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Signcryption

• Proposed by Zheng at Crypto ’97
• Provides both message confidentiality 

and authenticity (non-repudiation & 
unforgeability) in an efficient way

• Has received a lot of attention
– a number of papers about signcryption 

have been published
– Submitted to standard committee P1363 
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Security of signcryption

• However, formal proofs for the security 
of signcryption have not been provided

• Formal proofs
– “formal proofs” = “reductions from attacking 

the signcryption scheme to solving 
computationally difficult problems”

– To provide formal proofs of security, first of 
all we need to establish a sound security 
model for signcryption
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What we have achieved

• A sound security model for signcryption:
– Flexible public key model

• encompassing CCA security (security against 
adaptive chosen ciphertext attack) 

– Attackers in our model are allowed to be 
very powerful!
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What we have achieved 
(cont.)

• Proofs for the confidentiality and 
unforgeability of signcryption
– Confidentiality --- Providing a reduction 

• from breaking CCA security of signcryption with respect 
to the flexible public key model 

• to breaking the GAP Diffie-Hellman assumption in the 
ROM (Random Oracle Model)

– Unforgeability --- Providing a reduction 
• from breaking unforgeability of signcryption against CMA 

(Chosen Message Attack) 
• to Discrete Logarithm problem in the ROM
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Difference between our 
model and previous models
• Motivation

– An attacker can produce her own public 
key and replace Alice and/or Bob’s public 
keys to break the confidentiality or 
authenticity 

– Therefore, the security model of encryption 
+ authentication in asymmetric setting 
should be different from that in the 
symmetric setting
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Difference between our model 
and previous models (cont.)

• Security model for encryption + 
authentication (E+A) in the symmetric 
setting
– Formalized by Bellare & Namprepre at 

Asiacrypt 2000 [BN]
– Only Encryption-then-MAC (EtM) 

composition is CCA-secure
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Difference between our model 
and previous models (cont.)

• Observation: 
– Results on confidentiality in the symmetric 

setting are NOT applicable to E+A in the 
asymmetric setting. 

– Specifically, Encrypt-then-Sign (EtS, the 
corresponding simple asymmetric version) 
is completely insecure against CCA!
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CCA attack on the 
simple EtS

• Simple EtS
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CCA attack on the 
simple EtS

• Attack
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Signcryption: an EaS 
variant

• Signcryption may be viewed as a variant of 
the simple EaS (Encrypt-and-Sign) 
composition.
– It employs ‘EaS’ concept to gain efficiency

• However, signcryption is NOT merely a 
simple EaS scheme!
– It fixes, intuitively, the problem that the simple EaS 

composition is not generically secure (since the 
signature part can reveal some information about 
plaintext as observed in [BN])
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Flexible Public Key model

• Flexible Unsigncryption Oracle (FUO) 
model
– Public key input for the unsigncryption 

oracle is flexibly given

Normal Unsigncryption Oracle: (.)(.)(.),
,

HG
xy BA

USC
Flexible Unsigncryption Oracle: (.)(.)(.),HG

xB
USC

No specific 
sender’s public 
key is given
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FUO-IND-CCA2

• Confidentiality notion for signcryption 
with respect to adaptive chosen 
ciphertext attack (CCA2) under 
semantic security

• A CCA attacker has access to 
– the Flexible Unsigncryption Oracle, and
– (fixed) Signcryption Oracle 

• (to be extended to flexible signcryption oracle 
(FSO) model in our forthcoming paper)
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Another tool

• GAP Diffie-Hellman problem
– Proposed by Okamoto & Pointcheval at 

PKC ’01
– Attacker searches the Diffie-Hellman key 

gxy mod p of gx mod p and gy mod p with the 
help of a decisional Diffie-Hellman Oracle,  

0
1

{),,,( =WgggDDH yx if pgW xy mod=

otherwise
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Another tool (cont.)

– The GAP-DH problem is hard as long as 
there is no reduction from the DDH 
problem to the CDH (Computational DH) 
problem (-> The GAP-DH assumption)

• With the help of the DDH oracle, the 
flexible unsigncryption/signcryption 
oracles can be successfully simulated
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Another tool (cont.)

• Actually, the GAP DH assumption is a 
necessary condition for some CCA-
secure schemes to be proven (in our 
forthcoming paper)



9

17

“bind” information

• “bind” info contains the sender Alice’s public 
key yA and the receiver Bob’s public key yB
– It was pointed out by Zheng that this bind info 

should be included in the input to hash function 
H(.) to thwart “double spending attack” 

– This observation was crucial,  as the “bind” 
information turned out to be necessary in proving 
the confidentiality of signcryption.
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Signcryption scheme that 
we used in our formalization
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Signcryption v.s. Signature-
then-Encryption

(a) Signcryption
based on DL

m

sig
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(c) Signature-then-Encryption
based on DL

m

sig

gx

EXP=3+2.17

(b) Signature-then-Encryption
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Time -- # of multiplications

Time --- DL Signcryption v.s.
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Bandwidth --- DL Signcryption v.s.
DL Signature-then-Encryption
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Time -- RSA signcryption (HORSE) 
v.s. RSA sign-then-encrypt
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Confidentiality ---
Sketch of proof

• An attacker (or an attack algorithm) for the 
GAP DH problem Agdh runs adaptive chosen 
ciphertext attacker Ac to find the DH key gxy

mod p, given gx mod p and gy mod p
• It is assumed that the Ac has access to the 

flexible unsigncryption oracle as well as the 
signcryption oracle 

• The random oracles G and H, the 
signcryption/flexible unsigncryption oracle are 
successfully simulated with the help of the 
DDH oracle  
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Confidentiality ---
Sketch of proof (cont.)

• When the events Bad and GDHBrk do not 
happen, we can construct a chosen plaintext 
attacker Ap which uses Ac as subroutine
– Bad: The event which causes the distribution of 

Ac’s view to differ in experiment in the simulation 
from the distribution of Ac’s view in the real attack

– GDHBrk: The event that Ac asks the DH key gxy

mod p to the random oracle G or Ac asks a query h
to the random oracle H where the k-rightmost bits 
of h is the DH key
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Confidentiality ---
Sketch of proof (cont.)

• As a result, we obtain the following 
upper bound:

All the variables are defined in our 
PKC02 paper
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Confidentiality ---
Sketch of proof (cont.)

• Maim Theorem 1:
Signcryption is secure

• against adaptive chosen ciphertext attacks 
• in the random oracle model
• assuming the GAP Diffie-Hellman Problem is 

hard
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Security notion for 
unforgeability of signcryption

• Follows the security notion for unforgeability 
of signcryption formulated by Steinfeld and 
Zheng (ISW ’00)

• Allows the forger to have access to Bob’s 
private key as well as the corresponding 
public key
– Since signcryption offers non-repudiation for the 

sender Alice, it is essential that even the receiver 
Bob cannot impersonate Alice and forge valid 
signcrypted text from Alice to himself
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Unforgeability ---
Sketch of proof

• Convert a forger F which mounts chosen
message attack on the signcryption scheme 
into an passive attacker Ai for the 
identification scheme derived from the 
signcryption scheme

• An attacker Adlp for discrete logarithm problem 
uses Ai to solve the discrete logarithm 
associated with Alice’s public key. (i.e., we 
use the ID-reduction technique by Ohta & 
Okamoto (Crypto ’98)) 
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Unforgeability ---
Sketch of proof (cont.)

• As a result, we obtain the following 
upper bound:

All the variables are defined in our 
PKC02 paper
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Unforgeability ---
Sketch of proof (cont.)

• Maim Theorem 2:
Signcryption is existentially unforgeable

• against adaptive chosen message attacks 
• in the random oracle model
• assuming the Discrete Logarithm Problem is 

hard
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Future work
• Providing the confidentiality proof using 

FSO + FUO model
• Providing the security proofs for various 

signcryption schemes proposed so far, 
including
– Steinfeld-Zheng scheme (ISW ’00) based on 

integer factorization problem
– Zheng scheme (PKC ’01) based on higher 

residuosity problem
– Others …
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Thank you very much!


