

This is the author version of an article published as:

Gorantla, M. Choudary and Boyd, Colin and Gonzalez Nieto, Juan
Manuel (2007) On the Connection Between Signcryption and One-pass
Key Establishment. In Galbraith, Steven, Eds. Proceedings The 11th IMA
International Conference on Cryptography and Coding, Cirencester, UK.
LNCS 4887, pages pp. 1-24, Cirencester, UK.

Copyright 2007 Springer-Verlag

Accessed from http://eprints.qut.edu.au

http://eprints.qut.edu.au/

On the Connection Between Signcryption and One-pass Key

Establishment∗

M. Choudary Gorantla, Colin Boyd and Juan Manuel Gonzàlez Nieto
Information Security Institute, Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia.
mc.gorantla@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au

November 1, 2007

Abstract

There is an intuitive connection between signcryption and one-pass key establishment. Al-
though this has been observed previously, up to now there has been no formal analysis of this
relationship. The main purpose of this paper is to prove that, with appropriate security no-
tions, one-pass key establishment can be used as a signcryption KEM and vice versa. In order
to establish the connection we explore the definitions for signcryption (KEM) and give new and
generalised definitions. By making our generic construction concrete we are able to provide new
examples of a signcryption KEM and a one-pass key establishment protocol.

Keywords. Key establishment, Signcryption, Signcryption KEM.

Contents

1 Introduction 2
1.1 Related Work . 4
1.2 The Canetti–Krawczyk Model . 4

2 Security Definitions 6
2.1 New security notions for signcryption . 6
2.2 New security notions for signcryption KEM . 9
2.3 On the unforgeability notion for signcryption KEMs 10

3 Outsider secure signcryption KEMs 11
3.1 ECISS-KEM1 . 11
3.2 Potential problems with ephemeral data . 11
3.3 ECISS-KEM2 . 12
3.4 ECISS-KEM1 in multi-user setting . 13
∗To appear at the 11th IMA International Conference on Cryptography and Coding, volume 4887 of LNCS,

Springer-Verlag, pp. 277–301, 2007.

1

4 Signcryption KEM from one-pass key establishment 13
4.1 New signcryption KEM from the one-pass HMQV 16
4.2 Security of the new KEM . 16

5 One-pass key establishment from signcryption KEM 17

6 Conclusion 20

A Proof of Theorem 1 22

1 Introduction

Zheng [1] introduced the notion of signcryption as an asymmetric cryptographic primitive that pro-
vides both privacy and authenticity at greater efficiency than the generic composition of signature
and encryption schemes. A seemingly unrelated cryptographic primitive is key establishment which
aims to allow parties to establish a shared key that can be used to cryptographically protect subse-
quent communications. Most key establishment protocols are interactive, but many such protocols
provide simplified one-pass versions which only use a single message. One-pass key establishment
provides the opportunity for very efficient constructions, even though they will typically provide a
lower level of security than interactive protocols.

Zheng [2] later observed that a signcryption scheme can be used as a key transport protocol
by simply choosing a new key and sending it in a signcrypted message. This intuitively gives the
desired properties for key establishment since the signcryption gives assurance to the sender that
the key is available only to the recipient, and assurance to the recipient that the key came from
the sender. However, this work contains neither a security model nor a proof for this construction
and there remains currently no formal treatment. Since key establishment is notoriously tricky
to get right, it is important to decide exactly what security properties such a construction can
provide. The main purpose of this paper is to define the appropriate notions of security and show
how signcryption and one-pass key establishment can be related under those notions.

Security for signcryption. Since the introduction of signcryption, different definitions of
security have emerged. An, Dodis and Rabin [3] divided security notions for signcryption into two
types: outsider security assumes that the adversary is not one of the participants communicating
while insider security allows the adversary to be one of the communicating parties. Insider security
is a stronger notion than outsider security as it protects the authenticity of a sender from a malicious
receiver and privacy of a receiver from a malicious sender. Therefore insider security implies the
corresponding notion for outsider security. The notions of outsider security and insider security
with respect to authenticity are similar to third-person unforgeability and receiver unforgeability
defined for asymmetric authenticated encryption [4].

Because signcryption is intended to include functionality similar to that of digital signatures, it
is natural that non-repudiation is a desirable property. Non-repudiation requires insider security
since the sender of a signcrypted message must be prevented from showing that it could have been
formed by the recipient of that message. A signcryption scheme with only outsider security cannot
provide non-repudiation [3, 5]. For key establishment there is no need for non-repudiation — it
is never required for a single party to take responsibility for the shared key. On the other hand,
a commonly required property for key establishment is forward secrecy which ensures that if the
long-term key of a participant in the protocol is compromised then previously established keys will

2

remain secure. We can regard forward secrecy as analogous to insider security in signcryption with
respect to confidentiality. Compromise of the sender’s private key should not allow an adversary
to obtain previously signcrypted messages.

In addition to forward secrecy, another common security requirement for key establishment is
security against compromise of ephemeral protocol data. This is not considered in the existing
models for signcryption schemes and so it is not possible, in general, to convert from a signcryption
scheme to a key establishment protocol with this stronger security notion. We will argue later
that there is good reason that signcryption schemes should consider security against compromise of
ephemeral data. In particular this observation allows us to explain a potential weakness observed
by Dent in one of his own constructions [6].

Signcryption KEMs. Cramer and Shoup [7] formalised the concept of hybrid encryption
schemes which securely use public key encryption techniques to encrypt a session key, and symmetric
key encryption techniques to encrypt the actual message. This hybrid construction has a key
encapsulation mechanism (KEM) and a data encapsulation mechanism (DEM) as its underlying
tools. A KEM is similar to a public key encryption scheme except that it is used to generate a
random key and its encryption. In a series of papers, Dent [8, 6, 9] extended this hybrid paradigm
to signcryption, resulting in the construction of signcryption KEM and signcryption DEM with
different security notions.

Although we could use plain signcryption schemes to provide one-pass key establishment as
suggested by Zheng [2], signcryption KEMs seem better suited to the job. This is because they do
just what we need by providing a new random key, yet have the potential to be more efficient than
plain signcryption. Note, however, that the remarks regarding the differences in security models
between signcryption and key establishment apply equally when signcryption KEMs are considered
in place of plain signcryption.

Contributions. We provide new definitions of security for signcryption and subsequently for
signcryption KEMs. We then show the suitability of these new notions in deriving one-pass key
establishment protocols from signcryption KEMs. Generic constructions of signcryption KEMs
from one-pass key establishment protocols and vice versa are proposed. These constructions are
instantiated using existing schemes; in particular we use HMQV [10], the most efficient currently
known key agreement protocol with a proof of security, to derive a new signcryption KEM with
strong security properties. One of the main observations of our paper is that the security models
for key establishment are stronger than those normally accepted for signcryption. Moreover, the
stronger security seems to be just as appropriate for signcryption as it is for key establishment.
Specific contributions of the paper are:

• new definitions for signcryption (KEM)s;

• generic construction from one-pass key establishment to signcryption and vice versa;

• the first secure signcryption KEM with forward secrecy;

• an attack on a signcryption KEM of Dent [6].

The remainder of this introduction briefly surveys related work and outlines the Canetti–
Krawczyk model for key establishment. Section 2 then considers the current definitions of security
for signcryption and how they can be strengthened. Section 3 examines the outsider secure sign-
cryption KEMs designed by Dent [6]. The generic construction of signcryption KEM from one-pass
key establishment is covered in Section 4 while the reverse construction is covered in Section 5.

3

1.1 Related Work

An et al. [3] defined security notions for signcryption schemes as insider and outsider security in
the two-user setting. They also described how to extend these notions to the multi-user setting.
Baek et al. [11] independently attempted to provide similar notion of security for signcryption, but
their model was not completely adequate. Recently, the same authors [12] extended these notions
to match the corresponding definitions given by An et al. However, their security notions are still
not complete, as discussed in Section 2.1.

Zheng [2] informally showed how a signcryption scheme can be used as a key transport protocol.
Dent [8, 6] and Bjørstad and Dent [13] discussed how a signcryption KEM can be used as a one-
pass key establishment protocol. Bjørstad and Dent [13] proposed the concept of signcryption
tag-KEM and claimed that better key establishment mechanisms can be built with this. However,
none of these papers formally defined security in a model that is suitable for key establishment
protocols. Moreover, the confidentiality notion defined for all these KEMs does not offer security
against insider attacks. Insider security for confidentiality enables achieving forward secrecy i.e.
the compromise of the sender’s private key does not compromise the confidentiality of signcryptions
created using that key [3]. However, this has been ignored or its absence is treated as a positive
feature called “Past Message Recovery” in the earlier work [1, 12].

1.2 The Canetti–Krawczyk Model

To analyse the security of key establishment protocols, we use the Canetti-Krawczyk (CK) model [14,
15], which we briefly describe here. The CK model has primarily been used for multi-pass key es-
tablishment protocols, but it can also be used to analyse one-pass key establishment protocols
without modification as shown by Krawczyk [10].

In the CK model a protocol π is modelled as a collection of n programs running at different
parties, P1, . . . , Pn. Each invocation of π within a party is defined as a session, and each party
may have multiple sessions running concurrently. The communications network is controlled by
an adversary Aπ, which schedules and mediates all sessions between the parties. When first in-
voked within a party, π calls an initialization function that returns any information needed for the
bootstrapping of the cryptographic authentication functions (e.g. private keys and authentic distri-
bution of other parties’ public keys). After this initialization stage, the party waits for activation.
Aπ may activate a party Pi by means of a send(πsi,j , λ) request where λ is an empty message1. This
request instructs Pi to commence a session with party Pj . In response to this request Pi outputs a
message m intended for party Pj . s is a session identifier unique amongst all sessions between Pi
and Pj . In this paper, where we only consider one-pass key establishment, we define the session-id
as the tuple (Pi, Pj ,m), where m is the unique message sent by Pi to Pj . The adversary activates
the receiver Pj with an incoming message using the request send(πsj,i,m).
Aπ is responsible for transmitting messages between parties, and may fabricate or modify mes-

sages when desired. Upon activation, the parties perform some computations and update their
internal state. Two sessions are said to be matching sessions if their session-ids are identical.

In addition to the activation of parties, Aπ can perform the following queries.

1. corrupt(Pi). With this query Aπ learns the entire current state of Pi including long-term
secrets, session internal state and unexpired session keys. From this point on, Aπ may issue

1Here we use the notation of Bellare and Rogaway [16] rather than the original notation of CK model, which uses
a query named establish-session to achieve the same result.

4

any message in which Pi is specified as the sender and play the role of Pi. The adversary is
allowed to replace the public key of a corrupted user by any value of its choice.

2. session-key(πsi,j). This query returns the unexpired session key (if any) accepted by Pi during
a given session s with Pj .

3. session-state(πsi,j). This query returns all the internal state information of party Pi associated
to a particular session s with Pj ; the state information does not include the long term private
key.

4. session-expiration(πsi,j). This query can only be performed on a completed session. It is used
for defining forward secrecy and ensures that the corresponding session key is erased from
Pi’s memory. The session is thereafter said to be expired;

5. test-session(πsi,j). To respond to this query, a random bit b is selected. If b = 0 then the session
key is output. Otherwise, a random key is output chosen from the probability distribution of
keys generated by the protocol. This query can only be issued to a session that has not been
exposed. A session is exposed if the adversary performs any of the following actions:

• a session-state or session-key query to this session or to the matching session, or

• a corrupt query to either partner before the session expires at that partner.

Security is defined based on a game played by the adversary. In this game Aπ interacts with
the protocol. In the first phase of the game, Aπ is allowed to activate sessions and perform corrupt,
session-key, session-state and session-expiration queries as described above. The adversary then
performs a test-session query to a party and session of its choice. The adversary is not allowed to
expose the test-session. Aπ may then continue with its regular actions with the exception that no
other test-session query can be issued. Eventually, Aπ outputs a bit b′ as its guess on whether the
returned value to the test-session query was the session key or a random value, then halts. Aπ wins
the game if b = b′. The definition of security is as follows.

Definition 1. A key establishment protocol π is called session key (SK-) secure with forward secrecy
if the following properties are satisfied for any adversary Aπ.

1. If two uncorrupted parties complete matching sessions then they both output the same key.

2. The probability that Aπ guesses correctly the bit b is no more than 1
2 plus a negligible function

in the security parameter.

We define the advantage of Aπ to be twice the probability that Aπ wins, minus one. Hence the
second requirement will be met if the advantage of Aπ is negligible.

As discussed by Krawczyk [10] it is impossible to achieve forward secrecy in less than three
rounds with any protocol authenticated via public keys and without previously established shared
state between the parties. With one-pass key establishment, using public keys and with no previous
shared secret state, the best that can be achieved is sender forward secrecy, whose definition is the
same as above, except that sessions can only be expired at the sender. Canetti and Krawczyk also
provide a definition of SK-security without forward secrecy, where the adversary is not allowed to
expire sessions at all.

5

As mentioned above, for the one-pass key establishment protocols in this paper we define the
session-id to be the concatenation of the identities of the peers and the unique message sent in that
session. This formulation of session-id prevents the adversary from replaying the message from one
protocol in a different session since the model insists that each session has a unique session-id. This
may be seen as an artificial way of preventing replay attacks which are an inherent limitation of
one-pass key establishment protocols: in reality an adversary can simply replay the single message
of the protocol and it will be accepted by the recipient unless it includes some time-varying value.
This situation could be addressed by including a time-stamp to uniquely identify a session, and
assuming that all parties have access to a universal time oracle [17]. We do not explore that
approach further in this paper.

2 Security Definitions

We now present definitions of security for signcryption schemes that complement those of Baek
et al. [12]. We then extend these definitions to arrive at new notions of security for signcryption
KEMs in the multi-user setting.

2.1 New security notions for signcryption

A signcryption scheme SC is specified by five polynomial-time algorithms: common-key-gen, sender-
key-gen, receiver-key-gen, signcryption and unsigncryption.

common-key-gen: is a probabilistic polynomial time (PPT) algorithm that takes the security pa-
rameter k as input and outputs the common/public parameters params used in the scheme.
These parameters include description of the underlying groups and hash functions used.

sender-key-gen: is a PPT algorithm that takes params as input and outputs the sender’s public-
private key pair (pks, sks) used for signcryption.

receiver-key-gen: is a PPT algorithm that takes params as input and outputs the receiver’s public-
private key pair (pkr, skr) used for unsigncryption.

signcryption: is a PPT algorithm that takes params, a sender’s private key sks, a receiver’s public
key pkr and message m to be signcrypted as input. It returns a signcryptext C.

unsigncryption: is a deterministic polynomial-time algorithm that takes params, a sender’s public
key pks, a receiver’s private key skr and a signcryptext C as input. It outputs either a
plaintext m or an error symbol ⊥.

For SC to be considered valid it is required that unsigncryption(pks, skr, signcryption(sks, pkr,m)) =
m for all sender key pairs (pks, sks) and receiver key pairs (pkr, skr).

For all the security notions defined in this paper we distinguish two users Alice and Bob as
sender and receiver respectively. Depending on the notion of security one of these users, or both,
will be adversary’s target.

We define insider and outsider security for signcryption schemes in the multi-user setting based
on the discussion given by An et al. [3]. It is natural to consider the security of a signcryption
scheme in the multi-user setting where Alice can signcrypt messages for any user including Bob,
and any user including Alice can signcrypt messages for Bob. Hence, in this model the adversary

6

is given the power to obtain signcryptions of Alice created for any user through a flexible signcryp-
tion oracle (FSO). Similarly, the adversary is also given access to a flexible unsigncryption oracle
(FUO) that unsigncrypts a given signcryptext created for Bob by any user. Because of these addi-
tional adversarial powers, security in the two-user setting does not imply security in the multi-user
setting [12].

In any signcryption scheme users employ a private key for two purposes: for signcrypting
messages sent to other users and for unsigncrypting messages received from other users. The
private keys used for each of these purposes, along with their corresponding public keys, may be
the same or they may be different. This is much the same as the option to use the same, or different,
keys for decryption and for signing. In keeping with common practice we will assume that each key
pair is used for a single purpose. Therefore we specify that all users have two different key pairs
for signcryption and for unsigncryption. In contrast, An et al. [3] assumed that a single key pair is
used for both signcryption and unsigncryption. Their security model therefore requires giving the
adversary access to additional oracles for unsigncrypting by Alice and signcrypting by Bob. To the
same end, our model allows the receiver key pair of Alice and sender key pair of Bob to be given
to the adversary.

Baek et al. [12] defined only outsider security for confidentiality and insider security for unforge-
ability in the multi-user setting. In this section we make the desired security notions for signcryption
complete by defining insider security for confidentiality and outsider security for unforgeability in
the multi-user setting. We assume that the challenger fixes the set of users {U1, . . . , Un} and their
key pairs before its interaction with the adversary2. Note that the security notions defined by Baek
et al. [12] implicitly assume the same. The adversary is given all the public keys of the users initially
so that it can choose the public keys from the given set when accessing the oracles. One can relax
this restriction in our definitions by allowing the adversary to query the FSO and/or FUO with
arbitrarily chosen public keys.

Let (pkA, skA) be the public-private key pair used by Alice for signcryption and let (pkB, skB)
be the public-private key pair used by Bob for unsigncryption. The behaviour of Alice’s FSO and
Bob’s FUO is described below:

FSO: On the input (pkr,m), FSO returns a signcryptext C generated using skA and the public
key pkr on the message m. The adversary may choose Bob’s public key pkB as the receiver
public key, i.e., pkr = pkB.

FUO: On the input (pks, C), FUO returns a plaintext m or a ⊥ symbol after performing unsign-
cryption on C using skB and the public key pks. The adversary may choose pks to be the
public key of Alice i.e. pks = pkA.

For the sake of completeness, we first present our new definition for insider confidentiality and
then briefly describe the definition for outsider confidentiality given by Baek et al. [12]. Similarly,
we present our new definition for outsider unforgeability and then strengthen the definition for
insider unforgeability given by Baek et al. [12].

Insider confidentiality An insider adversary ACCA against confidentiality of SC is assumed
to have knowledge of all key pairs except Bob’s private key used for unsigncryption. The goal of

2This can be seen as a way of preventing the adversary from registering replaced public keys with the certifying
authority for a particular user.

7

ACCA is to break the confidentiality of messages signcrypted for Bob by any user. ACCA can issue
FUO(pks, C) for any sender’s public key pks and a signcryptext C. Alice’s FSO can be simulated
by ACCA itself with its knowledge of the corresponding private key. We define this security notion
as FUO-IND-CCA2 that simulates chosen ciphertext attacks against SC.

• Challenge Phase: After adaptively asking the FUO queries, ACCA outputs two equal length
messages m0, m1 and a public key pks′ and submits them to the challenger. The challenger
chooses b ∈R {0, 1} and gives ACCA a challenge signcryptext C∗ created on mb using the
private key sks′ corresponding to pks′ and Bob’s public key pkB.

ACCA can continue asking the FUO queries except the trivial FUO(pks′ , C∗). However, an FUO
query on C∗ using a public key pks 6= pks′ is still allowed.

• Guess Phase: Finally, ACCA outputs a bit b′ and wins the game if b′ = b.

The advantage of ACCA in winning the FUO-IND-CCA2 game is:

AdvACCA,SC
def
= 2 · Pr[b′ = b]− 1

Outsider confidentiality An adversary against outsider confidentiality of SC is assumed to
know all private keys except Alice’s private key used for signcryption and Bob’s private key used for
unsigncryption. The goal of the adversary in this notion is to break the confidentiality of messages
signcrypted by Alice for Bob. The outsider confidentiality notion FSO/FUO-IND-CCA2 [12] gives
the adversary access to both FSO and FUO. After adaptively asking the FSO and FDO queries,
the challenge and guess phases are carried on as described above. The advantage of the adversary
in winning the FSO/FUO-IND-CCA2 game is also defined in the same way as above.

Outsider unforgeability An outsider adversary ACMA against unforgeability of SC is assumed
to know all private keys except Alice’s private key used for signcryption and Bob’s private used
for unsigncryption. The goal of ACMA is to forge a valid signcryptext created by Alice for Bob.
ACMA is given access to both FSO and FUO.

After querying the FSO and FUO adaptively, ACMA outputs a forgery C∗. A weak (conven-
tional) notion of unforgeability requires C∗ to be a valid signcryption created by Alice for Bob on
a new message m∗ i.e. m∗ was never queried to FSO. For the notion of strong unforgeability C∗

has to be a valid signcryption of Alice created for Bob on a message m∗ such that C∗ was never
an output of FSO, although FSO(m∗, pkr) might have been issued earlier, even for pkr = pkB. We
call this notion FSO/FUO-sUF-CMA for strong unforgeability against chosen message attacks by
ACMA. The advantage of ACMA in winning the FSO/FUO-sUF-CMA game is the probability of
ACMA outputting such a C∗.

Insider unforgeability An adversary against insider unforgeability of SC is assumed to know
all the private keys except Alice’s private key used for signcryption. The goal of adversary in this
notion is to produce a valid forgery of a signcryptext created by Alice for any other user. The
insider unforgeability notion FSO-UF-CMA [12] gives the adversary access to FSO, as FUO can
be simulated by the adversary itself. After querying the FSO adaptively, the adversary outputs
a forgery (C∗, pk∗r) for any receiver’s public key pk∗r . The FSO-UF-CMA notion does not require
the message m∗ to be new although only FSO(m∗, pkr), for pkr 6= pk∗r queries are allowed. We
strengthen this notion to FSO-sUF-CMA by allowing FSO(m∗, pkr) even for pkr = pk∗r .

8

2.2 New security notions for signcryption KEM

A signcryption KEM SK is specified by five polynomial-time algorithms: common-key-gen, sender-
key-gen, receiver-key-gen, encapsulation and decapsulation. The algorithms common-key-gen, sender-
key-gen and receiver-key-gen are the same as those defined in Section 2.1. The sender’s key pair
(pks, sks) and the receiver’s key pair (pkr, skr) are now used for encapsulation and decapsulation
respectively.

encapsulation: is a PPT algorithm that takes params, a sender’s private key sks and a receiver’s
public key pkr as input. It returns the pair (K,C), where, K is a symmetric key and C is its
encapsulation.

decapsulation: is a deterministic polynomial-time algorithm that takes params, a sender’s public
key pks, a receiver’s private key skr and an encapsulation C. It outputs either a symmetric
key K or an error symbol ⊥.

For SK to be valid it is required that if (K,C) = encapsulation(sks, pkr), then decapsulation(pks, skr, C) =
K for all sender key pairs (pks, sks) and receiver key pairs (pkr, skr).

Dent [8, 6, 9] defined both insider and outsider security notions for signcryption KEMs in the
two-user setting. He also provided an informal description of how to define security for signcryption
KEMs in the multi-user setting [8]. Recently, Yoshida and Fujiwara [18] defined security notion
for signcryption Tag-KEMs in the multi-user setting. Here, we present new notions of security for
signcryption KEMs in the multi-user setting building on the definitions in Section 2.1.

In the security model for a signcryption KEM in the multi-user setting the adversary is given
the power to obtain encapsulations of Alice created for any user through a flexible encapsulation
oracle (FEO). The adversary is also given access to a flexible decapsulation oracle (FDO) that
decapsulates a given encapsulation created for Bob by any user. Let (pkA, skA) be the public-
private key pair used by Alice for encapsulation and let (pkB, skB) be the public-private key pair
used by Bob for decapsulation.

The challenger initially fixes the set of users {U1, . . . , Un} and their key pairs. The adversary is
given all the public keys of the users initially so that it can choose the public keys from the given
set when accessing the oracles. The behaviour of Alice’s FEO and Bob’s FDO is described below.

FEO: On receiving pkr, FEO returns a pair (K,C), where C is an encapsulation of K generated
using skA and pkr. The adversary may choose pkB as the receiver’s public key, i.e., pkr = pkB.

FDO: On receiving (pks, C), FDO returns a symmetric key K or a ⊥ symbol after performing
decapsulation on C using skB and pks. The adversary may choose pkA as the sender’s public
key i.e. pks = pkA.

Insider confidentiality An insider adversary ACCA against confidentiality of SK is assumed to
have knowledge of all key pairs except Bob’s private key used for decapsulation. The goal of ACCA
is to break the confidentiality of encapsulations created for Bob by any user. It is given access only
to FDO as the oracle FEO can be simulated with the knowledge of Alice’s private key used for
encapsulation. We call this notion of security FDO-IND-CCA2.

• Challenge Phase: After adaptively asking the FDO queries, ACCA outputs a public key pks′ .
The challenger generates a valid symmetric key, encapsulation pair (K0, C

∗) using the private

9

key sks′ corresponding to pks′ and Bob’s public key pkB. It selects a key K1 randomly
from the symmetric key distribution. It then chooses b ∈R {0, 1} and gives (Kb, C

∗) as the
challenge.

ACCA can continue its execution except asking the FDO(pks′ , C∗) query that trivially decides the
guess. However, an FDO query on C∗ using a public key pks 6= pks′ is still allowed.

• Guess Phase: Finally, ACCA outputs a bit b′ and wins the game if b′ = b.

The advantage of ACCA in winning the FDO-IND-CCA2 game is

AdvACCA,SK
def
= 2 · Pr[b′ = b]− 1

Outsider confidentiality For outsider confidentiality the adversary is assumed to know all the
private keys except Alice’s private key used for encapsulation and Bob’s private key used for decap-
sulation. The goal of the adversary in this notion is to break the confidentiality of encapsulations
created by Alice for Bob. The adversary must be given access to both FEO and FDO. We call this
notion FEO/FDO-IND-CCA2. After adaptively asking the FEO and FDO queries, the challenge
and guess phases are carried on as described above. The advantage of an adversary in winning the
FEO/FDO-IND-CCA2 game is also defined in the same way as above.

Outsider unforgeability An outsider adversary ACMA against unforgeability of SK is assumed
to know all private keys except Alice’s private key used for encapsulation and Bob’s private used
for decapsulation. The goal of ACMA is to forge a valid symmetric key and encapsulation pair
(K∗, C∗) such that C∗ is an encapsulation of K∗ created by Alice for Bob. It is given access to
both FEO and FDO.

After querying FEO and FDO adaptively, ACMA produces a forgery (K∗, C∗). It wins the game
if decapsulation(pkA, skB, C∗) = K∗ 6= ⊥. The trivial restriction for (K∗, C∗) to be considered valid
is that (K∗, C∗) was never an output of FEO. We call this notion FEO/FDO-sUF-CMA for strong
unforgeability against outsider attacks. The advantage of ACMA in winning the FEO/FDO-sUF-
CMA game is the probability of ACMA outputting such a (K∗, C∗).

Insider unforgeability An insider adversary against unforgeability of SK is assumed to know all
the private keys except Alice’s private key used for encapsulation. The goal of the adversary in this
notion is to forge a valid encapsulation created by Alice to any other user. It is given access only to
FEO as all keys for decapsulation are known to the adversary. We call this notion FEO-sUF-CMA
for strong unforgeability against insider attacks. After adaptively querying the FEO, the adversary
outputs a forgery (K∗, C∗, pk∗r). It wins the FEO-sUF-CMA game if decapsulation(pkA, sk∗r , C

∗) =
K∗ 6= ⊥. The trivial restriction for (K∗, C∗, pk∗r) to be considered valid is that (K∗, C∗) was never
an output of FEO. The advantage of the adversary in winning the FEO-sUF-CMA game is the
probability of outputting such a (K∗, C∗, pk∗r).

2.3 On the unforgeability notion for signcryption KEMs

Dent [6] defined a different notion, called Left-or-Right (LoR) security, for outsider unforgeability of
signcryption KEMs. He showed that an adversary that can output a valid forgery (K∗, C∗) under
the notion described in the previous section can be efficiently turned into another adversary that

10

can win the LoR game. Dent pointed out that LoR security is a strong requirement for outsider
secure signcryption KEMs. An outsider secure signcryption KEM under our definition can be
combined with an outsider secure signcryption DEM in the notion defined by Dent [6] to achieve
an outsider secure hybrid signcryption scheme. However, this composition may not yield a tight
reduction when compared to the hybrid signcryption scheme that is composed of an LoR secure
signcryption KEM and an outsider secure signcryption DEM. In our generic constructions we show
that our notion FEO/FDO-sUF-CMA is enough when relating one-pass key establishment protocols
with signcryption KEMs. One may still use an LoR secure signcryption KEM to derive a one-pass
key establishment protocol, as LoR security guarantees security under the FEO/FDO-sUF-CMA
notion.

We emphasise that an insider secure hybrid signcryption scheme can never be guaranteed using
the definition of insider unforgeability for signcryption KEM described in the previous section.
Dent [9] described the impossibility of achieving an insider secure hybrid signcryption scheme by
generic composition of such a signcryption KEM and an insider secure signcryption DEM. The dif-
ficulty is that a signcryption KEM that generates symmetric keys and encapsulations independent
of the message to be signcrypted cannot provide the non-repudiation service and thus cannot be
insider secure. But our definitions of security for insider security of signcryption KEMs are still use-
ful when one observes their connection with one-pass key establishment protocols. A signcryption
KEM that is insider confidential in our definition can be used to derive a one-pass key establish-
ment protocol that provides sender forward secrecy. Similarly, we speculate that a signcryption
KEM that is insider unforgeable in our definition can be turned into a one-pass key establishment
protocol that provides resistance to key compromise impersonation (KCI) attacks even when the
receiver’s private key is compromised. The latter observation is yet to be explored formally.

3 Outsider secure signcryption KEMs

Dent [6] proposed an outsider secure signcryption KEM called elliptic curve integrated signcryption
scheme KEM (ECISS-KEM1) based on the ECIES-KEM [19]. A potential problem with the ECISS-
KEM1 was identified by Dent who then proposed an improvement that is claimed to overcome this
problem, but without a proof of security. Both the schemes are described below.

3.1 ECISS-KEM1

Let (G,P, q) be the system parameters, where G is a large additive cyclic group of prime order
q and P is an arbitrary generator of G. Let (Ps = sP, s) and (Pr = rP, r) be the public-private
key pairs of the sender and receiver respectively, where s, r ∈R Z∗q . ECISS-KEM1 is described in
Figure 1. The scheme uses a hash function that outputs a key of desired length. ECISS-KEM1
is proven secure by Dent in the two-user setting against outsider security (for both confidentiality
and integrity) assuming the hardness of CDH problem.

3.2 Potential problems with ephemeral data

Dent discussed a potential weakness with the scheme ECISS-KEM1 as follows. If an attacker is
ever to obtain sPr+tP (through a temporary break-in), the component sPr can be recovered easily.
This means that the adversary can indefinitely impersonate the sender.

11

• Encapsulation

1. Choose an element t ∈R Z∗q
2. Set K = Hash(sPr + tP)

3. Set C = tP

4. Output (K,C)

• Decapsulation

1. Set K = Hash(rPs + C)

2. Output K

Figure 1: ECISS-KEM1

It is interesting that Dent identified this as a problem even though it is not recognised as one
by any of the current security models for signcryption. On the other hand, we can see that this
capability of the adversary to obtain ephemeral protocol data has already been known in the key
establishment models for many years. If the KEM is used to build a one-pass key agreement
protocol, then in the Canetti–Krawczyk model described in Section 1.2 the session-state query
allows the adversary to obtain sPr + tP and hence break the protocol.

We would argue that the plausibility of such an attack, as well as its consequences, are equally
valid for a signcryption KEM as for a key establishment protocol. Therefore we suggest that
session-state queries can be usefully added to the signcryption security model to give a useful
stronger notion of security. The feasibility of session-state queries will certainly vary according to
the application scenario. Factors that might influence the feasibility include the security of storage
during processing and the quality of practical random number generators. It may be argued that
applications such as signcryption or one-pass key establishment are of limited vulnerability to
session-state queries since local values can be erased immediately once they are used. In contrast,
two-pass protocols often require some ephemeral values to be stored until interaction with a protocol
peer are completed.

3.3 ECISS-KEM2

Having recognised the problem with ECISS-KEM1, Dent proposed another signcryption KEM
(ECISS-KEM2). The system parameters, key pairs and hash function are the same as those in
ECISS-KEM1. The symmetric key in the encapsulation algorithm of ECISS-KEM2 is computed as
K = Hash(sPr + tPr) and its encapsulation is C = tP . Given an encapsulation, the symmetric key
can be recovered using the deterministic decapsulation algorithm as K = Hash(rPs + rC).

Dent argued that even if an attacker discovers the value sPr + tPr, it would help in recovering
only a single message for which the hashed material is used to produce the symmetric key. This
is because it is not easy to compute sPr from the discovered value and C. Although the security
of the scheme is stated informally, Dent claimed that a proof can be given with a non-standard
security assumption. However, the attack below enables an active adversary to impersonate the
sender to any receiver indefinitely.

Attack on ECISS-KEM2 An active adversary calculates C∗ as P − Ps and sends it to the
receiver as a message from a sender with the public key Ps. This forces the receiver to compute

12

• Encapsulation

1. Choose C ∈R G
2. Set K = Hash(Ŝ, R̂, sPr + C)

3. Output (K,C)

• Decapsulation

1. Set K = Hash(Ŝ, R̂, rPs + C)

2. Output K

Ŝ, R̂ represent the identities of the sender S and receiver R respectively.

Figure 2: ECISS-KEM1 in the multi-user setting

shared key as K = Hash(rPs+rC∗) = Hash(rsP+r(P−sP)) = Hash(rsP+rP−rsP) = Hash(Pr),
which can easily be computed by the adversary. Now, the adversary can use a DEM along with
ECISS-KEM2 and signcrypt messages as having come from the original sender. The attack is
possible because the random element chosen in the encapsulation algorithm and the static private
key of the sender are not combined in a way that makes eliminating them from the hashed material
difficult. This attack directly violates the Left or Right security defined by Dent for outsider
unforgeability.

3.4 ECISS-KEM1 in multi-user setting

We slightly modify ECISS-KEM1 to work in a multi-user environment as shown in Figure 2. This
new version has the same potential problems described in Section 3.2. As suggested by An et al.
[3], the identities of the users are now embedded in the encapsulation and decapsulation processes.

Theorem 1. ECISS-KEM1 in the multi-user setting is secure in the outsider unforgeability notion
in the random oracle model assuming hardness of the Gap Diffie Hellman (GDH) problem in G.

Theorem 2. ECISS-KEM1 in the multi-user setting is secure in the outsider confidentiality notion
in the random oracle model assuming hardness of the GDH problem in G.

The proof of Theorem 1 is provided in Appendix A. The proof of Theorem 2 is very similar to
that of Theorem 1 and we omit the details.

4 Signcryption KEM from one-pass key establishment

This section first discusses how a one-pass key establishment protocol π can be used as a signcryp-
tion KEM SK. A proof of the generic construction is also provided.

The session key computed by a sender in π can be used as the symmetric key of SK. The
outgoing message of π becomes the encapsulation of the key. The session key computation process
at the receiver end in π can be used as the decapsulation algorithm to retrieve the symmetric key.

Theorem 3. If π is a one-pass key establishment protocol SK-secure with sender forward secrecy in
the CK model, then it can be used as a signcryption KEM that is secure in the insider confidentiality
and outsider unforgeability notions.

13

Proof. To prove the theorem it is enough if we show that if SK is not secure in the insider con-
fidentiality or outsider unforgeability notion, then π is also not secure in the CK model. Given
an adversary ACCA against insider confidentiality or ACMA against outsider unforgeability with
non-negligible advantage, we construct an adversary Aπ against SK-security of π in the CK model
that can distinguish a real session key from a random number in polynomial time.

Constructing Aπ from ACMA: We start by assuming the existence of ACMA against outsider
unforgeability, with a non-negligible advantage εu. Then, we prove that Aπ can distinguish
a real session key from a random value with the same advantage using ACMA as subroutine.
The running time of Aπ is t1 ≤ tu + (nfeo + nfdo)(ts + tk), where tu is the time required for
ACMA to forge SK, nfeo and nfdo are the number of FEO and FDO queries issued by ACMA

respectively and ts and tk are the response times for send and session-key queries respectively.
The view of ACMA is simulated as below:

Aπ allows ACMA to choose two users UA and UB from a set of users {U1, . . . , Un}. It then
corrupts all the parties except UA and UB and gives their key pairs to ACMA. This enables
ACMA to choose public keys from the given set when accessing UA’s FEO and UB’s FDO.
The queries asked by ACMA are answered as below:

• FEO Queries: For an FEO query asked by ACMA with input pkj , the adversary Aπ
initiates a session by issuing a send(πsA,j , λ) query and obtains the parameter C computed
by the oracle πsA,j . It then issues a session-key(πsA,j) query to get the session key K

accepted in that session. The pair (K,C) is returned to ACMA.

• FDO Queries: On an FDO query with the input (pki, C), Aπ issues a send(πsB,i, C). It
then issues a session-key(πsB,i) query and returns the accepted session key K to ACMA.
It returns a ⊥ symbol if there is no key accepted in the session.

Answering the challenger: ACMA finally outputs a forgery (K∗, C∗) such that C∗ is a valid
encapsulation of K∗ created by UA for UB. Aπ now establishes a fresh session between UA and
UB, by issuing send(πtB,A, C

∗) and chooses it as the test session. The challenger computes the
session key K0 of the test session and selects a random value K1 from session key distribution.
It then chooses b ∈R {0, 1} and gives Kb to Aπ. Aπ outputs its guess as 0 if Kb = K∗ or 1
otherwise.

For ACMA to be successful it has to forge a valid encapsulation of UA created for UB i.e. be-
tween any two users that were chosen initially. As explained above, Aπ always wins whenever
ACMA outputs such a forgery by establishing a test session between those two users. Hence,
the advantage of Aπ constructed from ACMA is

Advπ1 (k) = εu (1)

For each FEO or FDO query, Aπ has to establish a session through a send query and retrieve
the session key through a session-key query. Hence, the running time of Aπ is bounded by
t1 ≤ tu + (nfeo + nfdo)(ts + tk).

Constructing Aπ from ACCA: Now, we assume that there exists ACCA against insider confi-
dentiality with a non-negligible advantage εc. Using ACCA as subroutine, we construct an
adversary Aπ that can distinguish real session key from a random value with an advantage of

14

at least εc
(n−1) . The running time of Aπ is t2 ≤ tc +nfdo(ts + tk), where tc is the running time

of ACCA, nfdo is the number of FDO queries issued by ACCA and ts and tk are the response
times for send and session-key queries respectively.

Aπ allows ACCA to select a user UB from the set of users {U1, . . . , Un}. The aim of ACCA is
to break the confidentiality of an encapsulation created for UB by any other user.

Aπ now initiates a session πtA,B between UB and any other user UA, by issuing a send(πtA,B, λ)
query. It obtains the outgoing parameter C∗ and establishes a matching session by issuing
a send(πtB,A, C

∗) query. Aπ chooses either πtA,B or πtB,A as the test session. The challenger
selects b ∈R {0, 1} and gives real session key computed in the test session if b = 0 or a random
value chosen from session key distribution otherwise. Let Kb be the value returned to Aπ.
Aπ now issues a session-expiration(πtA,B) query, which ensures that the key computed in that
session is erased.

Aπ corrupts all the users (including UA) except UB and gives the key pairs to ACCA. It is
now ready to answer the queries asked by ACCA:

• FDO Queries: When a decapsulation query is asked with the input (pki, C), Aπ initiates
a session through send(πsB,i, C) query. It then issues a session-key(πsB,i) and obtains the
session key K generated in that session and returns it to ACCA. It returns a ⊥ symbol
if there is no key accepted in the session.

Answering the challenger: After adaptively asking the FDO queries ACCA outputs a public
key pks′ . If pks′ 6= pkA, Aπ aborts its execution. Otherwise, it gives (Kb, C

∗) as the challenge
to ACCA. ACCA may continue to ask the FDO queries except the trivial one with input
(pkA, C∗). It finally returns a bit θ as its guess with an advantage εc. Incase θ = 0, Aπ
outputs b = 0, which implies C∗ is a valid encapsulation of Kb and thus Kb is a real session
key. Aπ outputs b = 1 otherwise.

ACCA becomes successful if it can break the confidentiality of an encapsulation created for
the initially chosen UB by any other user. Aπ wins its game with non-negligible advantage
only if ACCA outputs pks′ = pkA in the challenge phase i.e. the public key of the user UA
selected by Aπ. This occurs with the probability 1

(n−1) . Hence, the advantage of Aπ when
constructed from ACCA is

Advπ2 (k) ≥ εc
(n− 1)

(2)

For each FDO query asked by ACCA, Aπ has to establish a session through a send query
and retrieve the session key through a session-key query. Hence, the running time of Aπ is
bounded by t2 ≤ tc + nfdo(ts + tk).

From (1) and (2), the advantage of Aπ when constructed from ACMA or ACCA is Advπ(k) ≥
min{Advπ1 (k), Advπ2 (k)}, which is non-negligible. The running time of such Aπ with the advantage
Advπ(k) is tπ ≤ max{t1, t2}. But, as the protocol π is secure in the CK model Advπ(k) must be
negligible. This is a contradiction to the construction of Aπ from ACMA or ACCA. Hence, there
exists no such ACMA or ACCA that has non-negligible advantage against SK

Note that, if π does not provide sender forward secrecy, then the resulting SK will be outsider
secure for both confidentiality and unforgeability notions.

15

• Encapsulation

1. Choose t ∈R Z∗q
2. Set C = tP

3. Set h = H(C, (Â||B̂))

4. Set K = Hash((t+ sh)Pr)

5. Output (K,C)

• Decapsulation

1. Set h = H(C, (Â||B̂))

2. Set K = Hash (r(C + hPs))

3. Output K

Figure 3: New Signcryption KEM

Confidentiality Unforgeability Efficiency
Outsider Insider Outsider Insider Encap. Decap.

ECISS-KEM1 [6] Y N Y N 2 Exp 1 Exp
ECISS-KEM2 [6] broken

Dent [9] Y N Y Y 1 Exp 2 Exp
Bjørstad and Dent [13] Y N Y Y 1 Exp 2 Exp

Our new KEM Y Y Y N 2 Exp 1.5 Exp

Table 1: Security and efficiency comparisons with existing signcryption KEMs

4.1 New signcryption KEM from the one-pass HMQV

The one-pass HMQV protocol proposed by Krawczyk [10] can be used as a signcryption KEM
secure in the insider confidentiality and outsider unforgeability notions. This new signcryption
KEM between the parties A and B in the multi-user setting is presented in Figure 3. Apart from
the system parameters used for ECISS-KEM1 described in Section 3.1, a new hash function H
defined as H : G× {0, 1}∗ → Z∗q is used.

4.2 Security of the new KEM

Krawczyk [10] proved the one-pass HMQV secure in the CK model. Its security is based on the
XCR signature, whose security was also proven by Krawczyk in the random oracle model assuming
the hardness of the CDH problem. By combining this result with Theorem 3, it follows that the
new signcryption KEM is secure in the insider confidentiality and outsider unforgeability notions.

Table 1 compares the new signcryption KEM with existing signcryption KEMs in terms of
security and efficiency. The security notions considered are insider and outsider security for both
confidentiality and unforgeability. The efficiency is measured by number of group exponentiations
required in encapsulation and decapsulation algorithms. The new signcryption KEM is the only
one that has insider security for confidentiality. It achieves this forward secrecy with an additional
half-length exponentiation3 compared to the ECISS-KEM1 in the decapsulation algorithm. Unlike
the ECISS-KEM1, the discovery of ephemeral data by an adversary in the new signcryption KEM

3Krawczyk [10] showed that the length of h = q
2

provides the right performance-security trade-off.

16

leads to compromise of only one particular communication. Moreover, the notions of security
considered for all other signcryption KEMs are in the two-user setting, whereas the security of the
new signcryption KEM is treated in the multi-user setting.

5 One-pass key establishment from signcryption KEM

We now consider the generic construction in the other direction. We first discuss how a signcryption
KEM SK can be used as a one-pass key establishment protocol π. The security requirements of
SK that can be used are first stated and a formal construction of π from SK is then presented.

When SK is used as π, the encapsulation algorithm of SK becomes the session key computation
process by the sender in π. The generated symmetric key serves as the session key and the encap-
sulation of the symmetric key as the outgoing message to the receiver. The receiver can compute
the same session key by executing the decapsulation algorithm on the incoming message.

For SK to be suitable to be used as a one-pass key establishment protocol it should be secure
in the insider confidentiality and outsider unforgeability notions. Security in these notions enables
the resulting protocol to have SK-security with sender forward secrecy in the CK model. For the
reasons discussed in Section 3.2 security against compromise of ephemeral data is not guaranteed
for π. Therefore the adversary is not allowed to have access to the session-state query.

Theorem 4. If a signcryption KEM is secure in the insider confidentiality and outsider unforge-
ability notions, then it can be used as a one-pass key establishment protocol π that is SK-secure
with sender forward secrecy in the CK model (without session-state queries).

Proof. The truth value of the above theorem is the same as the statement: if π is not secure in
the CK model, then SK is not secure in either insider confidentiality or outsider unforgeability
notion. Hence, it is enough to show that given an adversary Aπ against π that can distinguish a
real session key from a random number with advantage ε, then either ACMA or ACCA against SK
can be constructed with advantage ε′ ≥ ε in polynomial time.

The proof is divided into two parts. In the first part ACMA is constructed with non-negligible
advantage only if an event Forgery (explained later) occurs. In the second part ACCA is constructed
from Aπ with non-negligible advantage if the event Forgery does not occur.

Let {U1, U2, ..., Un} be set of n users and assume each user is activated at most m times by Aπ,
where n and m are polynomials in the security parameter.

Constructing ACMA from Aπ: We assume the existence of Aπ that can distinguish a real session
key from a random value in time tf . We then construct ACMA within time t1 ≤ tf +m(n−
1)(tfeo + 2 · tfdo), where tfeo and tfdo are the response times for the FEO and FDO queries
respectively.

The input to ACMA consists of the sender and receiver public keys pkA and pkB of two users
UA and UB from the set of n users {U1, . . . , Un} respectively. Its aim is to produce (K∗, C∗)
where C∗ is a valid encapsulation of K∗ under skA and pkB, using Aπ as subroutine. The
input of ACMA also contains key pairs of each of the n parties in the protocol, except the
sender’s private key skA of UA and receiver’s private key skB of UB for whom only the
corresponding public keys are given. ACMA wins its game only if the target session chosen
by Aπ is a session between UA and UB. All the queries from Aπ that do not concern UA
and UB can be answered directly by ACMA which knows the private keys of the users. For

17

queries that require the knowledge of skA and skB, ACMA uses its own oracles and returns
the messages produced to Aπ as described below.

• send: When a send(πsA,j , λ) query is asked, ACMA queries its FEO with the input pkj and
obtains (K,C). It then returns C to Aπ as the outgoing message and keeps (s,A, j,K,C)
in its encapsulation list LE . If Aπ issues send(πsB,i, C), ACMA queries its FDO with the
input (pki, C). If it obtains a symmetric key K from the challenger, ACMA marks the
oracle πsB,i as accepted and stores the value (s,B, i,K,C) in LE . If the output of the
FDO is ⊥ then the session is not accepted and the entry (s,B, i,⊥, C) is stored in LE .
The result of whether the session is accepted or not is made known to Aπ.

• session-key: For a session-key(πsi,j) query, it returns the key held in the session with
identifier s as follows: Since a session-key key reveal query is issued only on a session
that has an accepted session key, the session id s must have an entry in LE . ACMA

checks to see if there is an entry for (s, i, j) in LE and returns the corresponding key K
incase of a match. If there is no key stored in LE along with s, the session-key is not a
valid query.

• session-expiration: On the input πsi,j , ACMA deletes the entry with s from LE . There must
have been an entry in LE because session-expiration can be issued only on a completed
session.

• corrupt: When Aπ wishes to corrupt a party Ui (for i 6= A,B), ACMA fetches session
keys from LE that are generated by the oracles at Ui. It returns all these keys (if any)
along with Ui’s long term private key. ACMA outputs “fail” for a corrupt query on UA or
UB. Note that ACMA cannot return the internal state information for a corrupt query
for reasons discussed in Section 3.2.

Whenever, a send(πsB,A, C) is issued, ACMA first checks to see if there exists an entry
(s,A,B,K,C) in LE for some s and K. If there is an entry it just returns the message that the
session is accepted. Otherwise, it queries its FDO with the input (pkA, C). If the output of
FDO is ⊥ it returns the message that the session is not accepted. If FDO(pkA, C) = K∗ 6= ⊥,
ACMA outputs (K∗, C∗) as its forgery with C∗ = C.

Let Forgery be the event that Aπ issues a send(πsB,A, C
∗) such that C∗ is a valid encapsulation

under skA and pkB such that it was not the response of an earlier send(πsA,B, λ) query. Clearly,
ACMA wins its game only if the event Forgery occurs. If Aπ ends its run without choosing a
test session between UA and UB or if the event Forgery does not occur ACMA outputs “fail”.
The probability of Aπ choosing a test session that has UA as initiator and UB as responder
is 1

n(n−1) . Thus, the non-negligible advantage of ACMA is given as:

AdvCMA
A (k) ≥ Pr[Forgery]

n(n− 1)
(3)

For each send query to the oracle πsA,j , ACMA has to query the FEO and FDO oracles. The
maximum number of such queries involving UA can be m(n − 1). Similarly, for each send
query to πsB,i a query to FDO is made. The maximum possible number of such queries
involving UB is m(n − 1). Hence, ACMA can forge SK with the above advantage in time
t1 ≤ tf +m(n− 1)(tfeo + 2 · tfdo).

18

Constructing ACCA from Aπ: Now, we assume the existence of Aπ that can distinguish a real
session key from a random value in time td when the event Forgery does not occur. Using Aπ
as subroutine, we construct ACCA within time t2 ≤ td + (m(n− 1)− 1)tfdo, where tfdo is the
time required to get a response from FDO.

The input to ACCA consists of a receiver’s public key pkB of a user UB and the key pairs of
rest of users from the set {U1, . . . , Un}. The aim of ACCA is to break the confidentiality of
encapsulations created for UB by any other user using Aπ as subroutine.

ACCA returns a sender’s public key pkA of a user UA to its challenger. The challenger gives
(Kb, C

∗) to ACCA as the challenge computed as described in Section 2.2. ACCA chooses
t ∈R {1, . . . ,m}. With these choices ACCA is trying to guess Aπ’s choice of the target
session. It is now ready to simulate the view of Aπ.

Except for UB, the actions of rest of the uncorrupted users are performed by ACCA with
its knowledge of the corresponding private keys. For queries that require the knowledge of
receiver’s private key of UB, ACCA uses its own oracle.

• send: When Aπ issues a send(πsi,B, λ) query, ACCA generates (K,C), where C is encap-
sulation of K created by Ui as it knows the private key ski. It then returns C to Aπ
as the outgoing value and keeps (s, i, B,K,C) in its encapsulation list LE . If A issues
send(πsB,i, C), ACCA queries its FDO with the input (pki, C). If it obtains a symmetric
key K from the challenger, the session is accepted and the entry (s,B, i,K,C) is stored
in LE . If the output of FDO is ⊥, the session is not accepted and the entry (s,B, i,⊥, C)
is stored. The result of whether the session is accepted or not is made known to Aπ. The
t-th instantiation between UA and UB is handled in a special way as explained later.

• session-key: When a session-key(πsi,j) is issued, ACCA first checks to see if there is an
entry for (s, i, j) in LE and returns the corresponding key incase of a match. Otherwise,
the session-key is not a valid query.

• session-expiration:On the input πsi,j , ACCA deletes the entry with s from LE .

• corrupt: When Aπ wishes to corrupt a party Ui (for i 6= A,B), ACCA fetches session
keys from LE that are generated by the oracles at Ui. It returns all these keys (if any)
along with Ui’s long term private key. It aborts the simulation on a corrupt query on UA
or UB.

If a send(πtA,B, λ) query is issued, ACCA returns C∗ as the outgoing parameter. Now, Aπ can
choose the t-th session between UA and UB as its target session in one of following ways

• The session πtA,B itself or

• A matching session established by issuing send(πtB,A, C
∗) query.

Aπ can issue a corrupt(UA) only after a session-expiration(πtA,B). If it chooses the t-th session
between A and B as the test session as expected by ACCA, Kb is returned. Eventually, Aπ
halts with its guess θ. If θ = 0, ACCA outputs b = 0 implying that Kb is a real session key
and thus C∗ is an encapsulation of Kb. Otherwise b = 1 is returned.

If Forgery occurs Aπ may win its game without choosing the session in which the challenge
encapsulation C∗ is injected, as the test session. In this case ACCA gets no advantage. Hence,

19

if the event Forgery occurs or if Aπ chooses a different session other than the one expected by
ACCA as test session, ACCA outputs a random bit b with a probability 1

2 .
The probability of Aπ choosing a session t that has UA as initiator and UB as responder is

1
mn(n−1) . The non-negligible advantage of ACCA is given as

AdvCCAA (k) ≥ (AdvπA(k)|Forgery)
mn(n− 1)

(4)

For each send(πsB,i) query, ACCA has to issue an FDO query. The maximum possible number
of such queries invloving the user UB is m(n−1)−1; excluding one in the test session. Hence,
the running time of ACCA with the above advantage is t2 ≤ td + (m(n− 1)− 1)tfdo.

By the theorem of total probability, the advantage of Aπ is given by

AdvπA = (AdvπA|Forgery)× Pr(Forgery) + (AdvπA|Forgery)× Pr(Forgery)
≤ Pr(Forgery) + (AdvπA|Forgery)

However, from Equations 3 and 4, Pr(Forgery) and (AdvπA|Forgery) are negligible when SK is
secure in the insider confidentiality and outsider unforgeability notions. Hence, the advantage of
an adversary Aπ against one-pass key establishment protocol constructed from such an SK is also
negligible.

New key establishment protocol: The ECISS-KEM1 in the multi user setting described in
Figure 2 can be used as a one-pass key establishment protocol. However, as the ECISS-KEM1 is
secure only in the outsider security model it does not provide sender forward secrecy. Moreover, as
discussed in Section 3.2 it does not have security against session-state reveal queries. One advantage
it does have over the one-pass HMQV is that its overall efficiency is better.

6 Conclusion

We have shown that there exists a duality between signcryption KEMs and one-pass key estab-
lishment protocols. However, the models typically used for defining security of key establishment
are stronger than those for signcryption. Hence it has turned out that starting from signcryption
KEMs we can only derive one-pass key establishment protocols with weaker security than those
already known (such as HMQV).

In the other direction we have been able to use a strong one-pass key establishment protocol
(HMQV) to derive a signcryption KEM with stronger properties than those known before. However,
even though our signcryption KEM is stronger in terms of confidentiality, it does not provide
insider secure authentication (non-repudiation). It might be possible to obtain a signcryption
KEM that is insider secure with respect to both confidentiality and authentication from a one-
pass key establishment protocol that is sender forward secure and resilient to KCI attacks. The
feasibility of doing this is still not clear.

It remains an open question to derive hybrid signcryption schemes with insider security for both
confidentiality and authentication even without using our generic constructions. Providing more
signcryption schemes secure when the adversary has access to a session-state query also remains an
interesting challenge.

20

Acknowledgements

The authors thank Alex Dent for his extensive comments and expert advice. This work was
supported by the Australian Research Council under grant DP0773348.

References

[1] Zheng, Y.: Digital Signcryption or How to Achieve Cost(Signature & Encryption) <<
Cost(Signature) + Cost(Encryption). In: Advances in Cryptology–CRYPTO’97. Volume 1294
of LNCS., Springer (1997) 165–179

[2] Zheng, Y.: Shortened Digital Signature, Signcryption and Com-
pact and Unforgeable Key Agreement Schemes. Technical report,
http://grouper.ieee.org/groups/1363/StudyGroup/Hybrid.html (1998) A submission to
IEEE P1363 Standard Specifications for Public Key Cryptography.

[3] An, J., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Advances
in Cryptology–EUROCRYPT’02. Volume 2332 of LNCS., Springer (2002) 83–107

[4] An, J.: Authenticated Encryption in the Public-Key Setting: Security Notions and Analyses.
Cryptology ePrint Archive, Report 2001/079 (2001) http://eprint.iacr.org/2001/079.

[5] Dodis, Y.: Signcryption (Short Survey). Encyclopedia of Cryptography and Security (2005)
Available at http://theory.lcs.mit.edu/~yevgen/surveys.html.

[6] Dent, A.: Hybrid Signcryption Schemes with Outsider Security. In: Information Security, 8th
International Conference–ISC’05. Volume 3650 of LNCS., Springer (2005) 203–217

[7] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. Technical report, http://shoup.net/ (2002)

[8] Dent, A.: Hybrid Cryptography. Cryptology ePrint Archive, Report 2004/210 (2004) http:
//eprint.iacr.org/2004/210.

[9] Dent, A.: Hybrid Signcryption Schemes with Insider Security. In: Information Security and
Privacy, 10th Australasian Conference–ACISP’05. Volume 3574 of LNCS., Springer (2005)
253–266

[10] Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Advances in
Cryptology–CRYPTO’05. Volume 3621 of LNCS., Springer (2005) 546–566

[11] Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption. In: Public
Key Cryptography–PKC’02. Volume 2274 of LNCS., Springer (2002)

[12] Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption. Journal of
Cryptology 20 (2007) 203–235

[13] Bjørstad, T., Dent, A.: Building Better Signcryption Schemes with Tag-KEMs. In: Public
Key Cryptography–PKC’06. Volume 3958 of LNCS., Springer (2006) 491–507

21

[14] Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and Analysis
of Authentication and Key Exchange Protocols (Extended Abstract). In: Proc. of the 30th
Annual ACM Symposium on Theory of Computing–STOC’98. (1998) 419–428

[15] Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In: Advances in Cryptology–EUROCRYPT’01. Volume 2045 of LNCS.,
Springer (2001) 453–474

[16] Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Advances in
Cryptology–CRYPTO’93. Volume 773 of LNCS., Springer (1993) 232–249

[17] Tin, Y.S.T., Vasanta, H., Boyd, C., González-Nieto, J.M.: Protocols with Security Proofs
for Mobile Applications. In: Information Security and Privacy, 9th Australasian Conference–
ACISP’04. Volume 3108 of LNCS., Springer (2004) 358–369

[18] Yoshida, M., Fujiwara, T.: On the Security of Tag-KEM for Signcryption. Electr. Notes
Theor. Comput. Sci. 171 (2007) 83–91

[19] International Organization for Standardization: ISO/IEC CD 18033-2, Information technology
- Security techniques - Encryption Algorithms - Part 2: Asymmetric Ciphers. (2003)

[20] Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security
of Cryptographic Schemes. In: Public Key Cryptography–PKC’01. Volume 1992 of LNCS.,
Springer (2001) 104–118

A Proof of Theorem 1

Proof. To prove this theorem we show that if there exists a polynomial time adversary ACMA

against the unforgeability of the KEM with non-negligible advantage ε, then a polynomial time
algorithm AGDH can be constructed that solves the Gap Diffie-Hellman (GDH) problem with the
same advantage as ACMA. Recall that the GDH problem entails solving the Computational Diffie-
Hellman (CDH) with the assistance of a decisional Diffie-Hellman oracle ODDH [20].

Let A = aP , B = bP be the problem instance given to AGDH with the goal to find the value
abP . AGDH runs ACMA and simulates the answers to the queries made by ACMA as shown below.

• Hash: For Hash queries , AGDH initially starts with an empty list LH. On input (Ŝ, R̂,X),
AGDH first checks to see if there is an existing entry (Ŝ, R̂,X,K) for some K in LH that stores
the past returned hash values. If so, it returns the corresponding K; otherwise it accesses the
global encapsulation list LE and does the following:

22

if (Ŝ, R̂, C,K) ∈ LE for some K and C values then
compute Y = (X − C)
if ODDH(Ps, Pr, Y) = True then

if Ps = A and Pr = B then
return Y as solution to the GDH challenger and exit

else
return K to ACMA

update LH = LH‖(Ŝ, R̂,X,K)

end

else
Select K randomly from the key distribution and return it to ACMA

update LH = LH‖(Ŝ, R̂,X,K)

end

else
Select K randomly from the key distribution and return it to ACMA

updateLH = LH‖(Ŝ, R̂,X,K)

end

• FEO: InitiallyAGDH has an empty encapsulation list LE . On input (Ps, Pr), AGDH first selects
C ∈R G. It then checks each entry (Ŝ, R̂,X,K) in LH to see if ODDH(Ps, Pr, X −C) = True
for the same (Ps, Pr) as in the input to FEO. If so, it fetches the corresponding K from LH;
otherwise it selects K randomly from the symmetric key distribution. It returns (K,C) to
ACMA. Finally, LE is updated to LE = LE ‖(Ŝ, R̂,K,C).

• FDO: On input (Ps, Pr, C), AGDH first checks to see if there is an entry(Ŝ, R̂, C,K) ∈ LE .
In case of a match it returns the corresponding symmetric key K. Otherwise, it does the
following:
if (Ŝ, R̂,X,K) ∈ LH for some X then

compute Y = (X − C)
if ODDH(Ps, Pr, Y) = True then

if Ps = A and Pr = B then
return Y as solution to the GDH challenger and exit

else
fetch corresponding K from LH and return it to ACMA

update LE = LE‖(Ŝ, R̂,K,C)

end

else
Select K randomly from the key distribution and return it to ACMA

update LE = LE‖(Ŝ, R̂,K,C)

end

else
Select K randomly from the key distribution and return it to ACMA

update LE = LE‖(Ŝ, R̂,K,C)

23

end

Answering the GDH challenger: Eventually, ACMA outputs a forgery (K∗, C∗) as an encapsula-
tion created by S from R. For the forgery to be valid under the outsider unforgeability notion
FEO/FDO-sUF-CMA, C∗ must be a valid encapsulation of K∗. If C∗ is a valid encapsulation of
K∗ then ACMA must have queried the Hash with corresponding keying material, in which case
AGDH would have answered the GDH challenger already. Hence, the advantage of AGDH , ε′ in
solving the GDH problem is the same as the advantage of ACMA.

24

