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Abstract 
 

We present a proposed standard for signcryption (a joint signature and encryption 
primitive) using the Probabilistic Signature and Encryption Padding (PSEP) scheme. The 
standard supports signcrypting short and long messages, associated data (“labels”), and 
key reuse (a single RSA key suffices for both signcryption and designcryption). The 
proposed scheme is provably secure under the strongest known definitions of security for 
signcryption. Furthermore, the standard is backwards compatible with the existing 
PKCS#1 public key infrastructure, and provides support for senders and receivers with 
different RSA modulus lengths. We motivate the general use of the signcryption 
primitive with practical issues, and demonstrate an application to key exchange protocols 
such as that carried out by SSL. In particular, we suggest a key exchange protocol 
designed to minimize the round complexity and computational cost. We conclude with a 
brief analysis of various techniques that can be used to increase the efficiency of our 
signcryption primitive.



Introduction 
 

Until recently, cryptographic operations for signature (guaranteeing authenticity 
of messages) and encryption (guaranteeing the privacy of messages) were considered 
only as separate building blocks (“primitives”). Applications requiring both authenticity 
and privacy would generally compose these blocks directly to achieve those security 
requirements. In practice, these requirements often go together. This observation 
motivated the study of a new cryptographic primitive known as signcryption, designed to 
achieve simultaneous privacy and authenticity in the public key cryptographic setting. 
Signcryption was first introduced by Zheng [1] in 1997, with the expressed goal of 
achieving a signcryption scheme with a smaller “cost” than a sequential composition of 
signature and encryption. The signcryption primitive itself is also a useful abstraction for 
higher-level protocol design. To date, no complete standard in the style of the PKCS#1 
public key encryption and signature standard [2], has been proposed for signcryption. 
This paper proposes such a signcryption standard that is fully backwards compatible with 
existing PKCS#1 RSA public key infrastructures, and motivates the new standard with 
real world applications to efficient key exchange protocols (such as that used by SSL). 

This scheme we propose is based on the work of Dodis, Freedman, and Walfish 
[3] who present a paradigm known as padding-based parallel signcryption. While the 
primary computational advantage of padding-based parallel signcryption over 
straightforward composition of encryption and signature lies in its parallelization of the 
signature and encryption operations (which is rarely of practical value), the advantages of 
the scheme in terms of security, flexibility, and compatibility are sufficient to merit its 
use. For a detailed comparison of the advantage of padding-based parallel signcryption in 
relation to other signcryption schemes, see [3]. Most importantly, our proposed standard 
has been proven to be semantically secure against adaptive chosen ciphertext attacks and 
to provide strong unforgeability against chosen message attacks. Both of these security 
guarantees are provided in the full multi-user, insider-security setting (described in 
further detail below). Our proposed signcryption scheme also includes support for 
associated data (a “label” that is inextricably bound to the ciphertext), as well as support 
for long messages (such as emails). 

Finally, we evaluate the performance of our proposed signcryption scheme in the 
context of a simple key exchange protocol designed to provide an efficient SSL session 
key exchange protocol replacement. Our implementation is based on the OpenSSL 
library, modified to include support for multi-prime RSA operations for benchmarking 
purposes. We show that substantial performance improvements can be realized for 
server-side computations required during the exchange. Additionally, at least one round 
of communication is eliminated. These improvements are of great practical significance 
since the major bottleneck for many web servers is the excessive computational overhead 
of performing an SSL key exchange. 

 
 
 
 
 



Security of Signcryption 
 
For the purposes of this paper, we will consider a signcryption scheme to be 

secure when it is provably both IND-CCA2 and sUF-CMA secure against insiders in the 
multi-user setting. Security against insiders implies that the authenticity of the scheme is 
protected even if the recipient of the ciphertexts is in fact malicious, and that the privacy 
of the scheme is protected even if the sender of the ciphertexts is malicious. Clearly, this 
notion is a stronger notion of security than outsider security (which does not provide 
these guarantees). Multi-user security implies that no “identity fraud” can occur in a 
setting where multiple users may have keys (which is generally the setting of interest). In 
this setting, IND-CCA2 security implies that any polynomial time adversary has at most 
negligible success advantage in the following game: The adversary is first allowed to 
query a user R to signcrypt arbitrary messages to arbitrary recipients, or to designcrypt 
arbitrary ciphertexts of the adversary’s choosing. The adversary then selects two 
messages, M0 and M1, and asks the challenger to signcrypt one of them at random (with 
R as the recipient, using a sending secret key of the adversary’s choice) and to return the 
corresponding “challenge” ciphertext to him. The adversary may then continue to query 
R for arbitrary signcryptions and designcryptions, subject to the restriction that he may 
not request the designcryption of the challenge ciphertext. If no polynomial time 
adversary can guess whether the challenge ciphertext corresponds to M0 or M1 with better 
than negligible advantage over random guessing, we say that the signcryption scheme is 
IND-CCA2 secure. The sUF-CMA security definition implies that any polynomial time 
adversary has at most negligible success advantage in the following game: The adversary 
is allowed to query user S to signcrypt messages of his choice to recipients of his choice, 
or designcrypt arbitrary ciphertexts of his choice. Eventually, the adversary attempts to 
output a valid ciphertext that appears to be sent by S, but was not previously returned to 
the adversary by one of his queries to S. 

Signcryption with associated data adds the additional guarantee that information 
contained in a label L is considered to be part of the ciphertext with respect to forgeries, 
but L may be public, and in fact, L may not even be sent along with the ciphertext. A 
recipient must check the validity of a signcryptext using the correct label. Our proposed 
signcryption scheme satisfies the property that it is not even feasible for the recipient to 
recover the signcrypted message M without first providing the correct label for the 
designcryption operation. 

A signcryption scheme satisfying the above security requirements represents an 
extremely resilient cryptographic primitive that may be safely used in a wide variety of 
contexts. As per the analysis in [4], a simple composition of signature and encryption will 
not satisfy these requirements. In particular, any composition of PKCS#1 encryption and 
signature schemes will not satisfy these definitions of security (even using the commit 
then encrypt and sign paradigm proposed in [4]). Thus, to provide for the greatest 
possible utility of the signcryption primitive, we propose to use the construction provided 
in [3], which provides all these security guarantees. 
 
 
 
 



The Proposed Standard: RSASCS-PSEP and RSASCS-LPSEP 
 
 We propose an amendment to the existing PKCS#1 v2.1 standard [2] which adds 
support for a new signcryption primitive, which uses one of two new encodings: 
RSASCS-PSEP for short messages and RSASCS-LPSEP for long messages. These 
schemes are based on the Probabilistic Signature Encryption Padding (PSEP) scheme 
first presented in [3]. A low-level description of these encoding schemes will be provided 
in a future standards document. As a high-level overview, using the notation established 
in the PKCS#1 document, an explanation of the RSASCS-PSEP encoding of a message 
M to be signcrypted from a sender S to a recipient R using label L is given below. The 
notation || indicates string concatenation, and ⊕ represents a bitwise exclusive-OR 
operation.  
 
Step 1: The short message M is split into two (zero-padded) parts, M1 and M2 
Step 2: A random bit string seed of HashLength octets in length is generated 
Step 3: A data block DB is constructed as follows: 
 DB = M2 || seed 
Step 4: An encoded message block EM1 is constructed as follows: 
 EM1 = Hash(DB2) || MGF(seed) ⊕ M1 
Step 5: A label block LB is constructed as follows: 
 LB = L || HashLength || sender’s public key || recipient’s public key 
Step 6: An encoded message block EM2 is constructed as follows: 
 EM2 = MGF(LB || DB1) ⊕ DB 
 
The function Hash( ) is any fixed length output CRHF that can be modeled as a random 
oracle that is defined in PKCS#1 standard (for example, the SHA1 hash function), with 
an output length of HashLength octects. The function MGF() is a “mask generating 
function” that extends a fixed length output collision resistant hash function (CRHF) to a 
variable length output CRHF. The details of the construction of the MGF( ) using Hash( ) 
are provided in the PKCS#1 v2.1 document [2]. The resulting blocks EM1 and EM2 are 
then encrypted with the RSA public key of the recipient and signed with the RSA private 
key of the sender (respectively). Thus, the final ciphertext is C = RSAR( EM1 ) || RSA-1

S ( 
EM2 ), where RSAR( ) denotes RSA encryption using the public key of the recipient and 
RSA-1

S( ) denotes RSA decryption using the sender’s private key. Figures 1 and 2 below 
illustrate the construction of EM1 and EM2. 
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Figure 1: Constructing EM1. 
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Figure 2: Construction of EM2 



 
The designcryption operation essentially runs the construction in reverse. One important 
point of the scheme not clearly captured in the pictures above is that the full RSA public 
keys of both sender and recipient are bound to the signcryption of M, along with the label 
L, in the label block LB. This prevents “identity fraud” attacks, and provides increased 
security for users who may publish multiple public keys with the same RSA modulus 
since the full public key, including the public exponent, is included in LB (this is relevant 
for the Batch-RSA based schemes mentioned later). 
 

Note that all lengths can be chosen “appropriately” to support mismatched sender 
and recipient RSA modulus lengths. This is important for legal reasons. For example, a 
sender might publish a certified public key using 1024-bit RSA, which it is allowed to 
use in some countries for the purposes of signing, whereas encryption operations are 
limited to 512-bit moduli by law. In this circumstance, if the sender wishes to signcrypt a 
message to a recipient with a 512-bit key, it need not generate and sign a temporary 512-
bit key; instead, the sender can simply apply the signcryption primitive directly using it’s 
1024-bit sender’s key and the 512-bit recipient’s key. 

 
If the desired application of signcryption requires “non-repudiation”, RSASCS-

PSEP can be used to achieve this (barring disclosure of the sender’s private key). A 
recipient who wishes to display the signature of the sender can simply decrypt EM1, and 
provide it along with his public key and the sender’s signature of EM2 as evidence, which 
can then be verified. This does not require the recipient to reveal his private key in order 
to prevent the sender from repudiating his message. 
 
The RSASCS-LPSEP encoding is virtually identical to the RSASCS-PSEP encoding. 
Rather than encoding the message M directly, it encodes a short random key that is used 
to encrypt the M. The encrypted copy of M is appended to the label L during the encoding 
process, so that the encrypted message is bound to the signcryption of the key required to 
decrypt it. The resulting scheme efficiently encodes long messages, and still provides the 
full security and flexibility benefits of RSASCS-PSEP. 
 



Using RSASCS-PSEP for SSL Key Exchange 
 

The SSLv3 (Secure Sockets Layer version 3) protocol is a commonly used 
protocol for establishing secure connections between client web browsers and web 
servers. In the common situation, web servers have certified RSA public keys 
representing their identities, whereas clients do not (and thus are usually not 
authenticated). A minimal SSLv3 handshake and key exchange protocol will proceed 
roughly as follows: 

 
Round 1 (Client -> Server) : Handshake messages 
Round 2 (Server -> Client) : Handshake + Server’s Certified Public Key S 
Round 3 (Client -> Server) : RSAS(fresh secret) 

 
The server can use a signed temporary RSA public key instead of S is to ensure forward 
security (that is, even if the server’s secret key is compromised at some point, all 
previous communications remain secure), but achieving full forward security would 
require the server to regenerate this key for every connection, which is computationally 
expensive. Another way of achieving full forward security is to employ a Diffie-Hellman 
Key Exchange, but this too is computationally expensive. Setting aside the issue of 
forward security, the computational requirements for the server mainly come from 
decrypting the fresh secret sent by the client in Round 2. Since RSA decryption 
operations are expensive (even for “low-exponent” RSA), the server is performing a very 
computationally expensive operation. 
 We suggest the following signcryption based protocol, which helps to minimize 
the computational expenses on the server side, in trade for more client-side computation, 
while retaining full forward security. 
 
 Round 1 (Client -> Server) : Handshake messages + temporary client RSA key C 
 Round 2 (Server -> Client) : Handshake + Server’s Certified Public Key S 
     + Signcryption(session key) from S to C 
 
This protocol eliminates one round of communication by allowing the server to choose 
the session key. Furthermore, provided that the client uses fresh temporary RSA keys for 
every SSL connect (it takes approximately 1 second to generate a 1024-bit RSA key on a 
Pentium II running at 450Mhz), the protocol provides full forward security and precludes 
replay attacks. The server-side computational expenses are approximately the cost of a 
single RSA decryption (provided that the client uses low-exponent RSA, which renders 
the cost of an RSA encryption trivial compared to the cost of a decryption).  
 

 
 
 
 
 
 



However, unlike the “best case” version of the SSLv3 protocol presented above, 
in our suggested protocol the server can easily employ the batch RSA technique 
described in [5]. This technique allows the server to “batch” signing operations together, 
performing one expensive computation to obtain the results for all of the operations. It 
requires the server to publish several separate certified public keys with different RSA 
public exponents but the same RSA modulus (one for each signing operation to be 
included in a batch). Our protocol can handle this transparently from the client 
perspective, since the server simply provides the appropriate public key to each client in 
the batch. The server can select any arbitrary set of pending signcryption operations to 
batch together. On the other hand, using batch RSA with the SSLv3 protocol is extremely 
inefficient since it would be difficult to properly schedule the different encryption 
exponents among the clients, and the server might have to wait a significant period of 
time for all the client responses to arrive for a given batch. Batch RSA is has been 
benchmarked at approximately 2.64 times the speed of standard RSA for 1024-bit keys 
[6]. Thus, our suggested protocol can easily be made more than twice as fast on the server 
side as the fastest version of the SSLv3 protocol. 
 
Further Improvements 
 
 Further speed improvements to RSA decryption and signing operations, which 
apply to both the existing SSL key exchange protocol and our proposed protocol, include 
multi-prime and multi-power RSA, as well as rebalanced RSA. Multi-power RSA is not 
recommended due to security concerns [7]. In [6], we find that rebalanced RSA is 
approximately 3 times faster than standard RSA. We have benchmarked multi-prime 
RSA, which is widely accepted and has become part of the PKCS#1 v2.1 standard, at 
more than 1.7 times as fast as standard RSA. Significantly, all these techniques can be 
combined, and we expect the result to be more than 10 times as fast as standard RSA 
using multi-prime, rebalanced, and batch RSA, or approximately 4.4 times as fast as 
standard RSA using just batch RSA and multi-prime RSA (which provides extremely 
reasonable security) for 1024-bit keys. Since the cost of our proposed key exchange 
protocol is approximately the cost of a single RSA decryption, we can use benchmarks of 
RSA decryption time to determine the maximum number of key exchanges a server can 
perform per second. 
 
 We modified an open source library for SSL, known as OpenSSL, to support 
multi-prime RSA as specified in the PKCS#1 v2.1 document, and benchmarked the 
resulting RSA decryption / signing performance on an Intel Xeon 2 Ghz processor 
running Redhat Linux 7.3. The results are summarized in Table 1 below. 
 
 
 1024-bit modulus 2048-bit modulus 4096-bit modulus 

2 primes  155 26 4 
3 primes 264 49 8 
4 primes 386 76 12 

 

Table 1: RSA decryption (or signature) operations per second 



  
 The table indicates that a typical web server running on modern hardware should 
be able to perform over 260 key exchanges per second using a 1024-bit RSA modulus 
with 3 primes and our proposed key exchange protocol. Furthermore, if batch RSA were 
implemented, we anticipate this number would jump to over 675 key exchanges per 
second. In combination with rebalanced RSA we could exceed 1000 key exchanges per 
second, but it is unclear how safe this approach is from a standpoint of security. 
Similarly, the protocol can be made more efficient by using smaller RSA moduli (512 bit 
moduli are currently in widespread use, even though such moduli have been broken by 
distributed computing efforts in the past), although this would seriously compromise the 
security of the protocol. We note that the same Xeon 2 Ghz processor used for these 
benchmarks could perform a maximum of approximately 150 SSL key exchanges per 
second in an unmodified 512-bit RSA OpenSSL configuration (with Diffie-Hellman Key 
Exchange enabled). 
 
Conclusion 
 
 In conclusion, we feel that our suggested signcryption primitive has proven to be 
a useful one. Protocol designers can easily use it to achieve extremely powerful security 
guarantees in a wide variety of settings. It is efficient, backwards compatible, and easily 
implemented. Using the latest fast variants of RSA [6], the signcryption operation can be 
used to dramatically improve both the performance and security of RSA based key 
exchange protocols such as those in SSLv3. Furthermore, protocols using signcryption 
often have lower round complexity than their counterparts using plain signature and 
encryption operations (as evidenced by our removal of a round from the minimum round 
SSL key exchange). Protocols and applications that already rely on separate RSA 
signature and encryption operations can be made conceptually simpler, more efficient, 
and more secure in a straightforward fashion by simply replacing those operations with 
signcryption. Signcryption is inherently less likely to be abused by practitioners due to its 
extremely strong security guarantees, which more closely match the idealized view of the 
strength of cryptographic primitives most people find to be intuitive. Our scheme also 
provides many small hidden benefits that will likely find use in time. (For example, it is 
possible to send the portion of the RSASCS-PSEP encoding that needs to be signed over 
to another machine, using any authenticated channel, for it to be signed there. The 
machine performing the signing operation learns nothing about the ciphertext.) 
 
 While the signcryption standard we proposed is ideally suited to most RSA public 
key environments, a few drawbacks remain. For applications where extremely low 
bandwidth is available and short messages must be exchanged, the minimum ciphertext 
length of our scheme may be unacceptable. It may also be in appropriate for settings 
where it is impractical to perform the padding operation in the presence of the full RSA 
public keys of both the sender and recipient (i.e. extremely low memory environments 
such as smart cards). These drawbacks could have been further minimized at the cost of 
extra complexity in the implementation of the scheme. We believe these drawbacks are 
extremely minor in light of the many advantages of using RSASCS-PSEP, and thus we 
recommend the standard in its present form. 
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