (ID 6= IDµ), do the following.

· Choose τ uniformly at random from ZZ∗q.
· Compute QID = τP and save 〈(ID, τ), QID〉 into H1List.

· Compute DID = τY and return DID to ACCA.

If ACCA corrupts t − 1 decryption servers during the attack, that is, ACCA

obtains private keys {Si}1≤i≤t−1 of corrupted decryption servers, we give
them to BCCA.

If ACCA submits a pair of two equal-length plaintexts (M0,M1), we give it to
BCCA, then BCCA uses (M0,M1) as its plaintext-pair to be challenged. BCCA
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queries (M0,M1) to its Challenger, and obtains a target ciphertext C∗ such
that

C∗ = (U, V,W ) = (rP,Mβ ⊕ H2(ê(Q, Y )r), rH3(U, V )),

where r and β are chosen uniformly at random from ZZ∗q and {0, 1} respec-
tively. We simply return the C∗ to ACCA as a target ciphertext.

If ACCA issues decryption share generation queries after it submits the target
identity, BCCA uses its decryption servers to answer those queries. Note,
however, that ACCA is not allowed to query C∗ to any of the uncorrupted
decryption servers.

Finally, if ACCA submits its guess β̃, we give it to BCCA.

Note that due to the randomness of τ in ZZ∗q and Q, the above simulation of the
random oracle H1 is perfect. Note also that DID = τYPKG = τY = τxP = xτP =
xQID and that

C∗ = (rP, Mβ ⊕ H2(ê(QIDµ , YPKG)r), rH3(U, V ))

= (rP, Mβ ⊕ H2(ê(QID∗ , YPKG)r), rH3(U, V ))

= (rP, Mβ ⊕ H2(ê(H1(ID
∗), YPKG)r), rH3(U, V )).

Hence, as long as IDµ = ID∗, the private keys associated with IDs and the target
ciphertext C∗ that ACCA obtain in the simulation are identically distributed as
those ACCA obtain in the real attack. (Note that if IDµ = ID∗, we do not terminate
the game.)

Since µ has been uniformly chosen from [1, qH1 ] and the bit β is uniformly chosen
from {0, 1}, we have

Pr[E1]− 1

2
≥ 1

qH1

(
Pr[E0]− 1

2

)
.

Thus, by definition of Pr[E0] and Pr[E1], we obtain

SuccIND−THD−CCA
THDBM,BCCA (k) ≥ 1

qH1

SuccIND−IDTHD−CCA
IDTHDBM,ACCA (k).

Finally note that the running time tCCA of an arbitrary IND-THD-CCA attacker
for the scheme THDBM is lower-bounded by tIDCCA +max(qE, qH1)O(k3). Note also
that the number of queries to the random oracles H2, H3, H4 and the decryption
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servers made by BCCA are the same as the number of those ACCA has made. Hence,
we obtain the bound in the lemma statement. ut

Next, we prove the following lemma.

Lemma 8 Suppose that an IND-THD-CCA attacker for the THDBM scheme issues
up to qD decryption share generation queries, qH2, qH3, and qH4 queries to the
random oracles H2, H3, and H4 respectively. Using this attacker as a subroutine,
we can construct a BDH attacker for the group G, whose running time is bounded
by tBDH . Concretely, we obtain the following advantage bound:

1

2
SuccIND−THD−CCA

THDBM (t, qH2 , qH3 , qH4qD) ≤ SuccBDH
G (tBDH) +

qD + qDqH4

2k
,

where tBDH = tCCA + qH2 + qH3O(k3) + qH4qDO(k3) for a security parameter k.

Proof. For notational convenience, we assume that the same group parameters
{G, q, ê, P} and security parameter k are given to attackers for THDBM and the
BDH problem.

Let BCCA be an attacker that defeats the THD-IND-CCA security of the THDBM

scheme. Let ABDH be an attacker for the BDH problem. Suppose that (G, q, ê, P ,
aP , bP , cP ) is given to ABDH. Also, suppose that the (same) security parameter
k is given to BCCA.

We start with Game G0 which is the same as the real attack game associated
with BCCA. Then, we modify this game until we completely simulate the view of
BCCA and obtain a game in which ABDH is able to solve the BDH problem.

• Game G0: This game is actually the same as the real attack game. However,
we repeat it for cleaning up notations.

First, we run the key/common parameter generation algorithm of the THDBM
scheme on input a security parameter k, a threshold parameter t and a num-
ber of decryption servers n. We give BCCA the resulting common parameter
cpTHDBM = (G, q, ê, P, H2, H3, H4, Y,Q) where Y = xP for random x ∈ ZZ∗q and
the set of verification keys {yi}, where 1 ≤ i ≤ n. But we keep the private
key D = xQ as secret.

If BCCA submits a pair of plaintexts (M0,M1), we choose a bit β uniformly
at random and create a target ciphertext C∗ = (U∗, V ∗,W ∗) as follows.

U∗ = r∗P, V ∗ = H∗
2 ⊕Mβ, and W ∗ = r∗H∗

3 ,
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where κ∗ = ê(Q, Y )r∗ for random r∗ ∈ ZZ∗q, H∗
2 = H2(κ

∗) and H∗
3 =

H3(U
∗, V ∗).

Once all the decryption servers are set up, BCCA can issue decryption share
generation queries at its will. We denote those queries by C = (U, V, W ).
Note that C is different from the target ciphertext C∗.

On input C∗, BCCA outputs β̃. We denote by E0 the event β̃ = β and use a
similar notation Ei for all Gi. Since game G0 is the same as the real attack
game, we have

Pr[E0] =
1

2
+

1

2
SuccTHD−IND−CCA

THDBM,BCCA (k).

• Game G1: First, we replace replace Y and Q in cpTHDBM by bP and cP respec-
tively, all of which are given to ABDH. We denote bP and cP by YBDH and
QBDH respectively. Now, we assume that a subset of t−1 decryption servers
have been corrupted without loss of generality. Let Φ′ = {0, 1, . . . , t − 1}.
Then, we choose S1, S2, . . . , St−1 uniformly at random from G and compute

yi = ê(QBDH, YBDH)cΦ
′

i0

t−1∏
j=1

ê(Sj, P )cΦ
′

ij ,

where t ≤ i ≤ n and cΦ′
ij denotes a Lagrange coefficient with respect to the

set Φ′. We send Si where 1 ≤ i ≤ t − 1 to each of the corrupted servers
and send yi where t ≤ i ≤ n to each of the uncorrupted decryption servers.
Then, BCCA obtains access to {Si} and {yi}.
Now, we modify the target ciphertext C∗ = (U∗, V ∗,W ∗) as follows. First,
we choose κ+ uniformly at random from F and replace κ∗ by κ+. We also
choose H+

2 uniformly at random from {0, 1}l, replace H∗
2 by H+

2 and V ∗ by
V + = H+

2 ⊕Mβ. Accordingly, whenever the random oracle H2 is queried at
κ+, we respond with H+

2 .

Summing up, we obtain a new challenge ciphertext denoted by C∗
+ such

that C∗
+ = (U∗, V +,W ∗), where V + = H+

2 ⊕ Mβ and H+
2 = H2(κ

+) for
random κ+ ∈ F .

Note that the attacker BCCA’s view has the same distribution in both Game
G0 and Game G1, since we have replaced one set of random variables
by another set of random variables which is different, yet has the same
distribution.
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Thus, we have

Pr[E1] = Pr[E0].

• Game G2: In this game, we restore the queries to the random oracle H2.
That is, if H2 is queried at κ+, we do not respond with H+

2 any more but
respond with an answer from the random oracle H2 instead. We assume
that this rule applies to all the forthcoming games.

By the above rule, κ+ and H+
2 are used only in the target ciphertext C∗

+.
Accordingly, the distribution of input to BCCA does not depend on β. Hence,
we get Pr[E2] = 1/2.

Note that Game G2 and Game G1 may differ if the random oracle H1 is
queried at κ∗. Let AskH22 denotes the event that, in game G2, H2 is queried
at κ∗. We will use the same notation AskH2i

to denote such events in all
other games.

Now, we have

|Pr[E2]− Pr[E1]| ≤ Pr[AskH22 ].

• Game G3: In this game, we further modify the target ciphertext C∗
+ =

(U∗, V +,W ∗). First, we replace U∗ by aP . We keep V +(= H+
2 ⊕ Mβ =

H2(κ
+)⊕Mβ) as it is, but define κ+ as the BDH key ê(P, P )abc. Then, we

choose s+ uniformly at random from ZZ∗q, compute s+aP and replace W ∗

by s+aP . Finally, we modify the computation of the random oracle H3 as
follows. Whenever H3 is queried at (aP, V +), we compute H+

3 = s+P and
respond with H+

3 . Namely, we set H+
3 = H2(aP, V +).

Summing up, we have obtained a new target ciphertext denoted by C∗
BDH

= (UBDH, VBDH, WBDH) such that

UBDH = aP ; VBDH = V +; WBDH = s+aP,

where V + = H2(ê(P, P )abc) ⊕ Mβ. Moreover, we have H3(UBDH, VBDH) =
H+

3 = s+P .

Note that we have replaced one set of random variables {U∗,W ∗} by another
set of random variables {aP, s+aP} which is different, yet has the same
distribution. Note also that C∗

BDH is a valid ciphertext since ê(P,WBDH) =
ê(UBDH, H+

3 ) by the construction of H+
3 and WBDH. Hence, the attacker

BCCA’s view has the same distribution in both Game G2 and Game G3,



110

and we have

Pr[AskH23 ] = Pr[AskH22 ].

• Game G4: In this game, we modify the random oracle H3. Note that we
have already dealt with the simulation of the random oracles H3 appeared
in the target ciphertext C∗

BDH, namely, the case when H3 is queried at
(UBDH, VBDH). In the following, we deal with the rest of simulation.

Whenever H3 is queried at (U, V ) 6= (UBDH, VBDH), we choose s uniformly
at random from ZZ∗q, computes H3 = sY and respond with H3. Let H3List
be a list of all “input-output” pairs of the random oracle H3. Specifically,
H3List consists of the pairs 〈(U, V ), H3〉 where H3 = H3(U, V ) = sY . Notice
that this list grows as BCCA’s attack proceeds.

Because H3 is assumed to be a random oracle, the above generation of the
outputs of H3 perfectly simulates the real oracle. Hence, BCCA’s view in this
game remains the same as that in the previous game. Hence, we have

Pr[AskH24 ] = Pr[AskH23 ].

Note that the decryption oracle has been regarded as perfect up to this
game. The rest of games will deal with simulation of the decryption oracle.

• Game G5: In this game, we make the decryption oracle reject all ciphertexts
C = (U, V,W ) such that H3 = H3(U, V ) has not been queried. If C is a
valid ciphertext while H3(U, V ) has not been queried, BCCA’s view in Game
G5 and Game G4 may differ.

Note that if a ciphertext C is valid then it should be the case that ê(P,W ) =
ê(U,H3). However, since we have assumed that H3 has not been queried
in this game, the above equality holds with probability at most 1/2k since
output of the simulated random oracle H3 is uniformly distributed in G.
Adding up all the decryption queries up to qD, we have

|Pr[AskH25 ]− Pr[AskH24 ]| ≤
qD

2k
.

• Game G6: In this game, we modify the decryption oracle in the previous
game to yield a decryption oracle simulator which decrypts a submitted
decryption query C = (U, V, W ) without the private key. Note that the
case when H3(U, V ) has not been queried are excluded in this game since
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it was already dealt with in the previous game. Hence, we assume that
H3(U, V ) has been queried at some point.

Now we describe the complete specification of the decryption oracle simula-
tor. On input a ciphertext C = (U, V, W ), the decryption oracle simulator
works as follows.

– Extract 〈(U, V ), H3〉 from H3List.

– If ê(P, W ) = ê(U,H3)

∗ Compute K = (1/s)W . (Note here that (1/s)W = (1/s)rsY =
rY = rxP .)

∗ Compute κ = ê(Q,K)

∗ For t ≤ i ≤ n, compute κi = κcΦ
′

i0
∏t−1

j=1 ê(Sj, U)cΦ
′

ij .

∗ Return κi.

– Else reject C.

Note in the above construction that

κi = κcΦ
′

i0

t−1∏
j=1

ê(Sj, U)cΦ
′

ij = ê(Q,K)cΦ
′

i0

t−1∏
j=1

ê(Sj, U)cΦ
′

ij

= ê(Q, rxP )cΦ
′

i0

t−1∏
j=1

ê(Sj, rP )cΦ
′

ij = ê(Q, xP )rcΦ
′

i0

t−1∏
j=1

ê(Sj, P )rcΦ
′

ij

=
(
ê(Q, Y )cΦ

′
i0

t−1∏
j=1

ê(Sj, P )cΦ
′

ij

)r

= yr
i .

Hence, κi is a correct i-th share of the BDH key κ = ê(Q, Y )r. However, we
need more efforts to simulate a decryption share δi containing κi completely.
This can be done as follows.

First, we simulate the random oracle H4 in a classical way. That is, if
H4 is queried, we choose H4 uniformly at random from ZZ∗q and respond
with it. As usual, we maintain an “input-output” list H4List for H4 whose
entry is of the form 〈(κ, κ̃, ỹ), H4〉. Next, we choose Li and λi uniformly
at random from G and ZZ∗q respectively, and compute κ̃i = ê(Li, U)/κλi

i

and ỹi = ê(Li, P )/yλi
i . Then, we set λi = H4(κi, κ̃i, ỹi). Finally, we check

whether there exists an entry 〈(κ, κ̃, ỹ), H4〉 in H4List satisfying H4 = λi but
(κ, κ̃, ỹ) 6= (κi, κ̃i, ỹi). If such entry exists then we return “Abort” message
to BCCA. Otherwise, we return the simulated value δi = (i, κi, κ̃i, ỹi, Li) to
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BCCA as a decryption share corresponding to C and save 〈(κi, κ̃i, ỹi, ), λi〉 to
H4List.

Since H3 are assumed to have already been queried in this game (i.e., these
case were already dealt with in the previous game), the above simulated
decryption share generation server perfectly simulates the real one except
the error (collision) in the simulation of H4 occurs. Note that this happens
with probability qH4/2

k, considering up to qH4 queries to H4. Adding up all
the decryption queries up to qD, we have

|Pr[AskH26 ]− Pr[AskH25 ]| ≤
qDqH4

2k
.

Now, recall that the target ciphertext used so far is C∗
BDH that constructed in

Game G3. Accordingly, AskH26 denotes an event that the BDH key ê(P, P )abc

has been queried to the random oracle H2. Note also that we have used the
easiness of the DDH problem in the group G to simulate the decryption oracle.

Therefore, at this stage, ABDH can solve the BDH problem by outputting the
queries to the random oracle H2. That is, we have

Pr[AskH26 ] ≤ SuccBDH
G,ABDH(k).

Thus, putting all the bounds we have obtained in each game together, we have

1

2
SuccIND−THD−CCA

THDBM,BCCA (k) = |Pr[E0]− Pr[E2]| ≤ Pr[AskH22 ] ≤ Pr[AskH25 ] +
qD

2k

≤ qD

2k
+ Pr[AskH26 ] +

qDqH4

2k

≤ qD + qDqH4

2k
+ SuccBDH

G,ABDH(k).

Considering the running time tBDH and queries of an arbitrary BDH-attacker for
the group G, we obtain the bound in the lemma statement. ut
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5.6 Application to Mediated ID-Based Encryp-

tion Schemes

5.6.1 Security Issues in Mediated ID-Based Encryption

The main motivation of mediated cryptography [26] is to revoke a user’s privilege
to perform cryptographic operations such as decrypting ciphertexts or signing
messages instantaneously. In [26], Boneh et al. constructed the first mediated
encryption and signature schemes using the RSA primitive. Their idea was to
split a user’s private key into two parts and give one piece to the on-line Security
Mediator (SEM) and the other to the user. To decrypt or sign, the user must
acquire a message-specific token which is associated with the SEM part of private
key from the SEM. As a result, revocation is achieved by instructing the SEM
not to issue tokens for the user.

Recently, the problem of realizing mediated encryption in the ID-based setting
was considered by Ding and Tsudik [46]. They proposed an ID-based medi-
ated encryption scheme based on RSA-OAEP [18]. Although their scheme offers
good performance and practicality, it has a drawback which stems from the fact
that a common RSA modulus is used for all the users within the system and
hence anyone obtained a single private/public key pair can factor the modulus
by compromising the SEM. Therefore, to guarantee the security of Ding and
Tsudik’s scheme, one should assume that the SEM’s private key must be pro-
tected throughout the life of the system.

As an alternative to Ding and Tsudik’s scheme, Libert and Quisquater [75] pro-
posed a new mediated ID-based encryption scheme. Due to its structural prop-
erty (mainly because Boneh and Franklin’s ID-based encryption scheme is used),
their scheme does not suffer from the “common modulus” problem of Ding and
Tsudik’s scheme. That is, a compromise of the SEM’s private key does not lead
to a break of the whole system. In contrast to this positive result, Libert and
Quisquater, however, observed that even though the SEM’s private key is pro-
tected, their scheme as well as Ding and Tsudik’s scheme are not secure against
“inside attack” in which the attacker who possesses the user part of private key
conducts chosen ciphertext attack. As a result, it should be strictly assumed in
those schemes that users’ private keys must be protected to ensure chosen ci-
phertext security. In practice, this assumption is fairly strong in that there may
be more chance for users to compromise their private keys than the SEM does
since the SEM is usually assumed to be a trusted entity configured by a system
administrator.
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According to Libert and Quisquater [75], the reason why the mediated schemes
proposed so far (including their scheme) are not secure against inside attack
is that in the SEM architecture of those schemes, there is no mechanism for
checking the validity of a ciphertext before generating a token from it. (That is,
“publicly checkable” validity test for a ciphertext is missing.) To get an intuition
for this, let us examine Libert and Quisquater’s scheme which can be described as
follows. In the setup stage, the common parameters including the PKG’s public
key YPKG = xP where x is the master key and hash functions H1, H2, H3, and H4

are generated. In the key generation stage, the PKG computes QID = H1(ID) and
DID = xQID on receiving a user’s identity ID. Then, it chooses a random point
DID,user from G∗ and computes DID,sem = DID − DID,user. The PKG gives the
partial private key DID,user to the user and DID,sem to the SEM. Given the user’s
identity ID and the common parameter, a sender can encrypt a message M ∈
{0, 1}l by computing C = (U, V, W ) where U = rP , V = σ ⊕ H2(ê(YPKG, QID)

r),
W = M ⊕ H4(σ), and r = H3(σ,M) ∈ ZZ∗q for random σ ∈ {0, 1}l. On receiving
C = (U, V, W ), the user forwards it to the SEM. Then, the SEM and the user
perform the following in parallel.

• SEM (We call this procedure “SEM oracle”): Check if the user’s identity
ID is revoked. If it is, return “ID Revoked”. Otherwise, compute gsem =
ê(U,DID,sem) and send it to the user.

• User (We call this procedure “User oracle”): Compute guser = ê(U,DID,user).
When receiving gsem from the SEM, compute g = gsemguser. Then, compute
σ = V ⊕ H2(g) and M = W ⊕ H4(σ). Finally, check U = r′P for r′ =
H3(σ,M). If it is, return M , otherwise, return “Reject”.

Now, let us assume that a “strong” attacker has a target ciphertext C∗ =
(U∗, V ∗,W ∗) which encrypts a message Mβ where β is chosen at random from
{0, 1}, a target identity ID∗, and a private key DID∗,user associated with ID∗.
The attacker can easily defeat the indistinguishability of C∗ by conducting a
simple chosen ciphertext attack as follows. The attacker just changes C∗ into
C ′ = (U∗, V ∗,W ′) for W ′ 6= W ∗, and queries this to the SEM oracle. Upon
receiving C ′, the SEM oracle will simply return g∗sem = ê(U∗, DID∗,sem). The
attacker then computes g∗ = g∗semg∗user where g∗user = ê(U∗, DID∗,user) using the
user’s private key DID∗,user. Obviously, this problem is caused by the fact that
the validity of queried ciphertexts is not checked in the SEM oracle.

Libert and Quisquater remained the removal of this drawback as an open problem,
only providing a proof that their scheme is secure against chosen ciphertext attack
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in a weaker sense – attackers are not allowed to obtain the user part of private
key.

However, in the following section, we present a new mediated ID-based encryption
scheme which is secure against ciphertext attack in a strong sense, that is, secure
against chosen ciphertext attack conducted by the stronger attacker who obtains
the user part of private key.

5.6.2 Description of Our Mediated ID-Based Encryption
Scheme

In what follows, we describe our mediated ID-based encryption scheme “MIDEBM”,
which is based on the IDTHDBM scheme described in Section 5.5.2. MIDEBM consists
of the following algorithms.

• A randomized key/common parameter generation algorithm GC(k): Given
a security parameter k, the PKG runs the key generation algorithm of
IDTHDBM. The output of this algorithm cp = (G, q, P , ê, H1, H2, H3, H4,
YPKG) is as defined in the description of IDTHDBM. Note that cp is given to
all interested parties while the master key x is kept secret within the PKG.

• A private key extraction algorithm EX(cp, ID): This algorithm is run by the
PKG on receiving a private key extraction query from any user who wants
to extract a private key that matches to an identity ID.

– Given ID, compute QID = H1(ID) and DID = sQID.

– Output DID.

• A randomized private key distribution algorithm DK(cp,DID): Given DID

which is a private key associated with an identity ID, the PKG splits DID

using (2, 2) secret-sharing technique as follows.

– Pick R at random from G∗ and construct F (u) = DID + uR for u ∈
{0} ∪ IN.

– Compute DID,sem = F (1) and DID,user = F (2).

The PKG gives DID,sem to the SEM and DID,user to the user.
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• A randomized encryption algorithm E(cp, ID,M): Given a plaintext M ∈
{0, 1}l and a user’s identity ID, a user creates a ciphertext C = (U, V, W )
such that

U = rP ; V = H2(κ)⊕M ; W = rH3(U, V ),

where κ = ê(H1(ID), YPKG)r for random r ∈ ZZ∗q.

• A decryption algorithm D(cp,DID,sem, DID,user, C): When receiving C =
(U, V, W ), a user forwards it to the SEM. The SEM and the user perform
the following in parallel.

– SEM (We call this procedure “SEM oracle”):

1. Check if the user’s identity ID is revoked. If it is, return “ID
Revoked”.

2. Otherwise, do the following:

∗ Compute H3 = H3(U, V ) and check if ê(P, W ) = ê(U,H3). If
C has passed this test, compute κsem = ê(DID,sem, U) and
send δID,sem,C = (sem, κsem) to the user. Otherwise, send
δID,sem,C = (sem, “Invalid Ciphertext”) to the user.

– User (We call this procedure “User oracle”):

1. Compute H3 = H3(U, V ) and check if ê(P,W ) = ê(U,H3). If C
has passed this test, compute κuser = ê(DID,user, U). Otherwise,
return “Reject” and terminate.

2. Get δID,sem,C from the SEM and do the following:

∗ If δID,sem,C is of the form (sem, “Invalid Ciphertext”), return

“Reject” and terminate. Otherwise, compute κ = κ
cΦ01
semκ

cΦ02
user

where cΦ
01 and cΦ

02 denote the Lagrange coefficients for the set
Φ = {1, 2} and M = H2(κ)⊕ V , and return M .

Notice that in the SEM oracle of our scheme, the validity of a ciphertext is checked
before generating a token in the same way as the decryption share generation
algorithm of IDTHDBM does.
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5.6.3 Security Analysis of Our Mediated ID-Based En-
cryption Scheme

In this section, we show that the chosen ciphertext security of the above scheme
against the strong attacker that obtains the user part of private key is relative to
the IND-IDTHD-CCA (Definition 16) security of the (2, 2)-IDTHDBM scheme.

To begin with, we define IND-mID-sCCA (indistinguishability of mediated ID-
based encryption against strong chosen ciphertext attack), which is similar to
IND-mID-wCCA (“w” stands for “weak”) defined in [75] but assumes the stronger
attacker that can corrupt users to get their private keys.

Definition 19 (IND-mID-sCCA) Let ACCA′ be an attacker that defeats the
IND-mID-sCCA security of an mediated ID-based encryption scheme MIDE
which consists of GK, EX, DK, E, and D. (For details of these algorithms, readers
are referred to [46], [75] or the description of MIDEBM given in Section 5.6.2.) We
assume that ACCA′ is a probabilistic Turing machine taking a security parameter
k as input. Consider the following game in which the attacker ACCA′ interacts
with the “Challenger”.

Phase 1: The Challenger runs the Setup algorithm taking a security pa-
rameter k. The Challenger then gives the common parameter to ACCA′.

Phase 2: Having obtained the common parameter, ACCA′ issues the follow-
ing queries.

– “User key extraction” query ID: On receiving this query, the Chal-
lenger runs the Keygen algorithm to obtain the user part of private
key and sends it to ACCA′.

– “SEM key extraction” query ID: On receiving this query, the Chal-
lenger runs the Keygen algorithm to obtain the SEM part of private
key and sends it to ACCA′.

– “SEM oracle” query (ID, C): On receiving this query, the Challenger
runs the Keygen algorithm to obtain a SEM part of private key. Taking
the resulting private key as input, the Challenger runs the SEM oracle
in the Decrypt algorithm to obtain a decryption token for C and sends
it to ACCA′.

– “User oracle” query (ID, C): On receiving this query, the Challenger
runs the Keygen algorithm to obtain a User part of private key. Taking
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the resulting private key as input, the Challenger runs the User oracle
in the Decrypt algorithm to obtain a decryption token for C and sends
it to ACCA′.

Phase 3: ACCA′ selects two equal-length plaintexts (M0,M1) and a target
identity ID∗ which was not queried before. On receiving (M0,M1) and ID∗,
the Challenger runs the Keygen algorithm to obtain User and SEM parts of
the private key associated with ID∗. The Challenger then chooses β ∈ {0, 1}
at random and creates a target ciphertext C∗ by encrypting Mβ under the
target identity ID∗. The Challenger gives the target ciphertext and the User
part of the private key to ACCA′.

Phase 4: ACCA′ continues to issue “User key extraction” query ID 6= ID∗,
“SEM key extraction” query ID 6= ID∗, “SEM oracle query” (ID, C) 6=
(ID∗, C∗), and “User oracle” query (ID, C) 6= (ID∗, C∗). The details of these
queries are as described in Phase 2.

Phase 5: ACCA′ outputs a guess β̃ ∈ {0, 1}.

We define the attacker ACCA′’s success by

SuccIND−mID−sCCA

MIDE,ACCA′ (k) = 2 · Pr[β̃ = β]− 1.

We denote by SuccIND−mID−sCCA
MIDE (tCCA, qE,user, qE,sem, qD,sem, qD,user) the maxi-

mum of the attacker ACCA′’s success over all attackers ACCA′ having running time
tCCA and making at most qE,user “User key extraction” queries, qE,sem “SEM
key extraction” queries, qD,sem “SEM oracle” queries, and qD,user “User oracle”
queries. Note that the running time and the number of queries are all polynomial
in the security parameter k.

The mediated ID-based encryption scheme MIDE is said to be IND-mID-sCCA
secure if SuccIND−mID−sCCA

MIDE (tCCA, qE,user, qE,sem, qD,sem, qD,user) is negligible in k.

We now state and prove the following theorem which implies if the IDTHDBM

scheme is IND-IDTHD-CCA secure then the MIDEBM scheme is IND-mID-sCCA
secure.

Theorem 6 Suppose that an IND-mID-sCCA attacker for the MIDEBM scheme
issues up to qE,user “User key extraction” queries, qE,sem “SEM key extraction”
queries, qD,sem “SEM oracle”, and qD,user “User oracle” queries. Using this at-
tacker as a subroutine, we can construct an IND-IDTHD-CCA attacker for the
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IDTHDBM scheme with (t, n) = (2, 2), whose running time and the number of
private key extraction and decryption share generation queries are bounded by
tIDCCA, qE, and qD respectively. Concretely, we obtain the following advantage
bound:

SuccIND−mID−sCCA
MIDEBM (tCCA,E,user , qE,sem, qD,sem, qD,user)

≤ SuccIND−IDTHD−CCA
IDTHDBM (tIDCCA, qE, qD),

where tIDCCA = tCCA+max(qE,user, qE,sem, qD,sem, qD,user)O(k3), qE = O(1)(qE,user+
qE,sem + qD,sem + qD,user), qD = O(1)(qD,sem + qD,user) for a security parameter k.
Here, tCCA denotes the running time of the ID-mID-sCCA attacker.

Proof. For notational convenience, we assume that the same group parameter
cp = {G, q, ê, P, YPKG} where YPKG = xP and security parameter k are given to
attackers for MIDEBM and IDTHDBM.

Let ACCA′ denote an attacker that defeats the IND-mID-sCCA security of the
MIDEBM scheme. Let ACCA denote an attacker that defeats the IND-IDTHD-CCA
security of the IDTHDBM scheme with (t, n) = (2, 2).

Our aim is to simulate the view of ACCA′ in the real attack game denoted by
G0 until we obtain a game denoted by G1, which is related to the ability of the
attacker ACCA to defeat the IND-IDTHD-CCA security of the IDTHDBM scheme.

• Game G0: As mentioned, this game is identical to the real attack game
described in Definition 19. We denote by E0 the event that ACCA′’s output
β̄ ∈ {0, 1} is equal to β ∈ {0, 1} chosen by the Challenger. We use a similar
notation Ei for all Games Gi. Since Game G1 is the same as the real attack
game, we have

Pr[E0] =
1

2
+

1

2
SuccIND−mID−sCCA

MIDEBM,ACCA (k).

• Game G1: First, we give ACCA’s common parameter to ACCA′. We then deal
with the simulation of ACCA′’s view in Phase 2 of the real attack game as
follows.

On receiving ACCA′’s “User key extraction” queries, each of which consists
of ID, we perform the following:

– Search UserKeyList which consists of 〈identity, corresponding user part
of private key〉 pairs for an entry that is matched against ID.
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∗ If there exists such an entry, extract a corresponding user part of
private key and return it to ACCA′ as an answer.

∗ Otherwise, do the following:

· Forward ID as a “private key extraction” query to ACCA’s Chal-
lenger to obtain a private key DID associated with ID. (On
receiving ID, the Challenger runs the private key extraction
algorithm of IDTHDBM taking ID as input and returns a private
key DID associated with ID to ACCA.)

· Get DID from the communication between the Challenger and
ACCA and split it into DID,sem and DID,user using the (2, 2)
secret-sharing technique presented in Section 5.5.1.

· Return DID,user to ACCA′ as an answer.

· Add 〈ID, DID,user〉 to UserKeyList. Also, add 〈ID, DID,sem〉 to
SEMKeyList which consists of 〈identity, corresponding SEM
part of private key〉 pairs.

We answer ACCA′’s “SEM key extraction” queries in a similar way as we do
for the “User key extraction” queries. Note that in this case, SEMKeyList
and UserKeyList are also updated concurrently.

On receiving ACCA′’s “SEM oracle” queries, each of which consists of (ID, C)
where C = (U, V, W ), we perform the following:

– Search SEMKeyList for an entry 〈ID, DID,sem〉.
∗ If there exists such an entry, extract DID,sem from it. Then, check

if ê(P,W ) = ê(U,H3) for H3 = H3(U, V ).

· If C has passed this test, compute κsem = ê(DID,sem, U) and

return δID,sem,C = (sem, κsem) to ACCA′.
· Otherwise, return δID,sem,C = (sem, “Invalid Ciphertext”) to

ACCA′.

∗ If 〈ID, DID,sem〉 does not exist in SEMKeyList, do the following:

· Forward ID as a “private key extraction” query to ACCA’s Chal-
lenger to obtain a private key DID associated with ID.

· Get DID from the communication between the Challenger and
ACCA and split it into DID,sem and DID,user using the (2, 2)
secret-sharing technique.

· Compute κsem = ê(DID,sem, U) and return δID,sem,C = (sem,

κsem) to ACCA′.
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· Add 〈ID, DID,sem〉 and 〈ID, DID,user〉 to SEMKeyList and
UserKeyList respectively.

On receiving ACCA′’s “User oracle” queries, each of which consists of (ID, C),
we perform the following:

– Search SEMKeyList for an entry 〈ID, DID,sem〉.
∗ If there exists such an entry, search UserKeyList for the correspond-

ing entry 〈ID, DID,user〉. (Recall that SEMKeyList and UserKeyList
are updated concurrently. Hence if there exists an entry in
SEMKeyList, we can always find the corresponding entry in
UserKeyList.) Then, check if ê(P,W ) = ê(U,H3) for H3 = H3(U, V ).

· If C has passed this test, compute κsem = ê(DID,sem, U) and
κuser = ê(DID,user, U), and combine them using the Lagrange

interpolation technique and return the resulting value to ACCA′.
· Otherwise, return “Reject” to ACCA′.

∗ If 〈ID, DID,sem〉 does not exist in SEMKeyList, do the following:

· Forward ID as a “private key extraction” query to ACCA’s Chal-
lenger to obtain a private key DID associated with ID.

· Get DID from the communication between the Challenger and
ACCA and split it into DID,sem and DID,user using the (2, 2)
secret-sharing technique.

· Perform the same routine as we do for the case when 〈ID, DID,sem〉
exists in SEMKeyList and return a special symbol “Reject” or
a certain value to ACCA′

· Add 〈ID, DID,sem〉 and 〈ID, DID,user〉 to SEMKeyList and
UserKeyList respectively.

In Phase 3, if ACCA′ issues two equal-length plaintexts (M0,M1) and a target
identity ID∗, we forward (M0,M1, ID

∗) to ACCA’s Challenger. On receiving
(M0,M1, ID

∗), the Challenger runs the private key extraction algorithm of
IDTHDBM to get a private key DID∗ associated with ID∗ and runs the private
key distribution algorithm of IDTHDBM to split DID∗ into S∗1 and S∗2 . The
Challenger returns S∗2 to ACCA as a corrupted party’s private key. We then
rename S∗1 and S∗2 as DID∗,sem and DID∗,user respectively and send DID∗,user

to ACCA′. (That is, the strong attacker ACCA′ possesses the user part of
private key.) Now, the Challenger chooses β ∈ {0, 1} at random and runs
the encryption algorithm E of IDTHDBM taking (Mβ, ID∗) as input and gets

a target ciphertext C∗. If the Challenger returns C∗, we send that to ACCA′.
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On receiving ACCA′’s “User key extraction” and “SEM key extraction”
queries in Phase 4, we answer them in the same way we did in Phase 2.

If ACCA′ issues “SEM oracle” queries, each of which consists of (ID, C) 6=
(ID∗, C∗), in Phase 4, we perform the following:

– If ID 6= ID∗, answer the query in the same way we did for the SEM
oracle query in Phase 2.

– If ID = ID∗ (in this case, C 6= C∗), do the following:

∗ Forward C to ACCA’s Challenger as a “decryption share genera-
tion” query. (On receiving C, the Challenger runs the decryption
share generation algorithm of IDTHDBM taking (S∗1(= DID∗,sem), C)
as input, gets a corresponding decryption share δ1,C and returns
it to ACCA.)

∗ Get δ1,C from the communication between the Challenger and
ACCA. Then, do the following:

If δ1,C 6= (1, “Invalid Ciphertext”),

· Take κ1 out from δ1,C

· Rename κ1 as κsem and send δID∗,sem,C = (sem, κsem) to ACCA′.

If δ1,C = (1, “Invalid Ciphertext”),

· Send δID∗,sem,C = (sem, “Invalid Ciphertext”) to ACCA′.

If ACCA′ issues “User oracle” queries, each of which consists of (ID, C) 6=
(ID∗, C∗), in Phase 4, we perform the following:

– If ID 6= ID∗, answer the query in the exactly same way we did for the
“User oracle” query in Phase 2.

– If ID = ID∗ (in this case, C 6= C∗), do the following:

∗ Forward C to ACCA’s Challenger as a “decryption share genera-
tion” query. (On receiving C, the Challenger runs the decryption
share generation algorithm of IDTHDBM taking (S∗1(= DID∗,sem), C)
as input, gets a corresponding decryption share δ1,C and returns
it to ACCA.)

∗ Get δ1,C from the communication between the Challenger and
ACCA. Then, do the following:

If δ1,C 6= (1, “Invalid Ciphertext”),

· Take out κ1 from δ1,C , rename it as κsem, and form δID∗,sem,C =
(sem, κsem).
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· Compute κuser = ê(DID∗,user, U). (Recall that the ACCA’s Chal-
lenger returned DID∗,user as a corrupted party’s private key.)

· Check the validity of C. If C is invalid, that is, ê(P,W ) 6=
ê(U,H3) for H3 = H3(U, V ), return “Reject”. Otherwise, com-
bine the shares κuser and κsem using the Lagrange interpola-
tion technique and return the resulting value to ACCA′.

If δ1,C = (1, “Invalid Ciphertext”),

· Send “Reject” to ACCA′.

Finally, once ACCA′ outputs a guess β′ ∈ {0, 1}, we return it as ACCA’s guess.

Note from the simulation that ACCA′’s view in the real attack game is iden-
tical to it’s view in Game G1. Note also that the bit β is uniformly chosen.
Hence we have

Pr[E1]− 1

2
≥ Pr[E0]− 1

2
.

By definition of Pr[E0] and Pr[E1], we obtain

SuccIND−IDTHD−CCA
IDTHDBM,ACCA (k) ≥ SuccIND−mID−sCCA

MIDEBM,ACCA′ (k).

Considering the running time and the number of queries, we obtain the bound in
the theorem statement. ut

5.7 Brief Summary of the Results

In this chapter, we discussed issues related to the realization of ID-based threshold
decryption and argued that it is important in practice to share the private key
issued by the PKG rather than the master key of the PKG. We then proposed
an ID-based threshold decryption scheme which satisfies such property and is
provably secure against chosen-ciphertext attack. We also showed how our ID-
based threshold decryption scheme can result in a mediated ID-based encryption
scheme secure against “inside attack”, whereby an attacker who possesses a user
part of private key conducts chosen-ciphertext attack.
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Chapter 6

Identity-Based Threshold
Signature from the Bilinear Map

6.1 Introduction

6.1.1 Motivation

While threshold decryption is used to decentralize the power to decrypt, threshold
signature is a useful tool for sharing the power to sign. And the idea of identity
(ID)-based signature, presented by Shamir [108], is to create a signature on a
message in such a way that any user can verify the signature using the signer’s
identifier information such as email address instead of the public key (a “number”)
embedded in a digital certificate. Combining these two concepts to realize “ID-
based threshold signature” is the focus of this chapter.

One possible application of the ID-based threshold signature scheme can be con-
sidered in the following situation. Suppose that Alice, as a president of some
company, has created an identity that represents the company and has a pri-
vate key associated with the identity. Using the private key, she is able to sign
any documents. However, concerning about the situation where she is away, she
wants to delegate this power to a number of signature-generation servers so that
a signature on a given message is jointly generated by those servers and any
user can successfully verify the signature using the company’s published identity
if, and only if, the user obtains a certain number of partial signatures from the
signature-generation servers.



125

6.1.2 Related Work

Threshold Signature in the Non-ID-Based Setting. In the non-ID-based setting,
research on threshold signature schemes has been mainly focused on how to share
the RSA [103] and ElGamal [49] signature functions. Even though there are a
large number of research works related to this topic, we briefly review those most
related to our research.

Cerecedo, Matsumoto and Imai’s work [33] can be regarded as a first formal treat-
ment of discrete-logarithm based threshold signatures appeared in the literature.
They gave formal definition of unforgeability of threshold signature against chosen
message attack and presented concrete schemes based on the ElGamal signature
scheme and the Digital Signature Standard (DSS) [86]. Although it was later
pointed out [59] that a stronger assumption than the unforgeability of the DSS
scheme is needed for their threshold DSS signature scheme to be proven secure,
their work contains some useful ideas worth being revived.

A complete solution to the construction of a threshold DSS signature scheme was
given by Gennaro, Jarecki, Krawczyk, and Rabin [59]. They designed various
distributed verifiable secret sharing schemes as building blocks to construct a ro-
bust and secure threshold DSS signature scheme. As exemplified in Stinson and
Strobl’s [120] threshold signature scheme based on the Schnorr signature scheme
[104], their design technique can be applied to other discrete-logarithm based
threshold signature signature schemes and also affected our scheme. Another no-
table application of this technique is Boldyreva’s [24] threshold signature scheme
based the Gap Diffie-Hellman (GDH) group in which the DDH problem (de-
fined in Chapter 3) becomes computationally tractable while the CDH problem
(defined in Chapter 3) remains intractable.

ID-Based Signature Scheme from the Bilinear Maps. Recently, several ID-based
signature schemes based on the bilinear maps (pairings) have been proposed.
These include Cha and Cheon’s [34] scheme and Hess’ [66] scheme. They gave a
formal definition of unforgeability of ID-based signature against chosen message
attack and proved their schemes are secure in this sense in the random oracle
model [20] assuming the Computational Diffie-Hellman (CDH) problem is com-
putationally intractable.

6.1.3 Contributions of This Chapter

To our knowledge, ID-based threshold signature has not been treated in the
literature. In this chapter, we present a formal security notion for ID-based
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threshold signature and give a concrete scheme whose security is based on that
of Hess’ ID-based signatures scheme [66] and hence the CDH problem.

Interestingly, the security of one of the verifiable secret-sharing schemes that we
design to build our ID-based threshold signature scheme is relative to a slight
variant of the Generalized Tate Inversion (GTI) problem that Joux [70] ques-
tioned how it can be used to construct a cryptographic protocol. Hence, our
verifiable secret-sharing scheme gives a partial answer to Joux’s question.

6.2 Preliminaries

6.2.1 Security Notion for ID-Based Signature

We first review the formal definition [34, 66] of a generic ID-based signature
scheme, which we denote by “IDS”.

Definition 20 (ID-Based Signature) The ID-based signature scheme IDS
consists of the following algorithms.

• A randomized key/common parameter generation algorithm GC(k): Given
a security parameter k ∈ N, this algorithm generates the PKG’s mas-
ter/public key pair (skPKG, pkPKG). Then, it generates necessary common
parameters, e.g., descriptions of hash functions and mathematical groups.
The output of this algorithm denoted by cp includes such parameters and
the PKG’s public key pkPKG. Note that cp is given to all interested parties
while the matching master key skPKG is kept secret.

• A deterministic private key extraction algorithm EX(cp, ID): Given an iden-
tity ID, this algorithm generates a private key associated with ID, denoted
by skID.

• A randomized signature generation algorithm S(cp, skID,M): Given a pri-
vate key skID associated with ID and a message M , this algorithm generates
a signature σ on M .

• A deterministic signature verification algorithm V(cp, ID,M, σ): Given a
signer’s identity ID, a message M and its signature σ, this algorithm returns
“Valid” if σ is valid. Otherwise, it returns “Invalid”.
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We now review the unforgeability notion for the IDS scheme against chosen
message attack [34, 66], which we denote by “UF-IDS-CMA”.

Definition 21 (UF-IDS-CMA) Let ACMA be an attacker assumed to be a
probabilistic Turing machine taking a security parameter k as input. Consider
the following game in which ACMA interacts with the “Challenger”.

Phase 1: The Challenger runs the PKG’s key/common parameter gener-
ation algorithm GC of IDS taking a security parameter k as input. The
Challenger gives ACMA the resulting common parameter cp which includes
the PKG’s public key pkPKG. However, the Challenger keeps the master
key skPKG secret from ACMA.

Phase 2: ACMA issues a number of private key extraction queries, each
of which consists of ID. On receiving ID, the Challenger runs the private
key extraction algorithm EX of IDS taking ID as input and obtains a
corresponding private key skID. Then, the Challenger gives skID to ACMA.
In addition to the key extraction queries, ACMA issues a number of signature
generation queries, each of which consists of (ID,M). On receiving (ID,M),
the Challenger first runs the private key extraction algorithm EX of IDS
taking ID as input and obtains a corresponding private key skID. The
Challenger then runs the signature generation algorithm S of IDS taking
skID as input and gives a resulting signature σ to ACMA.

Phase 3: ACMA outputs (ĨD, M̃ , σ̃), where σ̃ is a valid signature of a message
M̃ and ĨD is a corresponding identity. A restriction here is that ACMA must
not make a private key extraction query for ĨD, and it must not make
a signature generation query for (ĨD, M̃). (Note that ACMA can make a
signature generation query for (ĨD,M ′(6= M̃)) and (ID′(6= ĨD), M̃).)

We define ACMA’s success by

SuccUF−IDS−CMA
IDS,ACMA (k) = Pr[V(cp, ĨD, M̃ , σ̃) = 1].

We denote by SuccUF−IDS−CMA
IDS (tCMA, qE, qS) the maximum of the attacker ACMA’s

success over all attackers ACMA having running time tCMA and making at most qE

key extraction queries and qS signature generation queries. Note that the running
time and the number of queries are all polynomial in the security parameter k.

The scheme IDS is said to be UF-IDS-CMA secure if SuccUF−IDS−CMA
IDS (tCMA,

qE, qS) is negligible in k.
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6.2.2 Computational Primitives

To keep this chapter self-contained, we briefly review the basic facts about the
admissible bilinear map. We then present related computational problems on
which the various secret-sharing and our ID-based threshold signature schemes
are based.

Bilinear Map

The admissible bilinear map ê, which we will simply call a “Bilinear map”, is
defined over two groups of the same prime order q denoted by G and F in which
the Computational Diffie-Hellman problem is hard. We will use an additive
notation to describe the operation in G while we will use a multiplicative notation
for the operation in F . In practice, the group G is implemented using a group of
points on certain elliptic curves, each of which has a small MOV exponent [81]
while the group F will be implemented using a subgroup of the multiplicative
group of a finite field. The Bilinear pairing ê : G × G → F has the following
properties [27].

• Bilinear: ê(aR1, bR2) = ê(R1, R2)
ab, where R1, R2 ∈ G and a, b ∈ ZZ∗q.

• Non-degenerate: ê does not send all pairs of points in G ×G to the identity
in F . (Hence, if R is a generator of G then ê(R, R) is a generator of F .)

• Computable: For all R1, R2 ∈ G, the pairing ê(R1, R2) is efficiently com-
putable.

Computational Diffie-Hellman Problem

We now the CDH problem in the group G. Note that throughout this chapter,
the groups G and F are as defined in the above description of the Bilinear map.

Definition 22 (CDH) Let G be a group of a prime order q ≥ 2k, where k is
security parameter. Let P ∈ G∗ be a generator of G. Let ACDH be an attacker
modelled as a probabilistic Turing machine taking the security parameter k as
input. Suppose that a and b are uniformly chosen at random from ZZ∗q and aP
and bP are computed.

ACDH is to solve the following problem:
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• Given (G, q, P, aP, bP ) for random a, b ∈ ZZ∗q, compute the Diffie-Hellman
key abP of aP and bP .

We define ACDH’s success probability by

SuccCDH
G,ACDH(k)

def
= Pr[ACDH outputs abP ].

We denote by SuccCDH
G (tCDH) the maximal success probability SuccCDH

G,ACDH(k) over
all attackers having running time bounded by tCDH which is polynomial in the
security parameter k.

The CDH problem is said to be intractable if SuccCDH
G (tCDH) is negligible in k.

It is believed that the CDH problem in the group G is intractable. On the
contrary, the Decisional Diffe-Hellman (DDH) problem in this group can be solved
in polynomial time with the help of the Bilinear map: Given (P, aP, bP, cP ) where
a, b, c ∈ ZZ∗q, one can decide whether c = ab by checking whether ê(P, cP ) =
ê(aP, bP ). For this reason, the group G is call the Gap Diffie-Hellman (GDH)
group.

Modified Generalized Bilinear Inversion Problem

Recently, Joux [70] proposed a new computational problem related to the Tate
pairing, called the Generalized Tate Inversion (GTI) problem. Informally, the
GTI problem refers to the computational problem in which an attacker, given
h ∈ F , is to find a pair (S, T ) ∈ G × G such that e(S, T ) = h, where e denotes
the Tate pairing.

We modify the above GTI problem and obtain a new computational problem,
which we call “modified Generalized Bilinear Inversion (mGBI)”. Note that in
the mGBI problem, the admissible bilinear map (“Bilinear map”) replaces the
role of the Tate pairing in the GTI problem.

Definition 23 (mGBI) Let G and F be two groups of a prime order q ≥ 2k,
where k is security parameter. Let P ∈ G∗ be a generator of G. Suppose that
there exists a bilinear map ê : G×G → F . Let AmGBI be an attacker modelled as a
probabilistic Turing machine taking the security parameter k as input. Suppose
that h is randomly chosen from F .

AmGBI is to solve the following problem:
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• Given h ∈ F and P ∈ G, compute S ∈ G such that ê(S, P ) = h.

We define AmGBI’s success probability by

SuccmGBI
G,AmGBI(k)

def
= Pr[AmGBI(G, q, P, h) = S].

We denote by SuccmGBI
G (tmGBI) the maximal success probability SuccmGBI

G,AmGBI(k)
over all attackers having running time bounded by tmGBI which is polynomial in
the security parameter k.

The mGBI problem is said to be intractable if SuccmGBI
G (tmGBI) is negligible in

k.

In fact, the mGBI assumption (that is, the mGBI problem is intractable) is weaker
than the GBI (Generalized Bilinear Inversion) assumption which is naturally
derived from the GTI assumption by replacing the Tate pairing by the admissible
bilinear map, as sketched below: Assume that an attacker AGBI for the GBI
problem has access to (G, ê, h), where h ∈ F . First, AGBI chooses a generator P
for G. It then runs an attacker AmGBI for the mGBI problem providing (G, ê, h, P )
as input. If AmGBI outputs S, AGBI sets T = P and returns (S, T ).

6.3 Security Notions of ID-Based Threshold Sig-

nature

6.3.1 Security Notion for ID-Based Threshold Signature

High Level Description of ID-based Threshold Signature

We first present a high level description of a (generic) (t, n) ID-based threshold
signature scheme, which we call “IDT HS”. The IDT HS scheme consists of
algorithms GC, EX, DK, S, and V

The key/common parameter generation algorithm GC is run by the trusted PKG
to generate its master/public key pair and all the necessary common parameters.
The PKG’s public key and the common parameters are given to every interested
party.

On receiving a user’s private key extraction query which consists of an identity,
the PKG runs the private key extraction algorithm EX to generate a private key
associated with the queried identity.
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Figure 6.1: (3,4)-Identity-Based Threshold Signature

Like our ID-based threshold decryption scheme presented in the previous chapter,
an authorized dealer who possesses the private key (associated with an identity)
runs the private key distribution algorithm DK to distribute the private key into n
signature generation servers. DK makes use of a proper secret-sharing technique
to generate shares of the private key as well as verification keys that will be
used for checking the validity of partial signature shares. Each share of the
private key and its corresponding verification key are sent to an appropriate
signature generation server. Having obtained the shares of the private key and
the matching verification keys, the signature generation servers keep their private
key shares secret but publicize the verification keys. Note here that the entity
that runs DK can be either a normal user (such as Alice in the example given
in Section 6.1.1) or the PKG, depending on the cryptographic services that the
PKG can offer. – If the PKG is capable of organizing threshold signature, the
PKG can run DK, but if the PKG has the only functionality of issuing private
keys for users, the entity running DK would be a trusted normal user. Note
also that like the ID-based threshold decryption scheme presented in Chapter
5, a private key associated with an identity is shared in our ID-based threshold
signature scheme. As discussed in the previous chapter, this approach is more
practical than Boneh and Franklin’s [27] approach that distributes the master key
of the PKG into a number of other PKGs (called the “Distributed PKGs”) to
perform threshold decryption or threshold signature generation, since the latter
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approach requires the distributed PKGs to be involved on-line in performing such
cryptographic operations. Obviously, this creates a bottleneck on the PKGs and
also violates one of the basic requirements of an ID-based encryption scheme, “the
PKG can be closed after key generation”, which was envisioned by Shamir in his
original proposal of ID-based cryptography [108]. Moreover, it causes a scalability
problem when the number of available distributed PKGs is not matched against
the number of decryption servers required, say, there are only 3 available PKGs
while a certain application requires 5 signature generation servers.

Given a set of common parameters generated by GC, a share of the private key
associated with an identity, and a message, n signature generation servers jointly
generate a signature for a given message by the signature generation algorithm
S.

When a user collects valid signature shares from at least t servers, the whole
signature on the given message can be reconstructed and the validity of this
signature can be checked by running the signature verification algorithm V.

Figure 6.1 illustrates the scenario of (3, 4)-ID-based threshold signature. Below,
we formally define IDT HS.

Definition 24 (ID-Based Threshold Signature) A (t, n) ID-based thresh-
old signature scheme IDT HS consists of the following algorithms.

• A randomized key/common parameter generation algorithm GC(k): Given
a security parameter k ∈ N, this algorithm generates the PKG’s mas-
ter/public key pair (skPKG, pkPKG). It then generates necessary common
parameters, e.g., descriptions of hash functions and mathematical groups.
The output of this algorithm denoted by cp includes such parameters and
the PKG’s public key pkPKG. Note that cp is given to all interested parties
while the matching master key skPKG is kept secret.

• A deterministic private key extraction algorithm EX(cp, ID): Given an iden-
tity ID, this algorithm generates a private key associated with ID, denoted
by skID.

• A randomized private key distribution algorithm DK(cp, skID, n, t): Given
a private key skID associated with an identity ID, a number of signature
generation servers n and a threshold parameter t, this algorithm generates
n shares of skID and provides each one to the signature generation servers
Γ1, Γ2, . . . , Γn. It also generates a set of verification keys that can be used to
check the validity of each shared private key. We denote the shared private
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keys and the matching verification keys by {ski}i=1,...,n and {vki}i=1,...,n,
respectively. Note that each (ski, vki) is sent to the signature generation
server Γi, then Γi publishes vki but keeps ski as secret.

• A randomized signature generation algorithm S(cp, ski
ID, M): Given the

common parameter cp generated by GC, a share ski
ID of the private key skID

associated with ID and a message M , n signature generation servers jointly
generate a signature σ for the message M . Note that partial signatures of
M computed by each server may be broadcast during the execution of S.

• A deterministic signature verification algorithm V(cp, ID,M, σ): Given a
signer’s identity ID, a message M and its signature σ, this algorithm checks
the validity of σ. The output of this algorithm is either “Valid” or “Invalid”.

Unforgeability for ID-Based Threshold Signature against Chosen Mes-
sage Attack

We now present an unforgeability notion for IDT HS against chosen message
attack, which we call “UF-IDTHS-CMA”.

Definition 25 (UF-IDTHS-CMA) Let BCMA be an attacker assumed to be a
probabilistic Turing machine taking a security parameter k as input. Consider
the following game in which BCMA interacts with the “Challenger”.

Phase 1: BCMA corrupts t − 1 signature generation servers. (That is, the
attacker is assumed to be static [59, 60].)

Phase 2: BCMA issues a number of private key extraction queries, each
of which consists of ID. On receiving ID, the Challenger runs the key
extraction algorithm EX of IDT HS taking ID as input and obtains a cor-
responding private key skID. The Challenger gives skID to BCMA.

Phase 3: BCMA submits a target identity ID∗. On receiving ID∗, the Chal-
lenger runs the key extraction algorithm EX of IDT HS taking ID as input
and obtains a corresponding private key skID∗ . Subsequently, it runs the
private key distribution algorithm DK of IDT HS taking skID∗ as input to
share it among n signature generation servers. We denote the shared keys
by ski

ID∗ for i = 1, . . . , n. The Challenger gives ski
ID∗ for i = 1, . . . , t − 1

(private keys for the corrupted servers) to BCMA.
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Phase 4: BCMA issues a number of signature generation queries, each of
which consists of a message denoted by M . On receiving M , the Chal-
lenger, on behalf of the uncorrupted servers, runs the signature generation
algorithm S of IDT HS taking ski

ID for i = t, . . . , n and M as input, and
responds to BCMA with σ output by the signature generation algorithm S of
IDT HS. Note that in this phase, BCMA is allowed to issue private key ex-
traction queries (identities) except for ID∗. Note also that BCMA is allowed
to see partial signature broadcast during the execution of S.

Phase 5: BCMA outputs (ID∗, M̃ , σ̃), where σ̃ is a valid signature of a
message M̃ and ID∗ is a corresponding identity. A restriction here is that
BCMA must not make a private key extraction query for ID∗, and it must
not make a signature generation query for M̃ .

We define BCMA’s success by

SuccUF−IDTHS−CMA
IDT HS,BCMA (k) = Pr[V(cp, ID∗, M̃ , σ̃) = 1].

We denote by SuccUF−IDTHS−CMA
IDT HS (tCMA, qE, qS) the maximum of the attacker

BCMA’s success over all attackers ACMA having running time tCMA and making at
most qE key extraction queries and qS signature generation queries. Note that
the running time and the number of queries are all polynomial in the security
parameter k.

The ID-based threshold signature scheme IDT HS is said to be UF-IDTHS-CMA
secure if SuccUF−IDTHS−CMA

IDT HS (tCMA, qE, qS) is negligible in k.

We now define robustness of the ID-based threshold signature scheme.

Definition 26 (Robustness) A (t, n) ID-based threshold signature scheme
IDT HS is said to be robust if it computes a correct output even in the presence
of a malicious attacker that makes the corrupted signature generation servers
deviate from the normal execution.

6.3.2 Relationship between UF-IDS-CMA and UF-IDTHS-
CMA

Motivated by Gennaro et al.’s [59] methodology for proving the security of thresh-
old signature, we define simulatability of IDT HS as follows.
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Definition 27 (Simulatability of IDT HS) Let IDT HS = (GC, EX, DK, S,
V) be a (t, n) ID-based threshold signature scheme. The scheme IDT HS is said
to be simulatable if the following conditions hold.

1. DK is simulatable: There exists a simulator SIMDK that, given a common
parameter cp generated by GC of IDT HS, and an identity ID, can simulate
the view of the attacker on an execution of DK of IDT HS.

2. S is simulatable: There exists a simulator SIMS that, given a common
parameter cp generated by GC of IDT HS, an identity ID, a message M ,
and a signature σ on M , t − 1 shares of the private key that matches to
ID of the corrupted signature generation servers, and the public outputs of
DK of IDT HS, can simulate the view of the attacker on an execution of S
of IDT HS.

We now state and prove the following theorem regarding the relationship between
the security of IDT HS and that of IDS. The implication of the theorem is that
if we have a UF-IDS-CMA secure ID-based signature scheme, we can use it as
a building block to construct an UF-IDTHS-CMA secure ID-based threshold
signature scheme by ensuring simulatability.

Theorem 7 If the IDT HS scheme is simulatable and the IDS scheme which is
associated with the IDT HS scheme is UF-IDS-CMA secure, then the IDT HS
is UF-IDTHS-CMA secure. Concretely, we obtain the following bound:

SuccUF−IDTHS−CMA
IDT HS (tCMA, qE, qS) ≤ SuccUF−IDS−CMA

IDS (t′CMA, q′E, q′S),

where t′CMA = tCMA + TSIMDK
+ TSIMS

, q′E = qE, and q′S = 1. Here, TSIMDK
and

TSIMS
denote the running time of the simulators SIMDK and SIMS respectively.

Proof. Let BCMA denote an attacker that defeats the UF-IDTHS-CMA security
of the IDT HS scheme. Let ACMA denote an attacker that defeats the UF-IDS-
CMA security of the IDS scheme.

We show how the view of BCMA in the real attack game of UF-IDTHS-CMA
(Definition 25), which we denote by G0, can be simulated to obtain a new game
G1 which is related to the ability of the attacker ACMA to defeat the UF-IDS-CMA
security of the IDS scheme, under the assumption that IDT HS is simulatable.

• Game G0: As mentioned, this game is identical to the real attack game
described in Definition 25. We denote by E0 the event that BCMA outputs a
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valid message/signature pair as a forgery. We use a similar notation E1 for
Game G1. Since Game G0 is the same as the real attack game, we have

Pr[E0] = SuccUF−IDTHS−CMA
IDT HS,BCMA (k).

• Game G1: First, we replace BCMA’s common parameter by ACMA’s common
parameter cp. We then do the following.

Whenever BCMA issues a private key extraction query ID in Phase 2 of the
attack game in Definition 25, we intercept it and forward ID as ACMA’s
private key extraction query to ACMA’s Challenger. On receiving ID, the
Challenger runs the key extraction algorithm EX of IDS taking ID as input
and returns the resulting private key skID. We simply send skID back to
BCMA.

If BCMA submits a target identity ID∗ in Phase 3, we run SIMDK taking
cp and ID∗ as input to simulate the view of BCMA. (Note that during the
execution of SIMDK, t − 1 shares of the private key skID∗ of corrupted
signature generation servers are output, which we send to BCMA. Note also
that we do not ask ID∗ to ACMA’s Challenger to get a corresponding private
key and hence we do not know the value skID∗ .)

In Phase 4, if BCMA issues a signature generation query M , we intercept
it and forward (ID∗,M) as ACMA’s signature generation query to ACMA’s
Challenger to get a corresponding signature σ. Having obtained σ, we
run SIMS taking cp, the outputs generated by SIMDK, which includes
corrupted t− 1 shares of the private key skID∗ , the target identity ID∗, and
the message/signature pair (M,σ) as input. We then send SIMS’s outputs
to BCMA. BCMA’s private key extraction queries other than ID∗ at this stage
are dealt with in the same way as done in the simulation of Phase 2.

If BCMA outputs (ID∗, M̃ , σ̃) in Phase 5, we intercept it and return it as
ACMA’s forgery. Note from the simulation that BCMA’s view in the real
attack game is identical to it’s view in Game G1 as long as the IDT HS is
simulatable. Hence we have

Pr[E1] ≥ Pr[E0].

By definition of Pr[E0] and Pr[E1], we obtain

SuccUF−IDS−CMA
IDS,ACMA (k) ≥ SuccUF−IDTHS−CMA

IDT HS,BCMA (k).
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Considering the running time and the number of queries, we obtain the
bound in the theorem statement.

ut

6.4 Building Blocks for Our ID-based Thresh-

old Signature

6.4.1 Hess’ ID-Based Signature Scheme

We first review Hess’ ID-based signature scheme [66], which we denote by “HessIDS”.
We will use this as a base ID-based signature scheme to construct our ID-based
threshold signature scheme. Note that the HessIDS scheme was proven to be un-
forgeable against chosen message attack in the random oracle model [20] assuming
that the CDH problem is intractable.

• A key/common parameter generation algorithm GC(k): This algorithm is
run by the PKG to generate its master/public key pair and all the necessary
common parameters.

– Choose a group G of prime order q ≥ 2k, whose generator is P . Specify
the Bilinear map ê : G × G → F .

– Pick a master key s uniformly at random from ZZ∗q and compute Ppub =
sP .

– Choose two hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗×F → ZZ∗q.

– Keep s as secret and publish (G, q, P, Ppub, ê, H1, H2).

• A private key extraction algorithm EK(cp, ID): This algorithm is run by the
PKG on receiving a private key extraction query from any user who wants
to extract a private key that matches to an identity ID.

– Given ID, compute QID = H1(ID) and DID = sQID.

– Output DID.

• A signature generation algorithm S(cp,DID,M): This algorithm is run by
a user who wants to sign a message M using a private key DID.
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– Choose k uniformly at random from ZZ∗q.

– Compute K = kP and γ = ê(K, P )(= ê(P, P )k).

– Compute v = H2(M, γ) and U = vDID + K.

– Output a signature σ = (U, v).

• A signature verification algorithm V(cp, ID, σ): This algorithm is run by
any user who wants to verify a signature σ on message M using the signer’s
identity ID.

– Compute γ = ê(U, P )ê(QID,−Ppub)
v, where QID = H1(ID).

– If H1(m, γ) = v then output “Accept”, otherwise output “Reject”.

Note that in the security proof of our ID-based threshold signature scheme, we
will need a value γ = ê(K,P ), which is not explicitly appeared in HessIDS.
However, this can be easily derived from a signature (U, v) by computing γ =
ê(U, P )ê(QID,−Ppub)

v. Hence, whether it is appeared or not, γ does not affect
the security.

6.4.2 Review of Secret-Sharing over G
To construct an ID-based threshold signature scheme from the above HessIDS

scheme, we need to distribute the values K and DID. This can be done efficiently
using the secret-sharing scheme over the group G presented in Section 5.5.1. To
maintain this chapter self-contained, we review it in the following.

Distribution Phase: Let q be a prime order of a group G of points on
some elliptic curve. Let S ∈ G∗ be a secret (point) to share. Suppose that
we have chosen integers t and n satisfying 1 ≤ t ≤ n < q.

First, we pick F1, F2, . . . , Ft−1 uniformly at random from G∗. Then, we
define a polynomial-like function F : IN ∪ {0} → G, which we call “PLF”
throughout this chapter, such that

F (x) = S +
t−1∑

l=1

xlFl ∈ G.

Define t− 1 as a “degree”.

Now, we compute Si = F (i) ∈ G for 1 ≤ i ≤ n and send (i, Si) to the i-th
member of the group of cardinality n. Note that when i = 0, we obtain the
secret itself, that is, S = F (0).
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Reconstruction Phase: Let Φ ⊂ {1, . . . , n} b set such that |Φ| ≥ t,
where | · | denotes the cardinality of a given set. The function F (x) can be
reconstructed by computing

F (x) =
∑
j∈Φ

πΦ
xjSj where πΦ

xj =
∏

ι∈Φ,ι6=j

x− ι

j − ι
∈ ZZq.

6.4.3 Computationally Secure Verifiable Secret-Sharing
Scheme Based on the Bilinear Map

Verifiable Secret-Sharing (VSS) is a useful tool for protecting threshold signa-
ture schemes from malicious attackers that cause involving parties to divert from
the predefined protocol. In other words, VSS gives threshold signature schemes
robustness.

Since our ID-based threshold signature scheme is of discrete-logarithm type, the
various discrete-logarithm type VSS schemes, e.g., [50, 93] can be considered
as building blocks for our VSS schemes. However, we modify those schemes as
the base secret-sharing scheme presented in the previous section has a different
structure than Shamir’s original secret-sharing scheme, and the Bilinear map
should extensively be used in our ID-based threshold signature scheme.

Our first VSS scheme, which we call “Computationally secure Verifiable Secret-
Sharing scheme based on the Bilinear Map (CVSSBM)”, is motivated by Feldman’s
VSS scheme [50]. This scheme will be used to distribute a user’s private key DID

in the HessIDS scheme into a number of signature generation servers.

Description of CVSSBM

We describe the CVSSBM scheme as follows.

Let (G, q, P, ê) be a set of parameters, as defined in Section 6.2.2. Suppose that a
threshold t and the number of parties n satisfy 1 ≤ t ≤ n < q. To share a secret
S ∈ G∗ out among n parties, a dealer performs the following:

1. Choose F1, . . . , Ft−1 uniformly at random from G∗, construct a PLF F (x) =
S + xF1 + · · · + xt−1Ft−1 ∈ G for x ∈ IN ∪ {0} and compute Si = F (i) for
i = 0, . . . , n. Set S0 = S.

2. Send Si to party Γi for i = 1, . . . , n secretly. Broadcast α0 = ê(S, P ) and
αj = ê(Fj, P ) for j = 1, . . . , t− 1.
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3. Each party Γi then checks whether its share Si is valid by computing

ê(Si, P ) =
t−1∏
j=0

αij

j . (6.1)

Analysis of CVSSBM

The CVSSBM scheme satisfies correctness. More precisely, we state and prove the
following lemma.

Lemma 9 In CVSSBM, shares held by all the uncorrupted parties can be interpo-
lated to a unique PLF of degree t−1, and t or more of these shares can reconstruct
the secret S. Also, equation (6.1) provides a correct procedure for checking the
validity of each share.

Proof. By the interpolation technique given in Section 5.5.1, there exists a
unique PLF F such that F (i) = Si ∈ G for i ∈ Φ, where Φ ⊂ {1, . . . , n} is a set
such that |Φ| ≥ t.

Now, we show that the equation ê(Si, P ) =
∏t−1

j=0 αij

j is correct: If each Si is
correct, we have

t−1∏
j=0

αij

j = ê(S, P )
t−1∏
j=1

ê(Fj, P )ij = ê(S, P )
t−1∏
j=1

ê(ijFj, P )

= ê(S + iF1 + · · ·+ it−1Ft−1, P ) = ê(Si, P ).

ut

The scheme CVSSBM is computationally secure in that the value α0 = ê(S, P ) is
revealed during the execution of the protocol and hence the secrecy of S depends
on the computational assumption that it is hard for an attacker to obtain S from
ê(S, P ), which is actually the mGBI assumption presented in Definition 23. In
the following, we formally prove this.

Lemma 10 In CVSSBM, the attacker that learns fewer than t shares of the secret S
obtains no information about S assuming that mGBI problem is computationally
intractable.



141

Proof. We show how an attacker for the mGBI problem AmGBI can be constructed
using an attacker ACVSSBM for the CVSSBM scheme.

Without loss of generality, assume that the parties indexed 1, . . . , t−1 have been
corrupted by ACVSSBM. Also, assume that α0 = ê(S, P ) is provided as (public)
input AmGBI.

First, we pick S1, . . . , St−1 at random from G∗ and compute α1(= ê(S1, P )),...,
αt−1(= ê(St−1, P )). We then compute αt = απt0

0

∏t−1
j=1 α

πtj

j , where πtj denotes
the Lagrange coefficient for an index set {0, 1, . . . , t− 1}. Subsequently, we give
S1, . . . , St−1 (corrupted keys), α1, . . . , αt−1 together with α0 to ACVSSBM. The
simulated value αt is correct and identically distributed to the one in the real
execution of the CVSSBM scheme.

If ACVSSBP outputs its guess for the the secret value S, we return it as AmGBI’s
guess for the pre-image of α0. ut

6.4.4 Unconditionally Secure Verifiable Secret-Sharing
Scheme Based on the Bilinear Map

Our second VSS scheme based on the Bilinear Map, which we call a “Unconditionally-
secure VSS based on the Bilinear map (UVSSBM)”, will be served as a basis for the
new distributed key generation protocol based on the Bilinear map that will be
described in Section 6.4.5. Our scheme is motivated by Pedersen’s uncondition-
ally (information-theoretically) secure VSS scheme [93], but due to the algebraic
structure of the Bilinear map, it has some different features.

A New Commitment Scheme

We begin with describing a new commitment scheme, an important building block
for the UVSSBM scheme.

Let (G, q, P, ê) be the common parameters, as defined in Section 6.2.2. Suppose
that random elements G, H ∈ G∗, and the common parameters are given to a
dealer. (We assume that no party knows a, b ∈ ZZ∗q such that G = aP and H = bP .
These values can be chosen by a trusted third party or interested parties using
a coin-flipping protocol.) The dealer then chooses r ∈ ZZ∗q uniformly at random
and computes

Comm(S, r) = ê(S, P )ê(G,H)r.
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The following lemma shows that the security of the above commitment scheme
is relative to the CDH problem on the group G.

Lemma 11 If Comm(S, r) = Comm(S ′, r′) for S, S ′ ∈ G, where S 6= S ′, then
we have r 6= r′ and find the DIffie-Hellman key of G and H.

Proof. Let Comm(S, r) = Comm(S ′, r′). Since G = aP and H = bP for some
a, b ∈ ZZ∗q, we have

ê(S, P )ê(G,H)r = ê(S′, P )ê(G,H)r′

ê(S, P )ê(aP, bP )r = ê(S′, P )ê(aP, bP )r′

ê(S − S′, P ) = ê(aP, bP )r′−r

ê(
1

r′ − r
(S − S′), P ) = ê(abP, P ).

Hence, 1
r′−r

(S − S ′) is the Diffie-Hellman key of G and H. ut

Description of UVSSBM

Let (G, q, P, ê) be a set of parameters, as defined in Section 6.2.2. Suppose that
the threshold t and the number of parties n satisfy 1 ≤ t ≤ n < q. To share a
secret S ∈ G∗ among n parties, a dealer performs the following:

1. Publish δ0 = Comm(S, r), a commitment to S described previously, where
r is chosen uniformly at random from ZZ∗q. (We assume that the dealer
has used the random elements G,H ∈ G∗ for input parameters for the
commitment.)

2. Choose F1, . . . , Ft−1 uniformly at random from G∗, construct a PLF F (x) =
S + xF1 + · · · + xt−1Ft−1 for x ∈ IN ∪ {0} and compute Si = F (i) for
i = 0, . . . , n. Set S0 = S.

3. Choose f1, . . . , ft−1 uniformly at random from ZZ∗q, construct a polynomial
f(x) = r + f1x + · · ·+ ft−1x

t−1 for x ∈ IN ∪ {0} and compute ri = f(i) for
i = 0, . . . , n. Set r0 = r.

4. Send (Si, ri) to party Γi for i = 1, . . . , n secretly. Broadcast δj = Comm(Fj, fj)
for j = 1, . . . , t− 1.
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5. Each party Γi then checks whether its share (Si, ri) is valid by computing

Comm(Si, ri) =
t−1∏
j=0

δij

j . (6.2)

Analysis of UVSSBM

The UVSSBM scheme presented above satisfies correctness under the assumption
that the CDH problem is intractable and unconditional secrecy. More precisely,
we state and prove the following two lemmas.

Lemma 12 In UVSSBM, shares held by all uncorrupted parties can be interpolated
to a unique PLF of degree t − 1, and t or more of these shares can reconstruct
the secret S. Also, equation (6.2) provides a correct procedure for checking the
validity of each share. In order to defeat the correctness of this procedure, a
cheating attacker should solve the CDH problem.

Proof. By the interpolation technique given in Section 5.5.1, there exists a
unique PLF F such that F (i) = Si ∈ G for i ∈ Φ, where Φ ⊂ {1, . . . , n} is a set
such that |Φ| ≥ t. Also, by the interpolation technique in Shamir’s secret-sharing
scheme [107], there exists a unique polynomial f such that f(i) = ri ∈ ZZ∗q for
i ∈ Φ. Then, since G = aP and H = bP for some a, b ∈ ZZ∗q, we have

ê(F (i) + abf(i)P, P ) = ê(F (i), P )ê(abf(i)P, P ) = ê(F (i), P )ê(aP, bP )f(i)

= Comm(Si, ri) = ê(Si, P )ê(G,H)ri = ê(Si + abriP, P )

for i ∈ Φ. Hence, D(x) = F (x) + abf(x)P is the unique PLF that maps i to
Si + abriP . Indeed D(x) is a PLF of degree t− 1 since

D(x) = F (x) + abf(x)P

= S + xF1 + · · ·+ xt−1Ft−1 + uv(r + f1x + · · ·+ ft−1x
t−1)P

= (S + abrP ) + x(F1 + abf1P ) + · · ·+ xt−1(Ft−1 + abft−1P ).

Now, we show that the equation Comm(Si, ri) =
∏t−1

j=0 δij

j is correct. Indeed, if

each (Si, ri) is correct, we have Comm(Si, ri) =
∏t−1

j=0 δij

j since

t−1∏
j=0

δij

j = ê(S, P )ê(G,H)r

t−1∏
j=1

(ê(Fj, P )ê(G,H)fj)ij



144

= ê(S, P )ê(G,H)r

t−1∏
j=1

(ê(ijFj, P )ê(G,H)fjij)

= ê(S + iF1 + · · ·+ it−1Ft−1, P )ê(G,H)r+f1i+···+ft−1it−1

= ê(F (i), P )ê(G,H)f(i) = ê(Si, P )ê(G,H)ri = Comm(Si, ri).

Moreover, as shown in Lemma 11, the chance that a cheating attacker can create
a secret pair (S ′i, r

′
i), where S ′i 6= Si and r′i 6= ri, such that Comm(S ′i, r

′
i) =

Comm(Si, ri) is negligible as the CDH problem on the group G is intractable. ut

Lemma 13 In UVSSBM, the attacker that learns fewer than t shares of the secret
S obtains no information about S unconditionally.

Proof. Without loss of generality, assume that the parties indexed 1, . . . , t − 1
have been corrupted by an attacker AUVSSBM for UVSSBM . The attacker’s view
then consists of 〈δ0, δ1, . . . , δt−1, (S1, r1), . . . , (St−1, rt−1)〉. For any S ′ ∈ G, there
exists only one value r′ ∈ ZZ∗q satisfying c0 = Comm(S ′, r′). Also, there exist only
one PLF F ′(x) = S ′ + xF ′

1 + · · · + xt−1F ′
t−1 and only one polynomial f ′(x) =

t′ + f ′1x + · · ·+ f ′t−1x
t−1 such that F ′(0) = S ′ and F ′(i) = Si for i = 1, . . . , t− 1,

and f ′(0) = r′ and f ′(i) = ri for i = 1, . . . , t− 1.

But, by Lemma 12, there exists a unique PLF D of degree t − 1 such that
ê(D(0), P ) = Comm(S ′, r′) and ê(D(i), P ) = Comm(Si, ri) for for i = 1, . . . , t−1.
Hence, we have Comm(F ′

i , f
′
i) = δi for for i = 1, . . . , t − 1, which implies that

AUVSSBM’s view does not contain any information about the secret. ut

6.4.5 Distributed Key Generation Protocol Based on the
Bilinear Map

Description of DKPBM

We are now ready to construct a distributed key generation protocol, whereby
a number of parties without a dealer jointly generate a secret K ∈ G∗ and its
corresponding public value γ = ê(K, P ). We call this protocol a “Distributed Key
generation Protocol Based on the Bilinear Map (DKPBM)”. Notice that the aim of
DKPBM is analogous to Gennaro et al.’s [60] distributed key generation protocol for
discrete-logarithm based cryptographic schemes, whereby a predetermined set of
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parties can generate a secret k ∈ ZZ∗q and its corresponding public value gk ∈ ZZ∗p
jointly, where g is a generator of ZZ∗p and the primes p and q satisfy q|p− 1.

To build DKPBM, we will need a distributed version of the UVSSBM scheme presented
in Section 6.4.4, which we call a “Distributed Unconditionally-secure Verifiable
secret-sharing scheme based on the Bilinear Map (DUVSSBM)”. With this protocol,
a secret S ∈ G∗ can be generated jointly by participating parties without a dealer.
Note that we adopt the description-style from [60] including some notations to
describe the following protocols.

Suppose that a set of parameters (G, q, P, ê) and a threshold t are given to all
servers. Assume that the values G,H ∈ G∗ used for the commitment scheme
“Comm” are also given to n servers. Let S ∈ G∗ be a secret to be shared among
the n parties. The protocol DUVSSBM works as follows.

1. Each of the parties denoted by Γi performs the following.

Choose Ri, Fi1, Fi2, . . . , Fit−1 at random from G∗; Choose ri, fi1, fi2, . . . , fit−1

at random from ZZ∗q.

Construct a PLF Fi(x) = Ri + xFi1 + · · · + xt−1Fit−1 and a polynomial
fi(x) = ri0 + fi1x + · · ·+ fit−1x

t−1.

Compute shares Sij = Fi(j) ∈ G and rij = fi(j) ∈ ZZq for j = 1, . . . , n, and
send (Sij, rij) to Γj for each j = 1, . . . , n.

Broadcast δi0 = Comm(Ri, ri0) and δik = Comm(Fik, fik) for k = 1, . . . , t−
1.

2. Party Γj verifies the validity of the shares by checking

Comm(Sij, rij) =
t−1∏

k=0

δjk

ik (6.3)

for i = 1, . . . , n.

If (6.3) fails for for some index i, Γj broadcasts a message COMPLAINTi

against Γi.

If t or more parties have broadcast COMPLAINTi, party Γi is set as “disqual-
ified”. Otherwise, party Γi publishes all the values (Sij, rij) that party Γj

complained. That is, Γj publishes the values claimed to be failed (6.3) and
the message COMPLAINTi was created accordingly. Then, (6.3) is again
performed for the published values by every party. If the values do not pass
(6.3), party Γi is set to be disqualified.
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3. Each party builds an index set of non-disqualified parties, denoted by QUAL.

4. Party Γi computes its share of the secret Si =
∑

j∈QUAL Sji ∈ G and
ri =

∑
j∈QUAL rji ∈ ZZq. (Note that the distributed secret value S equals∑

i∈QUAL Ri but no party can compute it explicitly.)

We now describe the DKPBM as follows.

1. Run DUVSSBM.

2. Party Γi, where i ∈ QUAL, broadcasts βi0 = ê(Ri, P ) and βik = ê(Fik, P )
for k = 1, . . . , t− 1.

3. Party Γj verifies the validity of the values broadcasted by the other parties
that are qualified by checking

ê(Sij, P ) =
t−1∏

k=0

βjk

ik (6.4)

for each i such that i ∈ QUAL.

If (6.4) fails for for some index i, Γj broadcasts a ˜COMPLAINTi against Γi,
together with the pair of values (Sij, rij) that satisfy (6.3) but do not satisfy
(6.4).

4. For parties Γi that receive at least one pair of values (Sik, rik) that satisfies
(6.3) but does not satisfy (6.4), the other parties run the reconstruction
phase of UVSSBM to compute Ri, Fi(x) and βik for k = 0, . . . , t− 1. For all
parities in QUAL, compute the verification information βk =

∏
i∈QUAL βik

for k = 0, . . . , t− 1. (Note that β0 = ê(S, P ).)

Notice that the reason why the distributed version of “unconditionally secure”
VSS scheme DUVSSBM (instead of a possibly more efficient distributed-VSS scheme
based on the Bilinear map, which may be constructed in a similar way as Feld-
man’s VSS scheme in [50]) is used to generate S ∈ G∗ is that the attack on
“Joint-Feldman VSS scheme” described in [60] is applied to DKPBM too.

Analysis of DKPBM

The correctness of DKPBM can be proven in a similar way as the scheme in [60].
We only show that β0 in Step 4 of DKPBM does constitute ê(S, P ). This is indeed
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the case since

β0 =
∏

j∈QUAL

βj0 =
∏

j∈QUAL

ê(Rj, P ) = ê(
∑

j∈QUAL

Rj, P ) = ê(S, P ).

In terms of security, DKPBM has interesting uniqueness in a sense that its security
is relative to mGBI problem discussed in Section 6.2.2. We now state and prove
the following lemma.

Lemma 14 In DKPBM, the attacker that learns fewer than t shares of the secret
S obtains no information about S assuming that mGBI problem is intractable.

Proof. Suppose that the attacker AmGBI for the mGBI problem is given a random
β ∈ F . We show that AmGBI can construct a simulator providing the value β ∈ F
as input. The aim of the simulator is to simulate an execution of DKPBM so that
it looks indistinguishable from a real execution of DKPBM that outputs β as its
public output β0, where the DKPBM attacker ADKPBM possesses fewer than t shares
of the secret S.

We now present details of the simulator. Assume that ADKPBM has corrupted
parties Γ1, . . . Γt−1 without loss of generality. Let Φcor = {1, . . . , t − 1} be an
index set of the corrupted parties. Let Φuncor = {t, . . . , n} be an index set of the
uncorrupted parties. Note here that Φuncor ⊆ QUAL. The simulator simulates
each step of DKPBM as follows. (Remember that β ∈ F is provided as input to the
simulator.)

Sim 1. Run DUVSSBM for the uncorrupted parties (Γt, . . . , Γn). Let Fi(x) =
Ri+xFi1+· · ·+xt−1Fit−1 and fi(x) = ri+fi1x+· · ·+fit−1x

t−1 for i = 1, . . . , n
be the random PLF and polynomial respectively, held by each party. Let
(Si, ri) denote the share held by each party at the end of of the protocol.
(Note that all the PLFs, polynomials, (Si, ri) held by each party are known
to the simulator.)

Sim 2. Compute βi0 = ê(Ri, P ) and βik = ê(Fik, P ) for i ∈ QUAL \ {n}
and k = 1, . . . , t − 1. For n, set βn0 = β

∏
i∈QUAL\{n}(βi0)

−1, compute

Snj = Fn(j) for j = 1, . . . , t − 1 and βnk = (βn0)
πk0

∏t−1
i=1 ê(Sni, P )πki for

k = 1, . . . , t− 1, where πki denotes a Lagrange interpolation coefficient for
set {0, 1, . . . , t− 1}.
Broadcast βik for i ∈ Φuncor \ {n}, and βnk for k = 0, . . . t− 1.
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Sim 3, Sim 4 and Sim 5. Follow the executions of DKPBM for the uncorrupted
parties.

ut

6.5 Our ID-Based Threshold Signature Scheme

6.5.1 Description of Our ID-Based Threshold Signature
Scheme

Combining the building blocks presented in the previous section, we now con-
struct the ID-based threshold signature scheme based on the Bilinear map, which
we call “IDTHSBM”. IDTHSBM consists of the following algorithms. (For simplicity,
we omit the details of sub-algorithms CVSSBM and DKPBM, and only describe the
significant values resulted from them.)

• A key/common parameter generation algorithm GC(k): To generate the
PKG’s private and public key pair and all the necessary common parame-
ters, the PKG performs the following.

– Choose a group G of prime order q and its generator P . Specify the
Bilinear map ê : G × G → F .

– Pick a master key s uniformly at random from ZZ∗q and compute Ppub =
sP .

– Choose two hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗×F → ZZ∗q.

– Keep s as secret and return cp = (G, q, P, Ppub, ê, H1, H2).

• A private key extraction algorithm EX(cp, ID): On receiving a private key
extraction query ID from user, the PKG performs the following.

– Compute QID = H1(ID) and DID = sQID.

– Return DID.

• A private key distribution algorithm DK(cp, DID, t, n): A trusted user (as
discussed in Section 6.3.1, this user could be the PKG itself) who possesses
a private key DID associated with an identity ID performs the following.



149

– Run CVSSBM taking (G, q, P, Ppub, ê, H1, t, n,DID) as input to share DID

among n signature generation servers, denoted by Γ1, Γ2, . . . , Γn.

∗ By Di
ID for i = 1, . . . , n, denote each of the private key share of

DID held by Γi. By αk for k = 0, . . . , t− 1, where t is a threshold,
denote the public verification information output at the end of the
execution of CVSSBM.

• A signature generation algorithm S(cp, Di
ID,M) where i = 1, . . . , n: Each

signature generation server Γi performs the following to jointly generate a
signature on a given message M .

– Run DKPBM taking (G, P, t, n) as input to jointly generate a secret value
K and a public value γ = ê(K, P ).

∗ Denote the resulting share of the sever Γi by Ki, where i =
1, . . . , n. By βk =

∏
i∈QUAL βik for k = 0, . . . , t − 1), denote the

public verification information output at the end of the execution
of DKPBM. Note that β0 = ê(K,P ) = γ.

– Compute v = H2(M, γ).

– Broadcast Ui = vDi
ID + Ki. (If Γi does not broadcast a value, we set

Ui to null.)

– For server Γi where i ∈ QUAL, verify that

ê(Ui, P ) =
( t−1∏

k=0

αik

k

)v
t−1∏

k=0

βik

k . (6.5)

– Construct U by computing U =
∑

πiUi where πi is the Lagrange
coefficient for the set whose cardinality is at least t.

– Return σ = (U, v).

• A signature verification algorithm V(cp, ID,M, σ): Any user who wants to
verify a signature σ = (U, v) on a message M performs the following.

– Compute γ = ê(U, P )ê(QID,−Ppub)
v, where QID = H1(ID).

– If H1(M, γ) = v then return “Accept”, otherwise return “Reject”.
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6.5.2 Remarks on Design

In fact, GC, EX, and V of IDTHSBM are the same as those of Hess’ ID-based sig-
nature scheme (HessIDS) described in Section 6.4.1. Different are the private
key distribution algorithm DK and signature generation algorithm S. We re-
mark that during the execution of DK, the value ê(DID, P ) is revealed as one
of the public values of CVSSBM. However, this is not an additional value cre-
ated aside from HessIDS since, from the values Ppub = sP and QID = H1(ID)
which are publicly available in HessIDS, one can derive ê(DID, P ) by computing
ê(QID, Ppub) = ê(QID, sP ) = ê(sQID, P ) = ê(DID, P ). Hence, the value ê(DID, P )
resulted from CVSSBM does not affect the security of our ID-based threshold
scheme. We also remark that although DK uses CVSSBM whose security is based
on the mGBI problem (Lemma 10), the security of DK is not relative to the
mGBI problem but the CDH problem since the values Ppub and QID are given as
additional inputs.

Note that although the validity of the shares of DID and K are checked during the
executions of CVSSBM and DKPBM, whether the partial signatures on the message
M do reconstruct the original signature is not ensured. To resolve this problem,
we have adopted Cerecedo et al. [33]’s technique in which the publicly available
values output CVSSBM and DKPBM are aggregated and the partial signatures are
checked against them as presented in equation (6.5).

6.5.3 Variant for Non-Repudiation

One criticism on most ID-based signature schemes is that “non-repudiation”,
which is a very important property that signature schemes should possess, is not
provided in the ID-based signature schemes due to the fact that the PKG always
knows the user’s private key and is capable of sign any messages at will.

As discussed in [66], the problem can be resolved by distributing the PKG’s
master key into a number of multiple PKGs, which is called the “distributed
PKGs” method [27]. Our scheme IDTHSBM can incorporate the distributed PKGs
technique as follows. First, the master key s is jointly generated by the multiple
PKGs using the technique of [60]. Holding a share si of s, each of the multiple
PKGs then responds to the trusted user who is supposed to run the private
key distribution algorithm DK of IDTHSBM’s private key extraction query with
Di

ID = siQID then the user collects these shares and recovers the private key DID.
Having recovered DID, the user can run DK.
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6.5.4 Security Analysis

We now analyze the security of IDTHSBM. First, recall that in order to show
IDTHSBM is UF-IDTS-CMA secure, we need to show that the associated ID-based
signature scheme HessIDS is UF-IDS-CMA secure and IDTHSBM is simulatable,
as proven in Theorem 7. As mentioned before, the HessIDS scheme was actually
proven to be UF-IDS-CMA secure assuming that the CDH problem is intractable
in group G [66], hence, what we only have to prove is the following lemma.

Lemma 15 IDTHSBM is simulatable.

Proof. The simulator for the key distribution algorithm DK of IDTHSBM can be
constructed in the same way as done in the proof of Lemma 10, which proves the
security of the CVSSBM. However, we emphasize again that the security of DK of
IDTHSBM is relative to the CDH problem (not mGBI) problem since the values
Ppub and QID are given as additional information to DK.

Now we present the simulator for the signature generation algorithm S of IDTHSBM.
The simulator, given the PKG’s public key Ppub and the parameter cp = (G, q,
P , ê, H1, H2) generated by the key/common parameter generation algorithm GC
of IDTHSBM, the identity ID and a signature (U, v) on message M , D1

ID, . . . , D
t−1
ID ,

which are t − 1 shares of Di
ID, and the public outputs of DK, can simulate the

view of the attacker on an execution of the signature generation algorithm S of
IDTHSBM as follows.

Sim 0. Compute γ∗ = ê(U, P )ê(QID,−Ppub)
v, where QID = H1(ID).

Sim 1. Do the following.

– Run DUVSSBP for the uncorrupted signature generation servers (Γt, . . .,
Γn). Let Fi(x) = Ri + xFi1 + · · · + xt−1Fit−1 and fi(x) = ri + fi1x +
· · · + fit−1x

t−1 for i = 1, . . . , n be the random PLF and polynomial
respectively, held by each signature generation server. Let (Ki, ri)
denote the share held by each server at the end of of the protocol.
(Note that all the PLFs, polynomials, (Ki, ri) held by each server are
known to the simulator.)

– Compute βi0 = ê(Ri, P ) and βik = ê(Fik, P ) for i ∈ QUAL \ {n} and
k = 1, . . . , t − 1. For n, set βn0 = β

∏
i∈QUAL\{n}(βi0)

−1, compute

Knj = Fn(j) for j = 1, . . . t − 1 and βnk = (βn0)
πk0

∏t−1
i=1 ê(Kni, P )πki
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for k = 1, . . . , t − 1, where πki denotes a Lagrange coefficient for set
{0, 1, . . . , t− 1}.
Broadcast βik for i ∈ Φuncor \ {n}, and βnk for k = 0, . . . , t− 1.

– Follow the instructions of the DKPBM protocol for the uncorrupted par-
ties.

Sim 2. Compute v = H2(M,γ∗).

Sim 3. Compute Ui = vDi
ID + Ki for i = 1, . . . , t − 1. Let F (u) be a PLF

of degree t − 1 such that F (0) = U and F (i) = Ui for i = 1, . . . , t − 1.
Compute Ui = F (i) for i = t, . . . , n. Broadcast Ut, . . . , Un.

ut

Combining Theorem 7, Lemma 15, the unforgeability of HessIDS from [66], and
considering robustness, we obtain the following theorem.

Theorem 8 The IDTHSBM is UF-IDTHS-CMA secure, relative to the CDH prob-
lem in the random oracle model.

6.6 Brief Summary of the Results

In this chapter, we proposed the first ID-based threshold signature scheme based
on the Bilinear map. We proved that our scheme is existentially unforgeable
against chosen message attack, relative to the intractability of the Computational
Diffie-Hellman problem. Like the ID-based threshold decryption scheme proposed
in the previous chapter, our ID-based threshold signature scheme has the property
that the private key issued by the PKG is shared among a number of signature
generation servers rather than the master key of the PKG.
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Chapter 7

Conclusion

From Chapter 3 through Chapter 6, we achieved the two main goals stated at
the beginning of the thesis, (1) the analysis of the security of important existing
cryptographic schemes through a new perspective and (2) the constructions of
new cryptographic schemes that enhance the functionality of current public key
cryptography.

In what follows, we summarize the contributions made in each chapter and discuss
some problems that remained unsolved.

In Chapter 3, we showed that the slightly modified version of Zheng and Seberry’s
public key encryption scheme [129, 130], which had been proposed by Lim and
Lee [77], is secure against chosen ciphertext attack in the random oracle model,
relative to, in fact, the Gap Diffie-Hellman problem [90]. We also discussed the
security analysis of Zheng and Seberry’s scheme given by Soldera et al. [115] and
concluded that their analysis is flawed.

Although our results in Chapter 3 will settle the issues related to the security of
Zheng and Seberry’s encryption scheme, raised in the series of the papers [77] and
[115], it should be pointed out that our security analysis only holds in the random
oracle model [20]. In fact, Zheng and Seberry’s original intention was to design
public key encryption schemes whose chosen ciphertext security can be proven
without relying on non-standard assumptions (such as the random oracle model).
In this respect, an interesting open problem is to weaken the assumptions used
in the security analysis of Zheng and Seberry’s scheme as much as possible. As
envisioned by Zheng and Seberry [129, 130], the universal class of hash functions
[31, 122] may be employed to replace some of the random oracles used in Zheng
and Seberry’s scheme (even though all the random oracles cannot be completely
removed). In a broad respect, another hard but important open problem is to
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design a public key encryption scheme provably secure against chosen ciphertext
attack in the standard model (that is, the security model that does not depend on
the random oracle assumption), which is more efficient than Cramer and Shoup’s
scheme [41].

In Chapter 4, we proved the confidentiality of Zheng’s original signcryption
scheme with respect to the strong security notion “FSO/FUO-IND-CCA” that we
introduced. Although this notion bears some similarities to the well known “IND-
CCA” notion defined for standard public key encryption schemes, it is stronger
than the direct adaptation of IND-CCA to the setting of signcryption, since we
allow an attacker to query both the signcryption oracle and the unsigncryption
oracle in a flexible way. We also introduced a strong unforgeability notion called
“FiSO-UF-CMA” and successfully proved the unforgeability of Zheng’s original
signcryption with respect to this notion.

We emphasize here that our security models for signcryption are applicable not
only to Zheng’s original scheme but also to other various signcryption schemes:
As mentioned earlier in Chapter 4, Zheng’s SDSS2-type signcryption scheme de-
scribed in [124, 125] can be proven to be secure relative to the same computational
assumptions for the SDSS1-type signcryption scheme using the same proof tech-
niques presented in Chapter 4. Another immediate consequence of the results of
this work is the provable confidentiality and unforgeability of the elliptic curve
variants of Zheng’s original signcryption scheme described in [126]. The only
difference is that we need to rely on the intractability of elliptic curve versions of
the GDH and DL problems in proving the security of those elliptic curve variants.

An interesting open problem in terms of the security analysis of Zheng’s orig-
inal signcryption scheme is to extend our security proof given in Chpater 4 to
handle “adaptive security” in which the attacker chooses the target users dynam-
ically. Another challenging open problem is to analyze Zheng’s [127] signcryption
scheme based on the high-residuosity problem. Since the common parameters of
this scheme are generated differently from those of Steinfeld and Zheng’s [116]
signcryption scheme based on the Integer Factorization problem, new techniques
other than those developed in [118] or [116] may be needed to analyze this scheme.

In Chapter 5, we discussed issues related to the realization of identity-based
threshold decryption and proposed the first threshold identity-based decryption
scheme provably secure against chosen ciphertext attack. An important feature
of our scheme is that the private key issued by the Private Key Generator (PKG)
in identity-Based encryption is shared among a number of decryption servers
rather than the master key of the PKG, which, we claim, is more practical. We
also showed how our identity-based threshold decryption scheme can result in a
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mediated identity-based encryption scheme secure against inside attack, whereby
an attacker who possesses a user part of private key conducts chosen ciphertext
attack. The resulted scheme is actually the first mediated encryption scheme in
the literature that possesses such a security property.

In terms of identity-based threshold decryption, an interesting open problem is to
find more real-world applications where our identity-based threshold decryption
scheme is particularly useful. However, we believe that a number of interesting
open problems still remain in identity-based cryptography itself. Here is one of
them: In identity-based cryptography, whenever users want to generate private
keys associated with their identities, they should contact the PKG and ask for
their private keys. Since this private key issuing process involves authentication
of users’ identifier information, it is quite a burden to users as well as to the
PKG. Hence, a natural question one can ask is whether it is possible for users
to acquire a single long-term private key from the PKG and use it to generate
private keys for identities of their choice. Of course, in doing so, the system
should remain secure against inside attackers, that is, cheating users, as well as
outside attackers.

In Chapter 6, we formalized the concept of identity-based threshold signature
and gave the first scheme realizing the concept, whose security is based on the
Computational Diffie-Hellman problem. As building blocks for our identity-based
threshold signature scheme, we constructed the various verifiable secrete-sharing
schemes based on the Bilinear map. We expect that they as well as our identity-
based threshold signature scheme will serve as sound primitives for identity-based
cryptography in general.

An important fact that one should not overlook in relation to the research on
identity-based cryptography is that Shamir [108] did successfully construct an
identity-based signature scheme using the RSA primitive in his original proposal
of identity-based cryptography. However, the recent identity-based signature
variants e.g., [123, 76] including our scheme presented in Chapter 6, all use the
Bilinear maps (pairings) as base primitives. In this respect, an interesting ques-
tion is how to construct identity-based signature variants that achieve the same
goals as those of the schemes in [123, 76] and/or Chapter 6 using the conventional
computational primitives in which the Bilinear maps are not involved.
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