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 Abstract  

Encryption is often conceived as a committing process, in the sense that the ciphertext 
may serve as a commitment to the plaintext. But this does not follow from the standard 
definitions of secure encryption.  

We define and construct symmetric and asymmetric committing encryption schemes, 
enabling publicly verifiable non-repudiation. Committing encryption eliminates key-spoofing 
attacks and has also the robustness to be signed afterwards. Our constructions are very 
efficient and practical. In particular, we show that most popular asymmetric encryption 
schemes, e.g. RSA, are committing encryption schemes; we also have an (efficient) 
construction given an arbitrary asymmetric encryption scheme. Our construction of 
symmetric committing encryption retains the efficiency of the symmetric encryption for real-
time operations, although it uses few public key signatures in the setup phase.  

Finally, we investigate how to achieve both confidentiality and non-repudiation, and 
present a publicly verifiable signcryption scheme. Contrary to previous signcryption schemes, 
which are not publicly verifiable, our publicly verifiable signcryption supports non-
repudiation. We construct a simple and efficient publicly verifiable signcryption scheme 
based on a new composition method which we call “commit-encrypt-then-sign” (CEtS) that 
preserves security properties of both committing encryption and digital signature schemes. 

 

Keywords: Encryption, Commitment, Key-spoofing attack, Committing Encryption, 
Signcryption, Non-repudiation, Signatures. 

 

1 Introduction 
Encryption is often conceived as a committing process, in the sense that the ciphertext 

may serve as a commitment to the plaintext. But without appropriate security properties, the 
encryption scheme is vulnerable to key-spoofing attacks. Key-spoofing attacks [AN95] 
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derive different message m’ from the original ciphertext c by changing the (decryption) key. 
Key-spoofing can cause failures of non-repudiation protocols such as of [ZG96a]. 

We introduce symmetric and asymmetric committing encryption schemes. Committing 
encryption schemes combine the security properties of commitment and encryption schemes 
such that they ensure that the decrypted message is indeed the original message. Committing 
encryption schemes allow the sender (encrypt side) to prove to a third party that the recipient 
(decrypt side) is able to open the ciphertext and retrieve the original plaintext, and allow the 
recipient to prove to a third party that this is the original plaintext that was sent by the sender. 
Having these properties, committing encryption schemes eliminate key-spoofing attacks and 
can be safely signed. 

Many existing crypto protocols use encryption and implicitly assume commitment 
properties. Is this secure, for typical, standard cryptosystem? We show that indeed, most 
asymmetric cryptosystems such as (padded) RSA are also committing encryption. In fact, any 
public-key cryptosystem where decryption recovers the random bits used during encryption is 
also committing encryption. However, we did not find a similar requirement to ensure that 
symmetric encryption schemes are also committing. In fact, it is easy to show secure 
encryption schemes where key-spoofing is easy, e.g. one-time pad. 

In this work we formally study the notion of committing encryption. We provide a formal 
definition of committing encryption schemes for both symmetric and asymmetric setting. The 
definition provides for better understanding the security requirements and the constraints 
under which an encryption can provide also commitment along with confidentiality. 

The definition is essential also for cryptanalysts. Given an encryption algorithm that may 
be used for commitment, cryptanalysts can analyze and check according to the committing 
encryption definition whether the encryption algorithm can be used to provide also 
commitment along with confidentiality or not. This is especially relevant to symmetric 
encryption; we suggest that this should be an additional criteria in the cryptoanalytical 
evaluation of proposed symmetric encryption schemes.  

The common intuition to use encryption for commitment is getting formalized in this 
work by proposing a simple method of constructing asymmetric committing encryption 
scheme that is based on a ‘regular’ asymmetric encryption scheme that its decryption 
function restores the random value used by the encryption function. Such an encryption 
scheme is the popular and most commonly used RSA encryption scheme with EME 
(Encoding Method for Encryption) operations i.e., with padding or with hashing e.g. using 
OAEP (Optimal Asymmetric Encryption Padding) [BR94, PKCS1v2.0, PKCS1v2.1]. We 
further refer to such a scheme as randomness-recovering asymmetric encryption. 

We present a new composition method which we call “commit-then-encrypt”. This 
composition involves several cryptographic tools such as asymmetric encryption, 
commitment and digital signature schemes. Even though, it is still fairly efficient in the run 
time. We prove that this simple and efficient composition constructs a secure asymmetric 
committing encryption scheme. This construction may be used as a mechanism to transform 
any asymmetric encryption (even if the decryption function does not restore the random value 
used by the encryption function) to committing encryption. 

Another important construction is the construction of symmetric committing encryption 
scheme. We show that given any symmetric encryption scheme, although by itself it is not a 
committing encryption, adding a committing key setup protocol results in a secure symmetric 
committing encryption scheme. We propose a simple method of constructing symmetric 
committing encryption scheme. This construction involves several cryptographic tools such 
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as symmetric encryption, commitment and digital signature schemes. Even though, in the run 
time, its efficiency remains the same as the efficiency of the chosen symmetric encryption. 
We prove that this simple and efficient construction is a secure symmetric committing 
encryption scheme. 

Finally, we present a publicly verifiable signcryption scheme. Contrary to Zheng [Zh97] 
and An, Dodis and Rabin [ADR02] signcryption schemes which are not publicly verifiable, 
our publicly verifiable signcryption supports non-repudiation. We construct a simple and 
efficient publicly verifiable signcryption scheme based on a new composition method which 
we call “commit-encrypt-then-sign” (CEtS) that preserves security properties of both 
ingredients committing encryption and digital signature schemes including the non-
repudiation feature of the signature scheme. 

NOTATIONS 

If x, y denote bit strings, |x| denotes the bit length of string x, and x||y denotes the 
concatenation of strings x and y. Let {0, 1}* be the space of (finite) binary strings. If S is a set 
then Sa R���  denotes the experiment of selecting a point uniformly from S and assigning a 
this value. 

If A(·, ·, …) is any probabilistic algorithm then ...) ,,( 21 xxAa R��� denotes the 
experiment of running A on inputs x1, x2, … and letting a be the outcome, the probability 
being over the coins of A obtained internally by A. If the coins of A are given explicitly to A, 
we denote by r the input of a random value where *1} {0,���Rr  and we write 

)..., ,,( 21 rxxAa ��� .   

An adversary denoted �, is a probabilistic algorithm that may access one or more oracles. 
An oracle is a probabilistic algorithm. If O is an oracle then ,...),(,|)( yxpXxXO ���  denotes an 
adversary � that has access to an oracle O with a restriction that the predicate, p(x, y, …), is 
true for all the queries x � X, where X is the set of the queries x that were given by � as inputs 
to O in one invocation of �. 

When S, T, … denotes probability spaces, Pr [ p(x, y, …) | TySx RR ������ , , …] 
denotes the probability that the predicate, p(x, y, …), is true after the experiments, 

TySx RR ������ , , …, are executed in that order. 

A function �(k) is called negligible if for any strictly positive polynomial p(k) there exist 
k0 such that for all k > k0 we have �(k) < 1/p(k). We often write negl(k) to indicate some 
negligible function of k, without giving an explicit name. 

In this work we assume only polytime algorithms i.e. algorithms that their running time is 
polynomially bounded in the length of their inputs. We let 1k denote the string of 1’s of 
length k. When a probabilistic algorithm A is given 1k as an input, this suggests that A is 
allowed to work in time polynomial in k. Note that if an adversary � is polytime and an 
oracle O is also polytime then the composition �O(·) is also polytime. 

2 Definition of Committing Encryption 
We define a symmetric committing encryption scheme, which uses a secret key shared by 

the sender and recipient and an asymmetric committing encryption scheme, which uses a 
public-key known to the sender and a corresponding private-key known only to the recipient. 
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SYNTAX OF SYMMETRIC COMMITTING ENCRYPTION SCHEMES 

The symmetric committing encryption scheme adds to the regular symmetric encryption 
scheme (1) a public key, which is used for commitment purposes and (2) a public verification 
function. 

The verification function confirms that message m is the original plaintext of committing 
ciphertext c, and that recipient of committing ciphertext c is able to open it i.e., the message 
m was encrypted with the original encryption key. 

A symmetric committing encryption scheme ��sym = (KeyGenSetup, CmtEnc, DcmtDec, 
Ver) consists of four algorithms: 

� The randomized key generation algorithm KeyGenSetup takes as input a security 
parameter k � N and returns a pair of keys (CK, K). CK is the public commitment key 
(possibly empty, but usually consisting of public parameters for the commitment), and 
K is the encryption and decryption key, which is kept secret; we write 

)1(),( kR pKeyGenSetuKCK ��� . 

� The committing encryption algorithm CmtEnc takes as input the keys (CK, K), a 
message m from the associated message space � and a random value r, and returns 
committing ciphertext c; we write c � CmtEncCK,K(m, r). 

� The deterministic de-committing decryption algorithm DcmtDec takes as input the 
keys (CK, K), the committing ciphertext c, and returns either a pair (m, hint), where  
m � � is the corresponding plaintext and hint is a value to help the public verification 
of the committing encryption, or the symbol � denoting failure; we write                 
(m, hint) � DcmtDecCK,K(c). 

� The deterministic verification algorithm Ver takes as input the public key CK, the 
committing ciphertext c, a message m from the associated message space �, and a 
hint, and returns an answer a which is either succeed in case the message m is the 
plaintext of c, or fail otherwise; we write a � VerCK(c, m, hint). 

We require, for any m � �, any keys (CK, K), and any random value r, 

� DcmtDecCK,K(CmtEncCK,K(m, r)) = (m, hint), and 

� VerCK(CmtEncCK,K(m, r), DcmtDecCK,K(CmtEncCK,K(m, r))) = succeed. 

SYNTAX OF ASYMMETRIC COMMITTING ENCRYPTION SCHEMES 

The asymmetric committing encryption scheme adds to the regular asymmetric 
encryption scheme the public verification function. The public encryption key is now used for 
commitment purposes also. 

An asymmetric committing encryption scheme ��asym = (KeyGenSetup, CmtEnc, 
DcmtDec, Ver) consists of four algorithms. 

� The randomized key generation algorithm KeyGenSetup takes as input a security 
parameter k � N and outputs a pair of keys (CEK, DK). CEK is the public committing 
encryption key, and DK is the decryption key, which is kept secret; we write 

)1(),( kR pKeyGenSetuDKCEK ��� . 
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� The committing encryption algorithm CmtEnc takes as input the public key CEK, a 
message m from the associated message space � and a random value r, and returns 
committing ciphertext c; we write c � CmtEncCEK(m, r). 

� The deterministic de-committing decryption algorithm DcmtDec takes as input the 
keys (CEK, DK), the committing ciphertext c, and returns either a pair (m, hint), 
where m � � is the corresponding plaintext and hint is a value to help the public 
verification of the committing encryption, or the symbol � denoting failure; we write 
(m, hint) � DcmtDecCEK,DK(c). 

� The deterministic verification algorithm Ver takes as input the public key CEK, the 
committing ciphertext c, a message m from the associated message space �, and a 
hint, and returns an answer a which is either succeed in case the message m is the 
plaintext of c, or fail otherwise; we write a � VerCEK(c, m, hint). 

We require, for any m � �, any keys (CEK, DK) and any random value r, 

� DcmtDecCEK,DK(CmtEncCEK(m, r)) = (m, hint), and 

� VerCEK(CmtEncCEK(m, r), DcmtDecCEK,DK(CmtEncCEK(m, r))) = succeed. 

SECURITY OF COMMITTING ENCRYPTION 

For brevity and since the definitions of the security notions are very similar for symmetric 
and asymmetric committing encryptions we define them simultaneously for both symmetric 
and asymmetric committing encryptions. 

Both schemes consist of four algorithms each. It is clear that the sender runs CmtEnc 
algorithm and the recipient runs DcmtDec algorithm; anyone can run Ver. In the asymmetric 
scheme the recipient runs KeyGenSetup because only the recipient knows the secret 
decryption key DK. In the symmetric scheme, although it is symmetric, since the sender is 
also the committing party, we again require the recipient to run KeyGenSetup and choose the 
keys. This eliminates the possibility that the sender selects CK in such a way that it is 
possible for the committing party to find collisions i.e., to commit itself to message m with c 
and hint, but reveal to another message m’ with c and hint’. 

We consider three security goals: 

� Indistinguishability of ciphertexts (IND) 

� Binding 

� Recoverability 

Indistinguishability of ciphertexts (IND) Intuitively we want that given a committing 
ciphertext c an adversary cannot gain significant information about the message content. We 
assume an adversary that runs in two stages. During the find stage, the adversary endeavors to 
come up with a pair of equal-length messages, x0 and x1, whose committing encryptions it 
wants to try to tell apart. It also retains some state information s that it may want to preserve 
to help it later. In the guess stage, it is given a random committing ciphertext y for one of the 
plaintexts x0, x1, together with the state information s. The adversary “wins” if it correctly 
identifies which plaintext goes with y. The committing encryption scheme is “good” if 
“reasonable” adversaries cannot win significantly more than half the time. 

We consider the following types of attack: 

� Chosen Plaintext Attack (CPA) 
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� Chosen Ciphertext Attack (CCA) 

Chosen Plaintext Attack (CPA) For the symmetric committing encryption, under the 
chosen plaintext attack, the adversary �cpa is given access to the committing encryption oracle 
CmtEncCK,K(	) to commit-encrypt arbitrary messages of its choice. While for the asymmetric 
committing encryption, the adversary �cpa is not given any extra capabilities other than using 
the public committing encryption key CEK. We denote this notion of security CE-IND-CPA. 

Definition 1.1, 1.2 [CEsym-IND-CPA-security, CEasym-IND-CPA-security] 

Let ��sym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a symmetric committing 
encryption scheme. Let ��asym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be an asymmetric 
committing encryption scheme. Let }1 ,0{���Rb  and k � N. Let �cpa be an adversary that 
runs in two stages, find and guess, and for symmetric committing encryption has access to the 
oracle CmtEncCK,K(	). We consider the following experiments: 

Experiment )(cpaind
, cpa

kExp b


������

 

)1(),( kR pKeyGenSetuKCK ���  

),1 ,(),,( )(
cpa10

, findCKsxx kCmtEncR KCK 	��� �  

 y � CmtEncCK,K(xb, r) 
),,,1 ,()(

cpa
, syguessCKb kCmtEncR KCK 	���� �  

Return b’ 

Experiment )(cpaind
, cpa

kExp b


�������

 

)1(),( kR pKeyGenSetuDKCEK ���  
),(),,( cpa10 findCEKsxx R

����  

 y � CmtEncCEK(xb, r) 
),,,(cpa syguessCEKb R

�����  
Return b’ 

The schemes ��sym, ��asym are said to be CE-IND-CPA-secure if (1.1) and (1.2) holds 
respectively: 

�
 )(
2
1

)( },1 ,0{| Pr cpaind
, cpa

kneglkExpbbbb bRR ����������� 


������

 (1.1) 

�
 )(
2
1

)( },1 ,0{| Pr cpaind
, cpa

kneglkExpbbbb bRR ����������� 


�������

 (1.2) 

Chosen Ciphertext Attack (CCA) For the symmetric committing encryption, under the 
chosen ciphertext attack, the adversary �cca is given access to the committing encryption 
oracle CmtEncCK,K(	) to commit encrypt arbitrary messages of its choice and to the de-
committing decryption oracle DcmtDecCK,K(	) to de-commit decrypt arbitrary committing 
ciphertexts of its choice. 

For the asymmetric committing encryption, under the chosen ciphertext attack, the 
adversary �cca is given access to the de-committing decryption oracle DcmtDecCEK,DK(	) to de-
commit decrypt arbitrary committing ciphertexts of its choice. 

Several types of CCA attacks were defined for asymmetric encryption schemes: CCA1 
[NY95], CCA2 [RS91], and gCCA2 [ADR02]. Similar definitions apply to symmetric and 
asymmetric committing encryption schemes. We denote these notions of security CE-IND-
CCA1, CE-IND-CCA2, and CE-IND-gCCA2. 

Definition 2.1, 2.2 [CEsym-IND-CCA1-security, CEasym-IND-CCA1-security] 

Let ��sym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a symmetric committing 
encryption scheme. Let ��asym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be an asymmetric 
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committing encryption scheme. Let }1 ,0{���Rb  and k � N. Let �cca1 be an adversary that 
runs in two stages, find and guess, and for symmetric committing encryption has access to the 
oracles CmtEncCK,K(	) and DcmtDecCK,K(	) in the find stage and to the oracle CmtEncCK,K(	) in 
the guess stage. And for asymmetric committing encryption, has access to the oracle 
DcmtDecCEK,DK(	) in the find stage. We consider the following experiments: 

Experiment )(cca1ind
, cca1

kExp b


������

 

)1(),( kR pKeyGenSetuKCK ���  

),1 ,(),,( )(),(
cca110

,, findCKsxx kDcmtDecCmtEncR KCKKCK 		��� �  
 y � CmtEncCK,K(xb, r) 

),,,1 ,()(
cca1

, syguessCKb kCmtEncR KCK 	���� �  
Return b’ 

Experiment )(cca1ind
, cca1

kExp b


�������

 

)1(),( kR pKeyGenSetuDKCEK ���  

),(),,( )(
cca110

, findCEKsxx DKCEKDcmtDecR 	��� �  
 y � CmtEncCEK(xb, r) 

),,,(cca1 syguessCEKb R
�����  

Return b’ 

The schemes ��sym, ��asym are said to be CE-IND-CCA1-secure if (2.1) and (2.2) holds 
respectively: 

�
 )(
2
1

)( },1 ,0{| Pr cca1ind
, cca1

kneglkExpbbbb bRR ����������� 


������

 (2.1) 

�
 )(
2
1

)( },1 ,0{| Pr cca1ind
, cca1

kneglkExpbbbb bRR ����������� 


�������

 (2.2) 

Definition 3.1, 3.2 [CEsym-IND-CCA2-security, CEsym-IND-gCCA2-security, CEasym-
IND-CCA2-security CEasym-IND-gCCA2-security] 

Let ��sym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a symmetric committing 
encryption scheme. Let ��asym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be an asymmetric 
committing encryption scheme. Let }1 ,0{���Rb  and k � N. Let �cca2 be an adversary that 
runs in two stages, find and guess, and for symmetric committing encryption has access to the 
oracles CmtEncCK,K(	) and DcmtDecCK,K(	). And for asymmetric committing encryption, has 
access to the oracle DcmtDecCEK,DK(	). 

Let 	 (y, y’) = true � y = y’ for CCA2. For gCCA2, for symmetric committing 
encryption 	 (y, y’) = true � DcmtDecCK,K(y) = DcmtDecCK,K(y’), and for asymmetric 
committing encryption, 	 (y, y’) = true � DcmtDecCEK,DK(y) = DcmtDecCEK,DK(y’). �cca2, in 
the guess stage, is not allowed to ask oracle DcmtDecCK,K(	) or DcmtDecCEK,DK(	) a query y’ 
s.t. 	 (y, y’) = true. We consider the following experiments: 
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Experiment )(cca2ind
, cca2

kExp b


������

 

)1(),( kR pKeyGenSetuKCK ���  

),1 ,(),,( )(),(
cca210

,, findCKsxx kDcmtDecCmtEncR KCKKCK 		��� �  
 y � CmtEncCK,K(xb, r) 

),,,1 ,(),(,,, |)(),(
cca2 syguessCKb kZDcmtDecCmtEncR falsezyZzKCKKCK ���	���� 	�  

Return b’ 

Experiment )(cca2ind
, cca2

kExp b


�������

 

)1(),( kR pKeyGenSetuDKCEK ���  

),(),,( )(
cca210

, findCEKsxx DKCEKDcmtDecR 	��� �  
 y � CmtEncCEK(xb, r) 

),,,(),(,, |)(
cca2 syguessCEKb falsezyZzDKCEK ZDcmtDecR ������� 	�  

Return b’ 

The schemes ��sym, ��asym are said to be CE-IND-CCA2-secure if (3.1) and (3.2) holds 
respectively: 

�
 )(
2
1

)( },1 ,0{| Pr cca2ind
, cca2

kneglkExpbbbb bRR ����������� 


������

 (3.1) 

�
 )(
2
1

)( },1 ,0{| Pr cca2ind
, cca2

kneglkExpbbbb bRR ����������� 


�������

 (3.2) 

Binding Intuitively we want that an adversary �bnd cannot find a committing ciphertext 
c, which can be publicly verified for two different messages m, and m’ using possibly two 
different hints hint, and hint’. 

Having the knowledge of (CK, K) (for the symmetric committing encryption) or CEK, 
(for the asymmetric committing encryption), it is computationally hard for an adversary �bnd 
to come up with c, (m, hint), (m’, hint’), m’ � m such that giving (c, m, hint) and (c, m’, hint’) 
as input to the verification algorithm Ver results in succeed (such a triple c, (m, hint), (m’, 
hint’) is said to cause a collision). That is, �bnd cannot find a value c, which it can open in two 
different ways. We denote this notion of security CE-BIND. 

Definition 4.1, 4.2 [CEsym-BIND-security, CEasym-BIND-security] 

Let ��sym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a symmetric committing 
encryption scheme. Let ��asym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be an asymmetric 
committing encryption scheme. Let k � N and �bnd be an adversary that runs in find stage. Let 
collision(c, (m, hint), (m’, hint’)) = true � m � m’ � VerCK(c, m, hint) = succeed � VerCK(c, 
m’, hint’) = succeed for symmetric committing encryption, and for asymmetric committing 
encryption, collision(c, (m, hint), (m’, hint’)) = true � m � m’ � VerCEK(c, m, hint) = succeed 
� VerCEK(c, m’, hint’) = succeed. We consider the following experiments: 
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Experiment )(bind
, bnd

kExp ������
 

)1(),( kR pKeyGenSetuKCK ���  

),,()),(),,(,( bnd findKCKthinmhintmc R
������  

Return (c, (m, hint), (m’, hint’)) 

Experiment )(bind
, bnd

kExp �������
 

)1(),( kR pKeyGenSetuDKCEK ���  

),()),(),,(,( bnd findCEKthinmhintmc R
������  

Return (c, (m, hint), (m’, hint’)) 

The schemes ��sym, ��asym are said to be CE-BIND-secure if (4.1) and (4.2) holds 
respectively: 

)(
)()),(),,(,()),(),,(,(

Pr
bind

, bnd knegl
kExpthinmhintmc

true

thinmhintmccollision R

�
�
�
�

������
�
�

�

�

�� ������  (4.1) 

)(
)()),(),,(,()),(),,(,(

Pr
bind

, bnd knegl
kExpthinmhintmc

true

thinmhintmccollision R

�
�
�
�

������
�
�

�

�

�� �������  (4.2) 

Recoverability Intuitively we want that an adversary �rcvr cannot produce committing 
ciphertext c in such a way that it cannot be de-committed decrypted by the other side 
nevertheless the adversary itself can produce m and hint such that Ver(c, m, hint) = succeed. 
In other words, changing secret key (i.e. using another secret key than the agreed upon one) is 
not possible. 

Indeed, this security goal might be trivial for asymmetric committing encryption since 
Ver uses the public committing encryption key, which is bound to the private decryption key. 
But for symmetric committing encryption this kind of attack is still possible unless we have 
some kind of bindings between the public committing key and the secret 
encryption/decryption key. For the uniformity of the definition, we require this security goal 
for both symmetric and asymmetric committing encryptions. We denote this notion of 
security CE-RECOVER. 

Definition 5.1, 5.2 [CEsym-RECOVER-security, CEasym-RECOVER-security] 

Formally, having the knowledge of (CK, K) for symmetric committing encryption, it is 
computationally hard for an adversary �rcvr to come up with c, m, and hint such that 
DcmtDecCK,K(c) = � but VerCK(c, m, hint) = succeed. 

)(
),,(),,( 

),1(),(

 ),,(

,)(
Pr

rcvr

, knegl
findKCKhintmc

pKeyGenSetuKCK

succeedhintmcVer

cDcmtDec
R

kR

CK

KCK ��
�

�

���

���

�
�
�

�

�

��

�
 (5.1) 

And for asymmetric committing encryption, having the knowledge of CEK, it is 
computationally hard for an adversary �rcvr to come up with c, m, and hint such that 
DcmtDecCEK,DK(c) = � but VerCEK(c, m, hint) = succeed. 



 

 10 

)(
),(),,(

),1(),( 

 ),,(

,)(
Pr

rcvr

, knegl
findCEKhintmc

pKeyGenSetuDKCEK

succeedhintmcVer

cDcmtDec
R

kR

CEK

DKCEK ��
�

�

���

���

�
�
�

�

�

��

�
 (5.2) 

3 Committing Encryption from Randomness-Recovering 
Asymmetric Encryption 

In this section we propose a simple method for constructing an asymmetric committing 
encryption scheme. This construction formalizes the common intuition to use encryption to 
provide also commitment along with confidentiality. Our construction is based on a random 
recovery asymmetric encryption scheme where decryption restores the random value used for 
encryption e.g. RSA with padding e.g. using OAEP (Optimal Asymmetric Encryption 
Padding) [BR94, PKCS1v2.0, PKCS1v2.1]. Having the randomness-recovering property 
enables the public verification algorithm Ver to publicly verify that (a) the message m is the 
original message and (b) the recipient of the committing ciphertext c is able to open it and 
restore the message m and the correct hint. 

CONSTRUCTION OF ASYMMETRIC COMMITTING ENCRYPTION 

Let � = (EncKeyGen, Enc, Dec) be a randomness-recovering asymmetric encryption 
scheme. Define an asymmetric committing encryption scheme ��RR = (KeyGenSetup, 
CmtEnc, DcmtDec, Ver) as follows: 

� KeyGenSetup(1k) runs )1(),( kR EncKeyGenDKEK ��� , sets CEK = EK, and outputs 
(CEK, DK) 

� CmtEncCEK(m, r) simply outputs c � EncEK(m, r) 

� DcmtDecCEK,DK(c) runs (m, r) � DecDK(c), sets hint = r, and outputs (m, hint) 

� VerCEK(c, m, hint) parse r = hint, computes c’ � EncEK(m, r), and outputs succeed if  
c = c’ or fail otherwise 

Theorem 1 Assume that � satisfies the syntactic properties of a randomness-recovering 
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme 
constructed from � as defined above. Then we have: 

(1) ��RR satisfies the syntactic properties of an asymmetric committing encryption 
scheme. 

(2) �  is E-IND-CCA2 (E-IND-gCCA2, E-IND-CPA, E-IND-CCA1) -secure � ��RR is 
CE-IND-CCA2 (CE-IND-gCCA2, CE-IND-CPA, CE-IND-CCA1) -secure. 

(3) ��RR is CE-BIND-secure. 

(4) ��RR is CE-RECOVER-secure. 

The proof for this theorem is given in appendix A. 

4 CtE: Composing Asymmetric Encryption and Commitment 
We now present a new composition that we call “commit-then-encrypt”. This composition 

involves several cryptographic tools such as asymmetric encryption, commitment and digital 
signature schemes, yet it is fairly efficient in the run time. We prove that this simple and 
efficient composition constructs a secure asymmetric committing encryption scheme. This 
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construction may be used as a mechanism to transform any asymmetric encryption (even if 
the decryption function does not restore the random value used by the encryption function) to 
committing encryption. 

COMMIT-THEN-ENCRYPT (CTE) COMPOSITION 

As the name suggests we compose encryption and commitment schemes. In CmtEnc, the 
committing encryption function, a message m first passes a commitment stage which 
produces cc(m) and d(m). Then, in the second stage, the de-commitment d(m) is encrypted to 
produce ciphertext ce. Together, (cc, ce) form the committing ciphertext c. The process of 
DcmtDec, the de-committing decryption function, is exactly the reverse of CmtEnc process. 
DcmtDec outputs the message m and the de-commitment d(m) as hint. 

In Ver, the verification function, it seems that we have a problem. We require the public 
verification algorithm Ver to ensure not only that 

(a) message m is the original plaintext of committing ciphertext c, but also that 

(b) recipient of committing ciphertext c is able to open it with DcmtDec i.e., the message 
m was encrypted with the original encryption key. 

In the CtE composition, the public committing encryption key CEK is composed of two 
sub-keys (CK, EK) such that there is no relation between them. Thus, key-spoofing attack is 
still possible. 

Indeed, if the recipient gives the input parameters for Ver, we can assume that the 
recipient of committing ciphertext c was able to open it with DcmtDec i.e., the message m 
was encrypted with the original encryption key. Thus, it is sufficient for Ver to ensure only 
(a) i.e., that message m is the original plaintext of committing ciphertext c. But if the sender 
gives the input parameters for Ver, key-spoofing attack is still possible and thus we require 
Ver to ensure both (a) and (b). 

In order to fix this problem we use a digital signature scheme to distinguish that the 
receiver gave the input parameters for Ver. For that, we require KeyGenSetup to generate also 
signing keys (SK, VK) for the recipient. The signing key SK is kept secret and is used only by 
the recipient to sign the de-commitment d(m) given by the recipient to Ver algorithm as hint. 
Ver algorithm uses the public verification key VK to validate the signature of hint. If Ver 
succeeds to verify the signature, it retrieves the signed de-commitment d(m) from hint and 
uses Reveal(cc, d) to retrieve the original message m. 

If Ver fails to verify the signature of hint then the sender gave the input parameters for 
Ver. The sender will set the parameter hint to the random value r used to encrypt message m. 
Ver algorithm will use this to repeat the encryption process and ensure both (a) and (b). 

Therefore, Ver algorithm now runs differently depending whether the recipient or the 
sender gave the input parameters. Ver algorithm determines, independently, who gave the 
input parameters, using the hint parameter. The hint parameter that Ver algorithm receives is 
different from the sender and the recipient. If Ver algorithm succeeds to verify the signature 
of hint then the recipient gave the input parameters, otherwise the sender gave them. 

Note that the recipient does not need to sign the de-commitment d(m) unless the recipient 
needs to use Ver, and usually this is not the case. So implementation can divide DcmtDec into 
two steps. The first step (retrieving de-commitment d(m) by decrypting ce and then Reveal(cc, 
d) to retrieve the original message m) is very efficient and is done always and in real time. 
The second step (signing the de-commitment d(m)) is done only offline or in exception cases 
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when the recipient needs to use Ver. Thus, CmtEnc and DcmtDec are both very efficient in 
the usual case. 

CONSTRUCTION OF CTE COMPOSITION 

Let � = (EncKeyGen, Enc, Dec) be an asymmetric encryption scheme, � = (KeySetup, 
Commit, Decommit, Reveal) be a commitment scheme, and 
 = (SigKeyGen, Sign, Msg, 
SigVer) be a digital signature scheme. Define an asymmetric committing encryption scheme 
��CtE = (KeyGenSetup, CmtEnc, DcmtDec, Ver) as follows: 

� KeyGenSetup(1k) runs )1(),( kR EncKeyGenDKEK ��� , )1(),( kR SigKeyGenVKSK ��� , 
)1( kR KeySetupCK ��� , sets CEK = (CK, EK, VK), DK’ = (DK, SK), and outputs 

(CEK, DK’) 

� CmtEncCEK(m, rc||re) runs cc � CommitCK(m, rc), d � DecommitCK(m, rc),                  
ce � EncEK(d, re), and outputs c = (cc, ce) 

� DcmtDecCEK,DK’(c) parse (cc, ce) = c, runs d � DecDK(ce), m � RevealCK(cc, d), 
)(dSigns SK

R��� , sets hint = s, and outputs (m, hint) 

� VerCEK(c, m, hint) parse s = hint, runs a � SigVerVK(s) if a = succeed (input 
parameters from the recipient) then parse (cc, ce) = c, runs d � MsgVK(s),                  
m’ � RevealCK(cc, d), and outputs succeed if m = m’ or fail otherwise. If a = fail 
(input parameters from the sender) parse rc||re = hint, computes c’ � CmtEncCEK(m, 
rc||re), and outputs succeed if c = c’ or fail otherwise. 

Theorem 2 Assume that �, �, and 
 satisfy the syntactic properties of an asymmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��CtE be an asymmetric committing encryption scheme constructed from �, �, and 
 as 
defined above. Then we have: 

(1) ��CtE satisfies the syntactic properties of an asymmetric committing encryption 
scheme. 

(2) � satisfies the binding property � ��CtE is CE-BIND-secure. 

(3) 
 is UF-NMA-secure   � ��CtE is CE-RECOVER-secure. 

The proof for this theorem is given in appendix A. 

Theorem 3 Assume that � is E-IND-CCA2 (E-IND-gCCA2, E-IND-CPA, E-IND-CCA1) 
-secure, � and 
 satisfy the syntactic properties of a commitment scheme and a digital 
signature scheme respectively. Let ��CtE be an asymmetric committing encryption scheme 
constructed from �, �, and 
 as defined above. Then we have: 

(1) ��CtE is CE-IND-CCA2 (CE-IND-gCCA2, CE-IND-CPA, CE-IND-CCA1) -secure 
� � satisfies the hiding property. 

(2) � satisfies the hiding and binding properties � ��CtE is CE-IND-CCA2 (CE-IND-
gCCA2, CE-IND-CPA, CE-IND-CCA1) -secure. 

The formal proof for this theorem is given in appendix A. Partial proof for this theorem 
(only for CE-IND-gCCA2-security) is given by [ADR02] in Appendix D. We expand their 
proof by proving CE-IND-CCA2-security also. 
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Intuitively, the hiding property is necessary since cc is given “in the clear”, and is 
sufficient since � is E-IND-CCA2 (E-IND-gCCA2, E-IND-CPA, E-IND-CCA1) -secure and 
there is at most one valid value cc corresponding to every d. 

5 Symmetric Committing Encryption with Key Setup Protocol 
In this section we propose a simple method of constructing symmetric committing 

encryption scheme. This construction involves several cryptographic tools such as symmetric 
encryption, commitment and digital signature schemes, yet its runtime efficiency remains the 
same as of the symmetric encryption. 

SYMMETRIC COMMITTING ENCRYPTION WITH KEY SETUP PROTOCOL 

As the name suggests we simply use any symmetric encryption scheme. In order to 
construct symmetric committing encryption, we have to add the ability to publicly prove that 
(a) message m is the original plaintext of committing ciphertext c, and also that (b) recipient 
of committing ciphertext c is able to open it with DcmtDec i.e., the message m was encrypted 
with the original encryption key. 

We can have both requirements publicly verifiable if Ver, the verification function, is able 
to run Dec, the decryption function of the symmetric encryption scheme. For that sake we 
need to expose the decryption key K that is kept secret by both communicating sides. 

There are several problems with this suggestion. First, exposing the secret key K will 
expose also all the messages sent by both communicating sides. Second, since there is no 
public proof that the exposed secret key K is the original key, key-spoofing attack is still 
possible. 

For the first problem, our suggestion is to produce n secret keys and to use each key Ki,    
i = 1 .. n, only once and only for one message. Now exposing one secret key Ki, for the 
verification of message mi does not expose all other messages sent between the 
communicating sides. WLOG, we will assume that the index i can be determined from the 
message m (e.g., is part of it), and write i = Index(m) to denote the index of message m. 

For the second problem, our suggestion is to use commitment and digital signature 
schemes. Each side commits itself to the secret keys Ki, i = 1 .. n, during KeyGenSetup. The 
commitment c(Ki) is publicly exposed. The de-commitment d(Ki) is signed by each side and 
the signed de-commitment is kept secret, shared by both sides. 

Now each side exposes its own public committing parameters. Denote user P = R (for the 
recipient) and S (for the sender). User P exposes its public commitment key CKP, the 
commitment c(Ki), i = 1 .. n, denoted ciP, and its public verification key VKP. We combine all 
these parameters to be part of user P public committing key CK’P = (CKP, c1P, … , cnP, VKP), 
and the public committing key is CK = (CK’R, CK’S). 

Each side has also some secret information that is shared with the other side. Both 
communicating sides share the encryption/decryption keys Ki, i = 1 .. n, and the signed de-
commitment siR and siS, i = 1 .. n. The shared information is kept secret by both 
communicating sides. We combine all these parameters to be part of the secret 
encryption/decryption key K = (K1, … , Kn, s1R, … , snR, s1S, … , snS). 

Note that since we do not need any more the signing keys of each party, we do not require 
KeyGenSetup to output them. 

When user P comes to run Ver, we expect the hint parameter given to Ver to be the sender 
and the receiver signatures on the de-commitment to some Ki, i.e. siS||siR. The Ver algorithm 
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validates each signature, retrieves the de-commitment d(Ki) from siP and uses Reveal(ciP, diP) 
to retrieve the original key Ki. Now Ver is able to run Dec, the decryption function of the 
symmetric encryption scheme. 

Note that the use of the signature and commitment is only at offline. During run time we 
use only the symmetric encryption scheme. Thus, the efficiency of this construction is the 
same as the selected symmetric encryption. 

Note that we cannot use the original definition of symmetric committing encryption 
scheme. We must slightly modify it and add algorithms for key setup protocol as follows: 

A symmetric committing encryption scheme with key setup protocol ��sym = (KeyGen, 
KeyCommitSetup, KeyCommit, CmtEnc, DcmtDec, Ver) consists of six algorithms: 

� The randomized key generation algorithm KeyGen takes as input a security parameter 
k � N and returns a key K’ � KEYS; we write )1( kR KeyGenK ���� . 

� The randomized key commitment setup algorithm KeyCommitSetup takes as input a 
security parameter k � N and returns a public commitment key CK’ (possibly empty, 
but usually consisting of public parameters for the commitment); we write 

)1( kR etupKeyCommitSKC ���� . 

� The randomized key commitment algorithm KeyCommit takes as input a security 
parameter k � N, a commitment key CK’, and a key K’. It returns a triplet (c, s, VK) 
where c is c(K’) i.e., a commitment to K’ under the commitment key CK’, s is the de-
commitment d(K’) signed with an internal generated signing key SK, and VK is the 
validation key for validating s. c and VK are public information, and s is kept secret 
(shared information); we write ),,1(),,( KKCKeyCommitVKsc kR ����� . 

We put the public information to be CK = (CK’, c, VK) and the shared information to be 
K = (K’, s). The rest of the algorithms CmtEnc, DcmtDec, and Ver are the same as defined in 
the original definition of symmetric committing encryption scheme. 

SECURITY OF SYMMETRIC COMMITTING ENCRYPTION SCHEMES WITH KEY SETUP PROTOCOL 

The symmetric committing encryption scheme with key setup protocol consists of six 
algorithms. As in the original definition of symmetric committing encryption scheme, it is 
clear that the sender runs CmtEnc algorithm and the recipient runs DcmtDec algorithm. We 
also note that anyone can run Ver algorithm all alone, offline, and without any interaction 
with any of the communicating sides. 

As opposed to the original definition of symmetric committing encryption scheme, for 
KeyGen algorithm, since it is a symmetric scheme, either the sender or the recipient can run 
KeyGen and choose the shared key. 

We require both sides to run KeyCommitSetup and KeyCommit algorithms as follows: the 
recipient runs KeyCommitSetup to generate CKR, and then the sender runs KeyCommit and 
uses CKR as the input parameter CK’. The sender runs KeyCommitSetup to generate CKS, and 
then the recipient runs KeyCommit and uses CKS as the input parameter CK’. 

Denoting the outputs of the sender’s running of KeyCommit as (cS, sS, VKS) and the 
outputs of the recipient’s running of KeyCommit as (cR, sR, VKR), we combine the outputs and 
put the public information to be CK = (CKR, cR, VKR, CKS, cS, VKS) and the shared 
information to be K = (K’, sR, sS). 
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The rest of changes in the security notions definitions are trivial and follow from the 
syntax definition and thus omitted. 

We only note that for the CE-BIND-security (Definition 4.1) we require also that the 
colliding triplet (c, (m, hint), (m’, hint’)) be produced s.t. m and m’ have the same index i. 

CONSTRUCTION OF SYMMETRIC COMMITTING ENCRYPTION 

Let � = (EncKeyGen, Enc, Dec) be a symmetric encryption scheme, � = (KeySetup, 
Commit, Decommit, Reveal) be a commitment scheme, and 
 = (SigKeyGen, Sign, Msg, 
SigVer) be a digital signature scheme. Define a symmetric committing encryption scheme 
��KSP = (KeyGen, KeyCommitSetup, KeyCommit, CmtEnc, DcmtDec, Ver) as follows: 

� KeyGen(1k) for i = 1 .. n times runs )1( kR
i EncKeyGenK ��� , set K’ = (K1, … , Kn), 

and outputs K’ 

� KeyCommitSetup(1k) simply outputs )1( kR KeySetupKC ����  

Denote the outputs of the sender’s running of KeyCommitSetup as CKS and the outputs of 
the recipient’s running of KeyCommitSetup as CKR. 

� KeyCommit(1k, CK’, K’) runs )1(),( kR SigKeyGenVKSK ��� , parse (K1, … , Kn) = 
K’, for i = 1 .. n times runs (1) ci � CommitCK’(Ki, r), (2) di � DecommitCK’(Ki, r),  
(3) )( iSK

R
i dSigns ��� , and outputs (c1, … , cn, s1, … , sn, VK) 

Denote the outputs of the sender’s running of KeyCommit as (c1S, … , cnS, s1S, … , snS, VKS) 
and the outputs of the recipient’s running of KeyCommit as (c1R, … , cnR, s1R, … , snR, VKR). 

We put the public information to be CK = (CKR, c1R, … , cnR, VKR, CKS, c1S, … , cnS, VKS) 
and the shared information to be K = (K1, … , Kn, s1R, … , snR, s1S, … , snS). 

� CmtEncCK,K(m, r) retrieve i = Index(m), and outputs c � EncKi(m, r) 

� DcmtDecCK,K(c) retrieve i = Index(m), runs m � DecKi(c), sets hint = siS||siR, and 
outputs (m, hint) 

� VerCK(c, m, hint) parse siS||siR = hint, for each siP runs a � SigVerVKp(siP), if a = fail 
return fail and stop. Otherwise, runs diP � MsgVKp(siP), for siS run 

),( iSiSCKiS dcRevealK
R

��� , for siR run ),( iRiRCKiR dcRevealK
S

��� . If KiS � KiR 
return fail and stop. Otherwise, runs m’ � DecKi(c), and outputs succeed if m = m’ or 
fail otherwise 

Theorem 4 Assume that �, �, and 
 satisfy the syntactic properties of a symmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��KSP be a symmetric committing encryption scheme constructed from �, �, and 
 as defined 
above. Then we have: 

(1) ��KSP satisfies the syntactic properties of a symmetric committing encryption scheme. 

(2) �  is E-IND-CCA2 (E-IND-gCCA2, E-IND-CPA, E-IND-CCA1) -secure � ��KSP is 
CE-IND-CCA2 (CE-IND-gCCA2, CE-IND-CPA, CE-IND-CCA1) -secure. 

(3) � satisfies the binding property � ��KSP is CE-BIND-secure. 

(4) � satisfies the binding property � ��KSP is CE-RECOVER-secure. 

The proof for this theorem is given in appendix A. 
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6 Commit-Encrypt-then-Sign (CEtS) Publicly Verifiable 
Signcryption 

In this section we present a new scheme which we call publicly verifiable signcryption 
scheme. Publicly verifiable signcryption schemes capture the security properties of 
committing encryption and signature schemes and provide public verification to anyone and 
without the need for interaction with any side. Publicly verifiable signcryption schemes do 
not suffer from key-spoofing attacks and support non-repudiation. 

We also present in this section a simple and efficient construction of commit-encrypt-
then-sign (CEtS) composition that preserves security properties of both ingredients 
committing encryption and signature including the non-repudiation feature of the signature 
scheme. 

PUBLICLY VERIFIABLE SIGNCRYPTION 

An, Dodis and Rabin [ADR02] defined signcryption following Zheng [Zh97]. Their 
definition of signcryption lacks public verification. We present here formal syntax and 
security definitions for publicly verifiable signcryption schemes. Publicly verifiable 
signcryption schemes do not suffer from key-spoofing attacks and support non-repudiation. 

A publicly verifiable signcryption scheme 
�asym = (EncKeyGen, SigKeyGen, EncSign, 
VerDec, SCVer) consists of five algorithms: 

� The randomized key generation algorithm EncKeyGen takes as input a security 
parameter k � N and outputs a pair of keys (CEK, DK). CEK is the committing 
encryption key, which is made public, and DK is the decryption key, which is kept 
secret; we write )1(),( kR EncKeyGenDKCEK ��� . 

� The randomized key generation algorithm SigKeyGen takes as input a security 
parameter k � N and outputs a pair of keys (SK, VK). SK is the signing key, which is 
kept secret, and VK is the verification key, which is made public. We write 

)1(),( kR SigKeyGenVKSK ��� . 

� The signcryption algorithm EncSign takes as input the public key CEK, the signing 
key SK, a message m from the associated message space � and a random value r, and 
returns signcryption ciphertext c; we write c � EncSignCEK,SK(m, r). 

� The deterministic de-signcryption algorithm VerDec takes as input the keys (CEK, 
DK, VK), the signcryption ciphertext c, and returns either a pair (m, hint), where m � 
� is the corresponding plaintext and hint is a value to help the public verification of 
the signcryption, or the symbol � denoting failure; we write (m, hint) � 
VerDecCEK,DK,VK(c). 

� The deterministic signcryption verification algorithm SCVer takes as input the public 
verification key VK, the signcryption ciphertext c, a message m from the associated 
message space �, and a hint, and returns an answer a which is either succeed in case 
the message m is the plaintext of c, or fail otherwise; we write a � SCVerVK(c, m, 
hint). 

We require, for any m � �, any keys (CEK, DK, SK, VK) and any random value r, 

� VerDecCEK,DK,VK(EncSignCEK,SK(m, r)) = (m, hint), and 

� SCVerVK(EncSignCEK,SK(m, r), VerDecCEK,DK,VK(EncSignCEK,SK(m, r))) = succeed. 
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SECURITY OF PUBLICLY VERIFIABLE SIGNCRYPTION SCHEMES 

Given any publicly verifiable signcryption scheme 
�asym = (EncKeyGen, SigKeyGen, 
EncSign, VerDec, SCVer), we define the corresponding induced asymmetric committing 
encryption scheme ��SC = (KeyGenSetup, CmtEnc, DcmtDec, Ver) and induced digital 
signature scheme 
SC = (SigKeyGen, Sign, Msg, SigVer). 

INDUCED ASYMMETRIC COMMITTING ENCRYPTION SCHEME ��SC 

For any adversarial signing/verification keys (SK, VK), 

� KeyGenSetup(1k) simply outputs )1(),( kR EncKeyGenDKCEK ���  

We set the public committing encryption key CEK’ = (CEK, SK, VK). 

� CmtEncCEK’(m, r) simply outputs c � EncSignCEK,SK(m, r) 

� DcmtDecCEK’,DK(c) simply outputs (m, hint) � VerDecCEK,DK,VK(c) 

� VerCEK’(c, m, hint) simply outputs a � SCVerVK(c, m, hint) 

INDUCED DIGITAL SIGNATURE SCHEME 
SC 

For any adversarial committing encryption/decryption keys (CEK, DK), 

� SigKeyGen(1k) simply outputs )1(),( kR SigKeyGenVKSK ���  

We set the public verification key VK’ = (CEK, DK, VK) and the secret signing key SK’ = 
(CEK, SK). 

� SignSK’(m) runs c � EncSignCEK,SK(m, r), and outputs s = c 

� MsgVK’(s) parse c = s, runs (m, hint) � VerDecCEK,DK,VK(c), and outputs m 

� SigVerVK’(s) parse c = s, runs (m, hint) � VerDecCEK,DK,VK(c), and outputs a � 
SCVerVK(c, m, hint) 

We say that the publicly verifiable signcryption 
� is secure against the corresponding 
attack (e.g. gCCA2/BIND/RECOVER/CMA) on the privacy/non-ambiguity/viability/ 
authenticity property, if the corresponding induced committing encryption/signature is secure 
against the same attack. We will aim to satisfy CE-IND-gCCA2, CE-BIND, and CE-
RECOVER -security for the induced committing encryption, and UF-CMA-security for the 
induced signature. 

CONSTRUCTION OF COMMIT-ENCRYPT-THEN-SIGN (CETS) COMPOSITION 

Let �� = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a secure asymmetric committing 
encryption scheme and 
 = (SigKeyGen, Sign, Msg, SigVer) be a secure digital signature 
scheme. Define a publicly verifiable signcryption scheme 
����
 = (EncKeyGen, SigKeyGen, 
EncSign, VerDec, SCVer) as follows: 

� EncKeyGen(1k) simply outputs )1(),( kR pKeyGenSetuDKCEK ���  

� SigKeyGen(1k) simply outputs )1(),( kR SigKeyGenVKSK ���  

� EncSignCEK,SK(m, r) runs cce � CmtEncCEK(m, r), sets c = cce||CEK, runs 
)(cSigns SK

R��� , and outputs cs = s 
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� VerDecCEK,DK,VK(cs) parse s = cs, runs a � SigVerVK(s), if a = fail return �. Otherwise 
(a = succeed), runs c � MsgVK(s), parse cce||CEK = c, and outputs (m, hint) � 
DcmtDecCEK,DK(cce) 

� SCVerVK(cs, m, hint) parse s = cs, runs a � SigVerVK(s), if a = fail return fail. 
Otherwise (a = succeed), runs c � MsgVK(s), parse cce||CEK = c, and outputs a � 
VerCEK(cce, m, hint) 

SECURITY OF CETS COMPOSITION 

We prove 
����
 security against the strongest security notion of the committing 
encryption �� and signature 
, i.e. CE-IND-gCCA2 and UF-CMA. Weaker notions e.g. CE-
IND-CPA, CE-IND-CCA1, and UF-NMA could easily be proved as well. 

Theorem 5 Assume that �� and 
 satisfy the syntactic properties of an asymmetric 
committing encryption scheme and a digital signature scheme respectively. Let 
����
 be a 
publicly verifiable signcryption scheme constructed from �� and 
 as defined above. Then 
we have: 

(1) 
����
 satisfies the syntactic properties of a publicly verifiable signcryption scheme. 

(2) ��  is CE-IND-gCCA2-secure � 
����
 is CE-IND-gCCA2-secure. 

(3) ��  is CE-BIND-secure  � 
����
 is CE-BIND-secure. 

(4) ��  is CE-RECOVER-secure  � 
����
 is CE-RECOVER-secure. 

(5) 
  is UF-CMA-secure   � 
����
 is UF-CMA-secure. 

The formal proof for this theorem is given in appendix A. We remark the crucial use of 
CE-IND-gCCA2-security when proving the security of 
����
. Indeed, we can call two 
signcryption ciphertexts cs1 and cs2 equivalent for ��SC, if each csi is a valid signature (w.r.t. 

) of ccei||CEK = MsgVK(csi), and cce1 and cce2 are equivalent (e.g., equal) w.r.t. the equivalence 
relation of ��. In other words, a different signature of the same committing encryption 
clearly corresponds to the same message, and we should not reward the adversary for 
achieving such a trivial task. The task is indeed trivial, since the adversary has the signing 
key. 

7 Conclusion and Open Questions 
Compared to commitment schemes and digital signatures, conventional notions of 

encryption schemes do not have public verification facility. Usually, there is no way one can 
prove to a third party that a message m is the plaintext of ciphertext c without exposing the 
secret key and thus exposing all other messages too (a special case is the randomness-
recovering asymmetric encryption scheme). Committing encryption schemes have that 
ability. Having the public verification facility provide also non-repudiation. 

Committing encryption schemes provide also the ability for the sender (encrypt side) to 
prove to a third party that the recipient (decrypt side) is able to open the ciphertext and 
retrieve the original plaintext. Having these properties, committing encryption schemes 
eliminate key-spoofing attacks and can be signed. 

We have provided a formal definition of committing encryption schemes. The definition 
is essential for cryptanalysts. Given an encryption algorithm that is going to be used for 
commitment, cryptanalysts can analyze and check according to the committing encryption 
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definition whether the encryption algorithm can be used to provide commitment also along 
with confidentiality or not. 

We presented several simple and efficient constructions of symmetric and asymmetric 
committing encryption schemes. 

Contrary to Zheng [Zh97] and An, Dodis and Rabin [ADR02] signcryption scheme that is 
not publicly verifiable, we have presented in this work a publicly verifiable signcryption 
scheme that does not suffer from key-spoofing attacks and support non-repudiation. We 
provided a simple and efficient construction of commit-encrypt-then-sign (CEtS) composition 
that preserves security properties of both ingredients committing encryption and signature 
including the non-repudiation feature of the signature scheme. 

In our construction of symmetric committing encryption scheme in section �5 we changed the 
definition of the symmetric committing encryption scheme from section �2 and add a key 
setup protocol. Is it possible to construct a symmetric committing encryption scheme without 
changing the definition of the symmetric committing encryption scheme i.e., use the 
KeyGenSetup function as defined originally in section �2? 
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Appendix A 
PROOFS 

Proof of Theorem 1 We prove ��RR security against the strongest security notion of the 
encryption �, i.e. E-IND-CCA2 and E-IND-gCCA2. Weaker notions e.g. E-IND-CPA and E-
IND-CCA1 could easily be proved as well. 

The theorem is immediately follows from Lemmas 1.1 – 1.4.        	 

Lemma 1.1 Assume that � satisfies the syntactic properties of a randomness-recovering 
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme 
constructed from � as defined above. Then ��RR satisfies the syntactic properties of an 
asymmetric committing encryption scheme. 

Proof From the syntax requirement of the randomness-recovering asymmetric encryption 
scheme �, Dec deterministically recovers the plaintext m and the randomness r that were 
input to Enc i.e., DecDK(EncEK(m, r)) = (m, r). From the definitions of DcmtDec and CmtEnc 
follows that DcmtDecCEK,DK(CmtEncCEK(m, r)) = DecDK(EncEK(m, r)) = (m, r). 

Let c = CmtEncCEK(m, r) then from the definition of CmtEnc also c = EncEK(m, r). From the 
definition of Ver follows that: VerCEK(CmtEncCEK(m, r), DcmtDecCEK,DK(CmtEncCEK(m, r))) = 
VerCEK(c, m, r) = succeed.             	 

Lemma 1.2 Assume that � satisfies the syntactic properties of a randomness-recovering 
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme 
constructed from � as defined above. Then 

� is E-IND-CCA2 (E-IND-gCCA2) -secure � ��RR is CE-IND-CCA2 (CE-IND-gCCA2) -
secure. 

Proof We prove CE-IND-CCA2-security and CE-IND-gCCA2-security of ��RR 
simultaneously. For CE-IND-gCCA2-security, let 	  be the equivalence relation w.r.t. which 
� is secure. We define the equivalence relation for ��RR  to be 	’(c1, c2) = true iff�	 (c1, c2) = 
true. For the uniformity and simplicity of the proof we define also for CE-IND-CCA2-
security an equivalence relation for ��RR to be 	’ (c1, c2) = true iff   c1 = c2. 

� Assume adversary �’ can break the CE-IND-CCA2-security (CE-IND-gCCA2-
security) of ��RR. We can easily construct adversary � that can break the E-IND-CCA2-
security (E-IND-gCCA2-security) of �. � runs �’ internally, passing every de-committing 
decryption queries made by �’ to its own decryption oracle. When �’ outputs x0, and x1, � 
outputs them also. When � is presented with the challenge cb = EncEK(xb, r) (for unknown b), 
it hands it to �’ and continue running �’ waiting to its answer. Now, the definition of 	’ tells 
us that �’ is disallowed to de-commit decrypt any c satisfying 	’(cb, c) = true. But such c are 
the only queries that � itself is disallowed to ask its decryption oracle! Thus, � can still 
handle all the legal de-committing decryption queries of �’, in the same manner as before. 
Finally, � outputs the same guess b’ that �’ outputs, which clearly gives � the same 
probability of being correct as �’ has. 

� Assume adversary � can break the E-IND-CCA2-security (E-IND-gCCA2-security) 
of �. We can easily construct adversary �’ that can break the CE-IND-CCA2-security (CE-
IND-gCCA2-security) of ��RR. �’ runs � internally, passing every decryption queries made 
by � to its own de-committing decryption oracle. When � outputs x0, and x1, �’ outputs them 
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also. When �’ is presented with the challenge cb = CmtEncCEK(xb, r) (for unknown b), it 
hands it to � and continue running � waiting to its answer. Now, the definition of 	’ tells us 
that �’ is disallowed to de-commit decrypt any c satisfying 	’(cb, c) = true. But such c are the 
only queries that � itself is disallowed to ask its decryption oracle! Thus, �’ can still handle 
all the legal de-committing decryption queries of �, in the same manner as before. Finally, �’ 
outputs the same guess b’ that � outputs, which clearly gives �’ the same probability of being 
correct as � has.              	 

Lemma 1.3 Assume that � satisfies the syntactic properties of a randomness-recovering 
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme 
constructed from � as defined above. Then ��RR is CE-BIND-secure. 

Proof Assume ��RR is not CE-BIND-secure. We can show that � cannot be syntactically an 
encryption scheme. Let c, (m1, hint1), (m2, hint2) be a collision for ��RR. That is VerCEK(c, m1, 
hint1) = VerCEK(c, m2, hint2) = succeed and m1 � m2. From the definition of Ver follows that c 
= EncEK(m1, r1) and also c = EncEK(m2, r2). But from the syntax requirement of the encryption 
scheme Dec deterministically recovers the plaintext i.e., 

DecDK(c) = DecDK(EncEK(m1, r1)) = (m1, r1) � (m2, r2) = DecDK(EncEK(m2, r2)) = DecDK(c), 
contradiction.               	 

Lemma 1.4 Assume that � satisfies the syntactic properties of a randomness-recovering 
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme 
constructed from � as defined above. Then ��RR is CE-RECOVER-secure. 

Proof Assume ��RR is not CE-RECOVER-secure. We can show that � cannot be 
syntactically an encryption scheme. Let c, m, and hint, be s.t. VerCEK(c, m, hint) = succeed but 
DcmtDecCEK,DK(c) = �. From the definition of Ver follows that c = EncEK(m, r). From the 
definition of DcmtDec follows that DcmtDecCEK,DK(c) = DecDK(c) = DecDK(EncEK(m, r)) � (m, 
r), but from the syntax requirement of the encryption scheme Dec deterministically recovers 
the plaintext, contradiction.             	 

 

Proof of Theorem 2 The theorem is immediately follows from Lemmas 2.1 – 2.3.     	 

Recall that: 

(i) From the syntax requirement of the asymmetric encryption scheme �, Dec 
deterministically recovers the plaintext m that was the input to Enc i.e., DecDK(EncEK(m)) = 
m. 

(ii) From the syntax requirement of the commitment scheme �, Reveal deterministically 
recovers the message m that was the input to Commit and Decommit i.e., 
RevealCK(CommitCK(m, r), DecommitCK(m, r)) = m. 

(iii) From the syntax requirement of the digital signature scheme 
, Msg deterministically 
recovers the message m that was signed by Sign i.e., MsgVK(SignSK(m)) = m. 

Lemma 2.1 Assume that �, �, and 
 satisfy the syntactic properties of an asymmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��CtE be an asymmetric committing encryption scheme constructed from �, �, and 
 as 
defined above. Then ��CtE satisfies the syntactic properties of an asymmetric committing 
encryption scheme. 
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Proof Let c = CmtEncCEK(m, rc||re). From the definition of CmtEnc we have c = (cc, ce) = 
(CommitCK(m, rc), EncEK(DecommitCK(m, rc), re)). 

(*) RevealCK(CommitCK(m, rc), MsgVK(SignSK(DecommitCK(m, rc)))) = [using (iii)] 
RevealCK(CommitCK(m, rc), DecommitCK(m, rc)) = [using (ii)] m. 

From the definitions of DcmtDec and CmtEnc follows that DcmtDecCEK,DK(CmtEncCEK(m, r)) 

= (RevealCK(CommitCK(m, rc), DecDK(EncEK(DecommitCK(m, rc), re))), SignSK(DecDK(EncEK( 
DecommitCK(m, rc), re)))) 

=[using (i)] (RevealCK(CommitCK(m, rc), DecommitCK(m, rc)), SignSK(DecommitCK(m, rc)))              
=[using (ii)] (m, SignSK(DecommitCK(m, rc))) = (m, hint). 

From the definition of Ver (input parameters given by the recipient) follows that: 

VerCEK(CmtEncCEK(m, r), DcmtDecCEK,DK(CmtEncCEK(m, r))) = VerCEK(c, m, hint) = VerCEK(c, 
m, SignSK(DecommitCK(m, rc))) = [using (*)] succeed.          	 

Lemma 2.2 Assume that �, �, and 
 satisfy the syntactic properties of an asymmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��CtE be an asymmetric committing encryption scheme constructed from �, �, and 
 as 
defined above. Then 

� satisfies the binding property � ��CtE is CE-BIND-secure. 

Proof 

� Assume adversary �’ can find collisions for ��CtE i.e., �’ can find c = (cc, ce), (m, 
hint), (m’, hint’) such that VerCEK(c, m, hint) = succeed, VerCEK(c, m’, hint’) = succeed and m 
� m’. 

Recall that VerCEK(c, m, hint) has two options to succeed. 

(a) Input parameters given by the sender: parse hint as rc||re, check if c = (cc, ce) = 
CmtEncCEK(m, rc||re) = (CommitCK(m, rc), EncEK(DecommitCK(m, rc), re)). 

(b) Input parameters given by the recipient: parse hint as SignSK(d), check if m = 
RevealCK(CommitCK(m, rc), MsgVK(SignSK(DecommitCK(m, rc)))). 

We now show that in either case (a) or (b), if �’ succeeds to find collisions for ��CtE, then 
either � cannot be syntactically an encryption scheme or � cannot be syntactically a 
commitment scheme, or we can find collisions for �. 

Proof of case (a) Assume �’ succeeds to find collisions for ��CtE s.t. the first option for 
Ver success holds. We can show that either � cannot be syntactically an encryption scheme or 
� cannot be syntactically a commitment scheme, or we can find collisions for �. 

From the definition of CmtEnc we have: 

c = (cc, ce) = (CommitCK(m, rc1),  EncEK(DecommitCK(m, rc1), re1)) and also, c = (cc, ce) = 
(CommitCK(m’, rc2), EncEK(DecommitCK(m’, rc2), re2)). 

Thus, cc = CommitCK(m, rc1) = CommitCK(m’, rc2), and ce = EncEK(DecommitCK(m, rc1), re1) = 
EncEK( DecommitCK(m’, rc2), re2). 

Now, if DecommitCK(m, rc1) = DecommitCK(m’, rc2) then, denote d = DecommitCK(m, rc1) = 
DecommitCK(m’, rc2), we have: 

RevealCK(cc, d) = RevealCK(CommitCK(m, rc1), DecommitCK(m, rc1)) = m � m’ = 
RevealCK(CommitCK(m’, rc2), DecommitCK(m’, rc2)) = RevealCK(cc, d), contradiction. 
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Otherwise, denote d1 = DecommitCK(m, rc1) and d2 = DecommitCK(m’, rc2), we have: 
DecDK(ce) = DecDK(EncEK(d1, rc1)) = d1 � d2 = DecDK(EncEK(d2, rc2)) = DecDK(ce), 
contradiction. 

Moreover, (cc, d1, d2) is a collision for �, since: 

RevealCK(cc, d1) = RevealCK(CommitCK(m, rc1), DecommitCK(m, rc1)) = m � m’ = 
RevealCK(CommitCK(m’, rc2), DecommitCK(m’, rc2)) = RevealCK(cc, d2), contradiction. 

Proof of case (b) If �’ succeeds with the second option of Ver, we can easily construct 
adversary � that can find collisions for �. � views the commitment key CK and by itself picks 
a pair of encryption/decryption keys (EK, DK) � EncKeyGen(1k), and a pair of 
signing/verification keys (SK, VK) � SigKeyGen(1k), and sets CEK = (CK, EK, VK). � then 
hands CEK to �’ as the public committing encryption key. � runs �’ to find triple c, (m, hint), 
(m’, hint’) which is a collision for ��CtE. Then, � sets d = MsgVK(hint) and d’ = MsgVK(hint’), 
and outputs the triple cc, d, d’ which is a collision for��. It is easy to see that (cc, d) and (cc, 
d’) are valid commitments for m and m’ and m � m’ since m = RevealCK(cc, d) � RevealCK(cc, 
d’) = m’. 

� Assume adversary � can find collisions for �  i.e., � can find cc, d, d’ such that (cc, d) 
and (cc, d’) are valid commitments for m and m’ but m � m’. We can easily construct 
adversary �’ that can find collisions for ��CtE. �’ views the commitment key CK and by itself 
picks a pair of encryption/decryption keys (EK, DK) � EncKeyGen(1k), a pair of 
signing/verification keys (SK, VK) � SigKeyGen(1k), and sets CEK = (CK, EK, VK). �’ then 
hands CK to � as the public commitment key.��’ runs � to find triple cc, d, d’ which is a 
collision for �. Then, �’ runs internally m � RevealCK(cc, d), m’ � RevealCK(cc, d’), sets hint 
= SignSK(d), hint’ = SignSK(d’), then �’ chooses � = d or d’ and runs ce � EncEK(�, re), and 
outputs the triplet c = (cc, ce), (m, hint), (m’, hint’) which is a collision for ��CtE. It is easy to 
see that VerCEK(c, m, hint) = succeed and VerCEK(c, m’, hint’) = succeed for m and m’ and m � 
m’.                	 

Lemma 2.3 Assume that �, �, and 
 satisfy the syntactic properties of an asymmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��CtE be an asymmetric committing encryption scheme constructed from �, �, and 
 as 
defined above. Then 


 is UF-NMA-secure   � ��CtE is CE-RECOVER-secure. 

Proof Assume ��CtE is not CE-RECOVER-secure i.e., adversary �’ can find c, m, and hint, 
such that VerCEK(c, m, hint) = succeed but DcmtDecCEK,DK(c) = �. 

Recall that VerCEK(c, m, hint) has two options to succeed. 

(a) Input parameters given by the sender: parse hint as rc||re, check if c = (cc, ce) = 
CmtEncCEK(m, rc||re) = (CommitCK(m, rc), EncEK(DecommitCK(m, rc), re)). 

(b) Input parameters given by the recipient: parse hint as SignSK(d), check if m = 
RevealCK(CommitCK(m, rc), MsgVK(SignSK(DecommitCK(m, rc))). 

We now show that in either case (a) or (b), if �’ succeeds to find c, m, and hint, such that 
VerCEK(c, m, hint) = succeed but DcmtDecCEK,DK(c) = �, then either � cannot be syntactically 
an encryption scheme or � cannot be syntactically a commitment scheme, or 
 cannot be UF-
NMA-secure. 
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Proof of case (a) Assume �’ succeeds to find c, m, and hint s.t. the first option for Ver 
success holds and DcmtDecCEK,DK(c) = �. We can show that either � cannot be syntactically 
an encryption scheme or � cannot be syntactically a commitment scheme. 

Indeed, if DcmtDecCEK,DK(c) = � then it follows that: DcmtDecCEK,DK(c) = 
DcmtDecCEK,DK(cc, ce) 

= (RevealCK(cc, DecDK(ce)), SignSK(DecDK(ce)) 

= (RevealCK(CommitCK(m, rc), DecDK(EncEK(DecommitCK(m, rc), re)), SignSK(DecDK( 
EncEK(DecommitCK(m, rc), re)))) 

� (m, hint), contradiction. 

Proof of case (b) If �’ succeeds with the second option of Ver, we can easily construct 
adversary � that can forge signatures for 
 without any assistance from a signing oracle. � 
views the verification key VK and by itself picks a commitment key CK � KeySetup(1k), and 
a pair of encryption/decryption keys (EK, DK) � EncKeyGen(1k), and sets CEK = (CK, EK, 
VK). � then hands CEK to �’ as the public committing encryption key. � runs �’ to find 
triple c, m, and hint, which for the second option of Ver succeeds. � outputs hint.      	 

 

Proof of Theorem 3 We prove ��CtE security against the strongest security notion of the 
encryption �, i.e. E-IND-CCA2 and E-IND-gCCA2. Weaker notions e.g. E-IND-CPA and E-
IND-CCA1 could easily be proved as well. 

The theorem is immediately follows from Lemmas 3.1 – 3.2.        	 

Lemma 3.1 Assume that � is E-IND-CCA2 (E-IND-gCCA2) -secure, � and 
 satisfy the 
syntactic properties of a commitment scheme and a digital signature scheme respectively. Let 
��CtE be an asymmetric committing encryption scheme constructed from �, �, and 
 as 
defined above. Then 

��CtE is CE-IND-CCA2 (CE-IND-gCCA2) -secure � � satisfies the hiding property. 

Proof Assume adversary � can break hiding property of � then we can show that ��CtE 
cannot pass the indistinguishability test even without using the decryption oracle at all (E-
IND-CPA-security), let alone E-IND-gCCA2-secure. 

Indeed, if � can find m0, and m1 s.t. it can distinguish the commitment of m0, cc(m0), from 
the commitment of m1, cc(m1), then obviously we can distinguish also CmtEncCEK(m0, rc||re) 
 
(cc(m0), EncEK(d(m0), re)) from CmtEncCEK(m1, rc||re) 
 (cc(m1), EncEK(d(m1), re)), 
contradicting E-IND-CPA-security and certainly E-IND-gCCA2-security.       	 

Lemma 3.2 Assume that � is E-IND-CCA2 (E-IND-gCCA2) -secure, � and 
 satisfy the 
syntactic properties of a commitment scheme and a digital signature scheme respectively. Let 
��CtE be an asymmetric committing encryption scheme constructed from �, �, and 
 as 
defined above. Then 

� satisfies the hiding and binding properties � ��CtE is CE-IND-CCA2 (CE-IND-gCCA2) -
secure. 

Proof We will show CE-IND-CCA2-security (CE-IND-gCCA2-security) of ��CtE based on 
E-IND-CCA2-security (E-IND-gCCA2-security) of � and hiding and binding properties of �. 
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For CE-IND-gCCA2-security, let 	 be the equivalence relation w.r.t. which � is secure. 
We define the equivalence relation for ��CtE to be 	’ (c1, c2) = 	’ ((cc1, ce1), (cc2, ce2)) = true 
iff�	 (ce1, ce2) = true and cc1 = cc2. It is easy to see that 	’ is decryption-respecting, since if di 
= DecDK(cei), then 	’ ((cc1, ce1), (cc2, ce2)) = true implies that (cc1, d1) = (cc2, d2), which implies 
that m1 = RevealCK(cc1, d1) = RevealCK(cc2, d2) = m2. 

For the uniformity and simplicity of the proof we define also for CE-IND-CCA2-security 
an equivalence relation for ��CtE to be 	’ (c1, c2) = 	’ ((cc1, ce1), (cc2, ce2)) = true iff c1 = c2 
i.e., ce1 = ce2 and cc1 = cc2. 

We now show CE-IND-CCA2-security (CE-IND-gCCA2-security) of ��CtE w.r.t. 	’. For 
that, let Env1 denote the usual environment where we place any adversary � for ��CtE. 
Namely, 

(1) In find, Env1 honestly answers the de-committing decryption queries of �. 

(2) After m0 and m1 are selected, Env1 picks at random b � {0, 1}, rc, and re, then applies 
ccb � CommitCK(mb, rc), db � DecommitCK(mb, rc) and ceb � EncEK(db, re), and 
returns cb = (ccb, ceb). 

(3) In guess, Env1 honestly answers de-committing decryption query c = (cc, ce) provided 
that 	’ ((cc, ce), (ccb, ceb)) = false. 

For CE-IND-gCCA2-security, we can assume that � never asks a query c = (cc, ce) where 
	 (ce, ceb) = true but cc � ccb. Indeed, by our assumption only the value cc = ccb will check 
with db, so the answer to queries with cc � ccb is � (and � knows it). Hence, we can assume 
that 	’ ((cc, ce), (ccb, ceb)) = false implies that 	 (ce, ceb) = false. 

We let Succ1(�) denote the probability � succeeds in Env1 in predicting b. 

Then we define the following “fake” environment Env2. It is identical to Env1 above, 
except for one aspect: in step (2) it would return bogus committing encryption (cc(0), ceb), i.e. 
puts the commitment to the zero string 0 instead of the expected ccb by applying cc(0) � 
CommitCK(0, rc). In particular, step (3) is the same as before with the understanding that 	’ 
((cc, ce), (ccb, ceb)) is evaluated with the fake challenge (cc(0), ceb). We let Succ2(�) denote the 
probability � succeeds in Env2. We make two claims: 

(a) Using hiding property of �, no PPT adversary � can distinguish Env1 from Env2, that 
is 

� satisfies the hiding property  � | Succ1(�) - Succ2(�) | � negl(k) 

(b) Using E-IND-gCCA2-security of �, no PPT adversary � can succeed in Env2, that is 

� is E-IND-gCCA2-secure  � Succ2(�) < ½ + negl(k) 

Combined, claims (a) and (b) imply the theorem. 

Proof of claim (a) If for some �, Succ1(�) - Succ2(�) > � for non-negligible �, we create 
�1 that will break the hiding property of �. �1 picks, by itself, a pair of encryption/decryption 
keys (EK, DK) � EncKeyGen(1k), a pair of signing/verification keys (SK, VK) � 
SigKeyGen(1k), sets CEK = (CK, EK, VK), and runs � (answering his de-committing 
decryption queries using DK, SK) until � outputs m0 and m1. At this stage �1 picks at random 
b � {0, 1}, and outputs 0 and mb, and claim to be able to distinguish cc(0) � CommitCK(0, 
rc) from ccb = cc(mb) � CommitCK(mb, rc). �1 computes ceb � EncEK(d(mb), re) = 
EncEK(DecommitCK(mb, rc), re). When presented with cc’ – a commitment to either 0 or mb – 
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�1 will return to � the committing encryption (cc’, ceb). �1 will then again run � to 
completion, refusing to de-committing decrypting (cc, ce) such that 	’ ((cc, ce), (cc’, ceb)) = 
true. When � outputs b’, �1 says that the message was mb if � succeeds (b’ = b), and says 0 
otherwise. It is easy to check that in case cc’ = cc(mb) = ccb, � was run exactly in Env1, 
otherwise – in Env2, which easily implies that Pr [�1 succeeds] 
 ½ + �/2, a contradiction. 

Proof of claim (b) If for some �, Succ2(�) > ½ + �, we create �2 that will break the IND-
CCA2-security (IND-gCCA2-security) of �. Specifically, �2 can simulate the de-committing 
decryption query (cc, ce) of � by asking its own decryption oracle to decrypt d = DecDK(ce), 
and returning RevealCK(cc, d). When �’ outputs m0 and m1, �2 runs cci � CommitCK(mi, r) and 
di � DecommitCK(mi, r) for i = {0, 1}, and claim to distinguish d0 and d1. When given 
challenge ceb � EncEK(db, r), for unknown b, �2 gives �’ the challenge (cc(0), ceb). Then, 
again, �2 uses its own decryption oracle to answer all queries (cc, ce) as long as 	’ ((cc, ce), 
(cc(0), ceb)) = false. For CE-IND-gCCA2-security, from the definition of 	’ and our 
assumption earlier, we see that 	 (ce, ceb) = false as well, so all such queries are legal. Since 
�2 exactly recreates the environment Env2 for �, �2 succeeds with probability Succ2(�) > ½ + 
�.                	 

 

Proof of Theorem 4 We prove ��KSP security against the strongest security notion of the 
encryption �, i.e. E-IND-CCA2 and E-IND-gCCA2. Weaker notions e.g. E-IND-CPA and E-
IND-CCA1 could easily be proved as well. 

The theorem is immediately follows from Lemmas 4.1 – 4.4.        	 

Recall that: 

(i) From the syntax requirement of the symmetric encryption scheme �, Dec deterministically 
recovers the plaintext m that was the input to Enc i.e., DecK(EncK(m)) = m. 

(ii) From the syntax requirement of the commitment scheme �, Reveal deterministically 
recovers the message m that was the input to Commit and Decommit i.e., 
RevealCK(CommitCK(m, r), DecommitCK(m, r)) = m. 

(iii) From the syntax requirement of the digital signature scheme 
, Msg deterministically 
recovers the message m that was signed by Sign i.e., MsgVK(SignSK(m)) = m. 

Lemma 4.1 Assume that �, �, and 
 satisfy the syntactic properties of a symmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��KSP be a symmetric committing encryption scheme constructed from �, �, and 
 as defined 
above. Then ��KSP satisfies the syntactic properties of a symmetric committing encryption 
scheme. 

Proof From the definitions of DcmtDec and CmtEnc, and using (i), follows that 
DcmtDecCK,K(CmtEncCK,K(m, r)) = (DecKi(EncKi(m)), hint) = (m, hint). 

From the definition of Ver in order to retrieve the secret key Ki that was used to encrypt 
message m we apply: 

(*) RevealCK(CommitCK(Ki, rc), MsgVK(SignSK(DecommitCK(Ki, rc)))) = [using (iii)] 
RevealCK(CommitCK(Ki, rc), DecommitCK(Ki, rc)) = [using (ii)] Ki. 

Let c = CmtEncCK,K(m, r) then from the definition of CmtEnc also c = EncKi(m). Thus, from 
the definition of Ver follows that: 
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VerCK(CmtEncCK,K(m, r), DcmtDecCK,K(CmtEncCK,K(m, r))) = VerCK(EncKi(m), m, hint) = 
VerCK(EncKi(m), m, SignSK(DecommitCK(Ki, rc))) = [using (*)] succeed.        	 

Lemma 4.2 Assume that �, �, and 
 satisfy the syntactic properties of a symmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��KSP be a symmetric committing encryption scheme constructed from �, �, and 
 as defined 
above. Then 

� is E-IND-CCA2 (E-IND-gCCA2) -secure � ��KSP is CE-IND-CCA2 (CE-IND-gCCA2) -
secure. 

Proof We prove CE-IND-CCA2-security and CE-IND-gCCA2-security of ��KSP 
simultaneously. For CE-IND-gCCA2-security, let 	  be the equivalence relation w.r.t. which 
� is secure. We define the equivalence relation for ��KSP to be 	’(c1, c2) = true iff�	 (c1, c2) = 
true. For the uniformity and simplicity of the proof we define also for CE-IND-CCA2-
security an equivalence relation for ��KSP to be 	’ (c1, c2) = true iff  c1 = c2. 

� Assume adversary �’ can break the CE-IND-CCA2-security (CE-IND-gCCA2-
security) of ��KSP. We can easily construct adversary � that can break the E-IND-CCA2-
security (E-IND-gCCA2-security) of �. � runs �’ internally, passing every de-committing 
decryption queries made by �’ to its own decryption oracle. When �’ outputs x0, and x1, � 
outputs them also. When � is presented with the challenge cb = EncKi(xb, r) (for unknown b), 
it hands it to �’ and continue running �’ waiting to its answer. Now, the definition of 	’ tells 
us that �’ is disallowed to de-commit decrypt any c satisfying 	’(cb, c) = true. But such c are 
the only queries that � itself is disallowed to ask its decryption oracle! Thus, � can still 
handle all the legal de-committing decryption queries of �’, in the same manner as before. 
Finally, � outputs the same guess b’ that �’ outputs, which clearly gives � the same 
probability of being correct as �’ has. 

� Assume adversary � can break the E-IND-CCA2-security (E-IND-gCCA2-security) 
of �. We can easily construct adversary �’ that can break the CE-IND-CCA2-security (CE-
IND-gCCA2-security) of ��KSP. �’ runs � internally, passing every decryption queries made 
by � to its own de-committing decryption oracle. When � outputs x0, and x1, �’ outputs them 
also. When �’ is presented with the challenge cb = CmtEncCK,K(xb, r) (for unknown b), it 
hands it to � and continue running � waiting to its answer. Now, the definition of 	’ tells us 
that �’ is disallowed to de-commit decrypt any c satisfying 	’(cb, c) = true. But such c are the 
only queries that � itself is disallowed to ask its decryption oracle! Thus, �’ can still handle 
all the legal de-committing decryption queries of �, in the same manner as before. Finally, �’ 
outputs the same guess b’ that � outputs, which clearly gives �’ the same probability of being 
correct as � has.              	 

Lemma 4.3 Assume that �, �, and 
 satisfy the syntactic properties of a symmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��KSP be a symmetric committing encryption scheme constructed from �, �, and 
 as defined 
above. Then 

� satisfies the binding property � ��KSP is CE-BIND-secure. 

Proof Assume ��KSP is not CE-BIND-secure. We can show that � cannot be syntactically an 
encryption scheme or we can find collisions for �. 
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Let c, (m1, hint1), (m2, hint2) be a collision for ��KSP. That is VerCK(c, m1, hint1) = 
VerCK(c, m2, hint2) = succeed and m1 � m2. 

If the committing ciphertext c was produced for message m1 and m2 honestly, i.e. using 
the agreed key Ki, and hint is set honestly to the agreed siS||siR, then � cannot be syntactically 
an encryption scheme. From the definition of CmtEnc we have: 

c = CmtEncCK,K(m1, r1) = EncKi(m1, r1) and also c = CmtEncCK,K(m2, r2) = EncKi(m2, r2) 

But for the deterministic Dec we require: 

DecKi(c) = DecKi(EncKi(m1, r1)) = m1 � m2 = DecKi(EncKi(m2, r2)) = DecKi(c), 
contradiction. 

If the committing ciphertext c was produced for either message m1 or m2 dishonestly, i.e. 
using key K � Ki, and hint is set to appropriate dS(K) and dR(K) generated dishonestly by the 
sender (i.e. hint = dKS||dKR), then (ciS, diS, dKS) and (ciR, diR, dKR) are both collisions for �, 
since: ),(),( KSiSCKiSiSiSCK dcRevealKKdcReveal

RR
���  and 

),(),( KRiRCKiRiRiRCK dcRevealKKdcReveal
SS

��� .          	 

Lemma 4.4 Assume that �, �, and 
 satisfy the syntactic properties of a symmetric 
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let 
��KSP be a symmetric committing encryption scheme constructed from �, �, and 
 as defined 
above. Then 

� satisfies the binding property � ��KSP is CE-RECOVER-secure. 

Proof Assume ��KSP is not CE-RECOVER-secure. We can show that � cannot be 
syntactically an encryption scheme or we can find collisions for �. 

Let c, m, and hint, be s.t. VerCK(c, m, hint) = succeed but DcmtDecCK,K(c) = �. 

If the committing ciphertext c was produced for message mi honestly, i.e. using the agreed 
key Ki, and hint is set honestly to the agreed siS||siR then � cannot be syntactically an 
encryption scheme, since: 

DcmtDecCK,K(c) = (DecKi(c), hint) = (DecKi(EncKi(m)), hint) � (m, hint), contradiction. 

If the committing ciphertext c was produced for message mi dishonestly, i.e. using key K 
� Ki, and hint is set to appropriate dS(K) and dR(K) generated dishonestly by the sender (i.e. 
hint = dKS||dKR), then (ciS, diS, dKS) and (ciR, diR, dKR) are both collisions for �, since: 

),(),( KSiSCKiSiSiSCK dcRevealKKdcReveal
RR

���  and 

),(),( KRiRCKiRiRiRCK dcRevealKKdcReveal
SS

��� , contradiction.        	 

 

Proof of Theorem 5 The theorem is immediately follows from Lemmas 5.1 – 5.5.     	 

Lemma 5.1 Assume that �� and 
 satisfy the syntactic properties of an asymmetric 
committing encryption scheme and a digital signature scheme respectively. Let 
����
 be a 
publicly verifiable signcryption scheme constructed from �� and 
 as defined above. Then 

����
 satisfies the syntactic properties of a publicly verifiable signcryption scheme. 

Proof Recall that: 
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(i) From the syntax requirement of the asymmetric committing encryption scheme ��, 
DcmtDec deterministically recovers the plaintext m that was the input to CmtEnc and the hint 
i.e., DcmtDecCEK,DK(CmtEncCEK(m)) = (m, hint). 

(ii) From the syntax requirement of the digital signature scheme 
, Msg deterministically 
recovers the message m that was signed by Sign i.e., MsgVK(SignSK(m)) = m. 

Let cs = EncSignCEK,SK(m, r). From the definition of EncSign we have cs = 
SignSK(CmtEncCEK(m, r)||CEK). In the following we omit the concatenation of CEK in the 
signature following the definitions of VerDec and SCVer. From the definition of VerDec and 
EncSign follows that: VerDecCEK,DK,VK(EncSignCEK,SK(m, r)) 

= DcmtDecCEK,DK(MsgVK(SignSK(CmtEncCEK(m, r)))) 

= [using (ii)] DcmtDecCEK,DK(CmtEncCEK(m, r)) = [using (i)] (m, hint). 

From the definition of SCVer follows that: 

SCVerVK(EncSignCEK,SK(m, r), VerDecCEK,DK,VK(EncSignCEK,SK(m, r))) 

= VerCEK(MsgVK(SignSK(CmtEncCEK(m, r))), DcmtDecCEK,DK(MsgVK(SignSK( 
CmtEncCEK(m, r))))) 

= [using (ii)] VerCEK(CmtEncCEK(m, r), DcmtDecCEK,DK(CmtEncCEK(m, r))) = succeed.     	 

Lemma 5.2 Assume that �� and 
 satisfy the syntactic properties of an asymmetric 
committing encryption scheme and a digital signature scheme respectively. Let 
����
 be a 
publicly verifiable signcryption scheme constructed from �� and 
 as defined above. Then 

��  is CE-IND-gCCA2-secure � 
����
 is CE-IND-gCCA2-secure. 

Proof We will show CE-IND-gCCA2-security of ��SE based on E-IND-gCCA2-security of 
��. Let 	  be the equivalence relation w.r.t. which �� is secure. We define the equivalence 
relation for ��SC to be 	’(cs1, cs2) = true iff�	 (cce1, cce2) = true where cce1||CEK = MsgVK(cs1), 
and cce2||CEK = MsgVK(cs2). We now show CE-IND-gCCA2-security of ��SC w.r.t. 	’. 

� Assume adversary �’ can break the CE-IND-gCCA2-security of ��SC. We can easily 
construct adversary � that can break the E-IND-gCCA2-security of ��. � views the public 
committing encryption key CEK and by itself picks a pair of signing/verification keys (SK, 
VK) � SigKeyGen(1k), and sets CEK’ = (CEK, SK, VK). � then hands CEK’ to �’ as the 
public committing encryption key.�� uses its own de-committing decryption oracle to answer 
the de-signcryption queries it receives from �’ as follows: � interprets the signcryption 
ciphertext cs as a signature s and derives cce||CEK � MsgVK(s), then � passes cce to its own 
de-committing decryption oracle. When �’ outputs x0, and x1, � outputs them also. When � is 
presented with the challenge cce = CmtEncCEK(xb, r) (for unknown b), it sets c = cce||CEK, runs 

)(cSigns SK
R���  and passes s as signcryption ciphertext cs to �’ and continue running �’ 

waiting to its answer. Now, the definition of 	’ tells us that �’ is disallowed to de-signcrypt 
any cs’ satisfying 	’(cs, cs’) = true. But such cs’ results in cce’||CEK = MsgVK(cs’) and cce’ are 
the only queries that � itself is disallowed to ask its de-committing decryption oracle! Thus, 
� can still handle all the legal de-signcryption queries of �’, in the same manner as before. 
Finally, � outputs the same guess b’ that �’ outputs, which clearly gives � the same 
probability of being correct as �’ has. 

� Assume adversary � can break the CE-IND-gCCA2-security of ��. We can easily 
construct adversary �’ that can break the CE-IND-gCCA2-security of ��SC. �’ views the 
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public committing encryption key CEK’ = (CEK, SK, VK) and hands CEK to � as the public 
committing encryption key. �’ uses its own de-signcryption oracle to answer the de-
committing decryption queries it receives from � as follows: �’ first appends the public 
committing encryption key CEK to the committing ciphertext cce it receives from � and have 
c = cce||CEK, then �’ runs )(cSigns SK

R��� , and passes the signature s as signcryption 
ciphertext cs to its own de-signcryption oracle. When � outputs x0, and x1, �’ outputs them 
also. When �’ is presented with the challenge cs = EncSignCEK,SK(xb, r) (for unknown b), it 
interprets cs as signature s and derives cce||CEK � MsgVK(s). It passes the retrieved cce to � 
and continue running � waiting to its answer. Now, the definition of 	’ tells us that �’ is 
disallowed to de-signcrypt any cs’ satisfying 	’(cs, cs’) = true. But such cs’ results in cce’||CEK 
= MsgVK(cs’) and cce’ are the only queries that � itself is disallowed to ask its de-committing 
decryption oracle! Thus, �’ can still handle all the legal de-signcryption queries of �, in the 
same manner as before. Finally, �’ outputs the same guess b’ that � outputs, which clearly 
gives �’ the same probability of being correct as � has.          	 

Lemma 5.3 Assume that �� and 
 satisfy the syntactic properties of an asymmetric 
committing encryption scheme and a digital signature scheme respectively. Let 
����
 be a 
publicly verifiable signcryption scheme constructed from �� and 
 as defined above. Then 

��  is CE-BIND-secure � 
����
 is CE-BIND-secure. 

Proof 

� Assume adversary �’ can find collisions for ��SC i.e., �’ can find cs, (m, hint), (m’, 
hint’) such that SCVerCEK’(cs, m, hint) = succeed, SCVerCEK’(cs, m’, hint’) = succeed and m � 
m’. We can easily construct adversary � that can find collisions for ��. � views the public 
committing encryption key CEK and by itself picks a pair of signing/verification keys (SK, 
VK) � SigKeyGen(1k), and sets CEK’ = (CEK, SK, VK). � then hands CEK’ to �’ as the 
public committing encryption key.�� runs �’ to find triplet cs, (m, hint), (m’, hint’) which is a 
collision for ��SE. Then, � interprets the signcryption ciphertext cs as signature s and derives 
cce||CEK � MsgVK(s), and output the triplet cce, (m, hint), (m’, hint’). It is easy to see that 
VerCEK(cce, m, hint) = succeed, VerCEK(cce, m’, hint’) = succeed and m � m’. 

� Assume adversary � can find collisions for ��  i.e., � can find cce, (m, hint), (m’, 
hint’) such that VerCEK(cce, m, hint) = succeed, VerCEK(cce, m’, hint’) = succeed and m � m’. 
We can easily construct adversary �’ that can find collisions for ��SC. �’ views the public 
committing encryption key CEK’ = (CEK, SK, VK) and hands CEK to � as the public 
committing encryption key.��’ runs � to find triplet cce, (m, hint), (m’, hint’) which is a 
collision for ��. Then, �’ appends the public committing encryption key CEK to the 
committing ciphertext cce and have c = cce||CEK, then �’ runs )(cSigns SK

R��� , sets cs = s, 
and output the triplet cs, (m, hint), (m’, hint’). It is easy to see that SCVerCEK’(cs, m, hint) = 
succeed, SCVerCEK’(cs, m’, hint’) = succeed and m � m’.         	 

Lemma 5.4 Assume that �� and 
 satisfy the syntactic properties of an asymmetric 
committing encryption scheme and a digital signature scheme respectively. Let 
����
 be a 
publicly verifiable signcryption scheme constructed from �� and 
 as defined above. Then 

��  is CE-RECOVER-secure  � 
����
 is CE-RECOVER-secure. 

Proof 
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� Assume ��SC is not CE-RECOVER-secure and adversary �’ can find cs, m, and hint 
such that SCVerCEK’(cs, m, hint) = succeed but VerDecCEK,DK,VK(cs) = �. Then we can easily 
construct adversary � that can find cce, m, and hint such that   VerCEK(cce, m, hint) = succeed 
but DcmtDecCEK,DK(cce) = � and thus break CE-RECOVER security of ��. � views the public 
committing encryption key CEK and by itself picks a pair of signing/verification keys (SK, 
VK) � SigKeyGen(1k), and sets CEK’ = (CEK, SK, VK). � then hands CEK’ to �’ as the 
public committing encryption key.�� runs �’ to find cs, m, and hint such that SCVerCEK’(cs, m, 
hint) = succeed but VerDecCEK,DK,VK(cs) = �. Then, � interprets the signcryption ciphertext cs 
as signature s and derives cce||CEK � MsgVK(s), and outputs cce, m, and hint. It is easy to see 
that VerCEK(cce, m, hint) = succeed and DcmtDecCEK,DK(cce) = �. 

� Assume ��  is not CE-RECOVER-secure and adversary � can find cce, m, and hint 
such that VerCEK(cce, m, hint) = succeed but DcmtDecCEK,DK(cce) = � then we can easily 
construct adversary �’ that can find cs, m, and hint such that SCVerCEK’(cs, m, hint) = succeed 
but VerDecCEK,DK,VK(cs) = � and thus break CE-RECOVER security of ��SC. �’ views the 
public committing encryption key CEK’ = (CEK, SK, VK) and hands CEK to � as the public 
committing encryption key.��’ runs � to find cce, m, and hint such that VerCEK(cce, m, hint) = 
succeed but DcmtDecCEK,DK(cce) = �. Then, �’ appends the public committing encryption key 
CEK to the committing ciphertext cce and have c = cce||CEK, �’ runs )(cSigns SK

R��� , sets 
cs = s, and output the triplet cs, m, and hint. It is easy to see that SCVerCEK’(cs, m, hint) = 
succeed and VerDecCEK,DK,VK(cs) = �.            	 

Lemma 5.5 Assume that �� and 
 satisfy the syntactic properties of an asymmetric 
committing encryption scheme and a digital signature scheme respectively. Let 
����
 be a 
publicly verifiable signcryption scheme constructed from �� and 
 as defined above. Then 


  is UF-CMA-secure  � 
����
 is UF-CMA-secure. 

Proof Assume adversary �’ can forge signatures for 
SC then we can easily construct 
adversary � that can forge signatures for 
 without any assistance from a signing oracle. � 
views the verification key VK and by itself picks a pair of committing encryption keys (CEK, 
DK) � KeyGenSetup(1k), and sets VK’ = (CEK, DK, VK). � then hands VK’ to �’ as the 
public verification key.�� runs �’ to forge signature s such that SigVerVK’(s) = succeed. Then, 
� outputs the same signature s that �’ outputs.          	 

 


