
A Parallel Signcryption Standard using RSA with PSEP

Anshuman Rawat and Shabsi Walfish

May 11, 2003

Abstract

We present a proposed standard for signcryption (a joint signature and encryption
primitive) using the Probabilistic Signature and Encryption Padding (PSEP) scheme. The
standard supports signcrypting short and long messages, associated data (“labels”), and
key reuse (a single RSA key suffices for both signcryption and designcryption). The
proposed scheme is provably secure under the strongest known definitions of security for
signcryption. Furthermore, the standard is backwards compatible with the existing
PKCS#1 public key infrastructure, and provides support for senders and receivers with
different RSA modulus lengths. We motivate the general use of the signcryption
primitive with practical issues, and demonstrate an application to key exchange protocols
such as that carried out by SSL. In particular, we suggest a key exchange protocol
designed to minimize the round complexity and computational cost. We conclude with a
brief analysis of various techniques that can be used to increase the efficiency of our
signcryption primitive.

Introduction

Until recently, cryptographic operations for signature (guaranteeing authenticity
of messages) and encryption (guaranteeing the privacy of messages) were considered
only as separate building blocks (“primitives”). Applications requiring both authenticity
and privacy would generally compose these blocks directly to achieve those security
requirements. In practice, these requirements often go together. This observation
motivated the study of a new cryptographic primitive known as signcryption, designed to
achieve simultaneous privacy and authenticity in the public key cryptographic setting.
Signcryption was first introduced by Zheng [1] in 1997, with the expressed goal of
achieving a signcryption scheme with a smaller “cost” than a sequential composition of
signature and encryption. The signcryption primitive itself is also a useful abstraction for
higher-level protocol design. To date, no complete standard in the style of the PKCS#1
public key encryption and signature standard [2], has been proposed for signcryption.
This paper proposes such a signcryption standard that is fully backwards compatible with
existing PKCS#1 RSA public key infrastructures, and motivates the new standard with
real world applications to efficient key exchange protocols (such as that used by SSL).

This scheme we propose is based on the work of Dodis, Freedman, and Walfish
[3] who present a paradigm known as padding-based parallel signcryption. While the
primary computational advantage of padding-based parallel signcryption over
straightforward composition of encryption and signature lies in its parallelization of the
signature and encryption operations (which is rarely of practical value), the advantages of
the scheme in terms of security, flexibility, and compatibility are sufficient to merit its
use. For a detailed comparison of the advantage of padding-based parallel signcryption in
relation to other signcryption schemes, see [3]. Most importantly, our proposed standard
has been proven to be semantically secure against adaptive chosen ciphertext attacks and
to provide strong unforgeability against chosen message attacks. Both of these security
guarantees are provided in the full multi-user, insider-security setting (described in
further detail below). Our proposed signcryption scheme also includes support for
associated data (a “label” that is inextricably bound to the ciphertext), as well as support
for long messages (such as emails).

Finally, we evaluate the performance of our proposed signcryption scheme in the
context of a simple key exchange protocol designed to provide an efficient SSL session
key exchange protocol replacement. Our implementation is based on the OpenSSL
library, modified to include support for multi-prime RSA operations for benchmarking
purposes. We show that substantial performance improvements can be realized for
server-side computations required during the exchange. Additionally, at least one round
of communication is eliminated. These improvements are of great practical significance
since the major bottleneck for many web servers is the excessive computational overhead
of performing an SSL key exchange.

Security of Signcryption

For the purposes of this paper, we will consider a signcryption scheme to be

secure when it is provably both IND-CCA2 and sUF-CMA secure against insiders in the
multi-user setting. Security against insiders implies that the authenticity of the scheme is
protected even if the recipient of the ciphertexts is in fact malicious, and that the privacy
of the scheme is protected even if the sender of the ciphertexts is malicious. Clearly, this
notion is a stronger notion of security than outsider security (which does not provide
these guarantees). Multi-user security implies that no “identity fraud” can occur in a
setting where multiple users may have keys (which is generally the setting of interest). In
this setting, IND-CCA2 security implies that any polynomial time adversary has at most
negligible success advantage in the following game: The adversary is first allowed to
query a user R to signcrypt arbitrary messages to arbitrary recipients, or to designcrypt
arbitrary ciphertexts of the adversary’s choosing. The adversary then selects two
messages, M0 and M1, and asks the challenger to signcrypt one of them at random (with
R as the recipient, using a sending secret key of the adversary’s choice) and to return the
corresponding “challenge” ciphertext to him. The adversary may then continue to query
R for arbitrary signcryptions and designcryptions, subject to the restriction that he may
not request the designcryption of the challenge ciphertext. If no polynomial time
adversary can guess whether the challenge ciphertext corresponds to M0 or M1 with better
than negligible advantage over random guessing, we say that the signcryption scheme is
IND-CCA2 secure. The sUF-CMA security definition implies that any polynomial time
adversary has at most negligible success advantage in the following game: The adversary
is allowed to query user S to signcrypt messages of his choice to recipients of his choice,
or designcrypt arbitrary ciphertexts of his choice. Eventually, the adversary attempts to
output a valid ciphertext that appears to be sent by S, but was not previously returned to
the adversary by one of his queries to S.

Signcryption with associated data adds the additional guarantee that information
contained in a label L is considered to be part of the ciphertext with respect to forgeries,
but L may be public, and in fact, L may not even be sent along with the ciphertext. A
recipient must check the validity of a signcryptext using the correct label. Our proposed
signcryption scheme satisfies the property that it is not even feasible for the recipient to
recover the signcrypted message M without first providing the correct label for the
designcryption operation.

A signcryption scheme satisfying the above security requirements represents an
extremely resilient cryptographic primitive that may be safely used in a wide variety of
contexts. As per the analysis in [4], a simple composition of signature and encryption will
not satisfy these requirements. In particular, any composition of PKCS#1 encryption and
signature schemes will not satisfy these definitions of security (even using the commit
then encrypt and sign paradigm proposed in [4]). Thus, to provide for the greatest
possible utility of the signcryption primitive, we propose to use the construction provided
in [3], which provides all these security guarantees.

The Proposed Standard: RSASCS-PSEP and RSASCS-LPSEP

 We propose an amendment to the existing PKCS#1 v2.1 standard [2] which adds
support for a new signcryption primitive, which uses one of two new encodings:
RSASCS-PSEP for short messages and RSASCS-LPSEP for long messages. These
schemes are based on the Probabilistic Signature Encryption Padding (PSEP) scheme
first presented in [3]. A low-level description of these encoding schemes will be provided
in a future standards document. As a high-level overview, using the notation established
in the PKCS#1 document, an explanation of the RSASCS-PSEP encoding of a message
M to be signcrypted from a sender S to a recipient R using label L is given below. The
notation || indicates string concatenation, and ⊕ represents a bitwise exclusive-OR
operation.

Step 1: The short message M is split into two (zero-padded) parts, M1 and M2
Step 2: A random bit string seed of HashLength octets in length is generated
Step 3: A data block DB is constructed as follows:
 DB = M2 || seed
Step 4: An encoded message block EM1 is constructed as follows:
 EM1 = Hash(DB2) || MGF(seed) ⊕ M1
Step 5: A label block LB is constructed as follows:
 LB = L || HashLength || sender’s public key || recipient’s public key
Step 6: An encoded message block EM2 is constructed as follows:
 EM2 = MGF(LB || DB1) ⊕ DB

The function Hash() is any fixed length output CRHF that can be modeled as a random
oracle that is defined in PKCS#1 standard (for example, the SHA1 hash function), with
an output length of HashLength octects. The function MGF() is a “mask generating
function” that extends a fixed length output collision resistant hash function (CRHF) to a
variable length output CRHF. The details of the construction of the MGF() using Hash()
are provided in the PKCS#1 v2.1 document [2]. The resulting blocks EM1 and EM2 are
then encrypted with the RSA public key of the recipient and signed with the RSA private
key of the sender (respectively). Thus, the final ciphertext is C = RSAR(EM1) || RSA-1

S (
EM2), where RSAR() denotes RSA encryption using the public key of the recipient and
RSA-1

S() denotes RSA decryption using the sender’s private key. Figures 1 and 2 below
illustrate the construction of EM1 and EM2.

Hash(DB) M1

seed

 EM1=

a

 ’

 MGF

Figure 1: Constructing EM1.

M2 seed

 DB =

 EM2=

a

 ’

 MGF

EM1
 ’

Hash

Hash(DB)

LB

Figure 2: Construction of EM2

The designcryption operation essentially runs the construction in reverse. One important
point of the scheme not clearly captured in the pictures above is that the full RSA public
keys of both sender and recipient are bound to the signcryption of M, along with the label
L, in the label block LB. This prevents “identity fraud” attacks, and provides increased
security for users who may publish multiple public keys with the same RSA modulus
since the full public key, including the public exponent, is included in LB (this is relevant
for the Batch-RSA based schemes mentioned later).

Note that all lengths can be chosen “appropriately” to support mismatched sender
and recipient RSA modulus lengths. This is important for legal reasons. For example, a
sender might publish a certified public key using 1024-bit RSA, which it is allowed to
use in some countries for the purposes of signing, whereas encryption operations are
limited to 512-bit moduli by law. In this circumstance, if the sender wishes to signcrypt a
message to a recipient with a 512-bit key, it need not generate and sign a temporary 512-
bit key; instead, the sender can simply apply the signcryption primitive directly using it’s
1024-bit sender’s key and the 512-bit recipient’s key.

If the desired application of signcryption requires “non-repudiation”, RSASCS-

PSEP can be used to achieve this (barring disclosure of the sender’s private key). A
recipient who wishes to display the signature of the sender can simply decrypt EM1, and
provide it along with his public key and the sender’s signature of EM2 as evidence, which
can then be verified. This does not require the recipient to reveal his private key in order
to prevent the sender from repudiating his message.

The RSASCS-LPSEP encoding is virtually identical to the RSASCS-PSEP encoding.
Rather than encoding the message M directly, it encodes a short random key that is used
to encrypt the M. The encrypted copy of M is appended to the label L during the encoding
process, so that the encrypted message is bound to the signcryption of the key required to
decrypt it. The resulting scheme efficiently encodes long messages, and still provides the
full security and flexibility benefits of RSASCS-PSEP.

Using RSASCS-PSEP for SSL Key Exchange

The SSLv3 (Secure Sockets Layer version 3) protocol is a commonly used
protocol for establishing secure connections between client web browsers and web
servers. In the common situation, web servers have certified RSA public keys
representing their identities, whereas clients do not (and thus are usually not
authenticated). A minimal SSLv3 handshake and key exchange protocol will proceed
roughly as follows:

Round 1 (Client -> Server) : Handshake messages
Round 2 (Server -> Client) : Handshake + Server’s Certified Public Key S
Round 3 (Client -> Server) : RSAS(fresh secret)

The server can use a signed temporary RSA public key instead of S is to ensure forward
security (that is, even if the server’s secret key is compromised at some point, all
previous communications remain secure), but achieving full forward security would
require the server to regenerate this key for every connection, which is computationally
expensive. Another way of achieving full forward security is to employ a Diffie-Hellman
Key Exchange, but this too is computationally expensive. Setting aside the issue of
forward security, the computational requirements for the server mainly come from
decrypting the fresh secret sent by the client in Round 2. Since RSA decryption
operations are expensive (even for “low-exponent” RSA), the server is performing a very
computationally expensive operation.
 We suggest the following signcryption based protocol, which helps to minimize
the computational expenses on the server side, in trade for more client-side computation,
while retaining full forward security.

 Round 1 (Client -> Server) : Handshake messages + temporary client RSA key C
 Round 2 (Server -> Client) : Handshake + Server’s Certified Public Key S
 + Signcryption(session key) from S to C

This protocol eliminates one round of communication by allowing the server to choose
the session key. Furthermore, provided that the client uses fresh temporary RSA keys for
every SSL connect (it takes approximately 1 second to generate a 1024-bit RSA key on a
Pentium II running at 450Mhz), the protocol provides full forward security and precludes
replay attacks. The server-side computational expenses are approximately the cost of a
single RSA decryption (provided that the client uses low-exponent RSA, which renders
the cost of an RSA encryption trivial compared to the cost of a decryption).

However, unlike the “best case” version of the SSLv3 protocol presented above,
in our suggested protocol the server can easily employ the batch RSA technique
described in [5]. This technique allows the server to “batch” signing operations together,
performing one expensive computation to obtain the results for all of the operations. It
requires the server to publish several separate certified public keys with different RSA
public exponents but the same RSA modulus (one for each signing operation to be
included in a batch). Our protocol can handle this transparently from the client
perspective, since the server simply provides the appropriate public key to each client in
the batch. The server can select any arbitrary set of pending signcryption operations to
batch together. On the other hand, using batch RSA with the SSLv3 protocol is extremely
inefficient since it would be difficult to properly schedule the different encryption
exponents among the clients, and the server might have to wait a significant period of
time for all the client responses to arrive for a given batch. Batch RSA is has been
benchmarked at approximately 2.64 times the speed of standard RSA for 1024-bit keys
[6]. Thus, our suggested protocol can easily be made more than twice as fast on the server
side as the fastest version of the SSLv3 protocol.

Further Improvements

 Further speed improvements to RSA decryption and signing operations, which
apply to both the existing SSL key exchange protocol and our proposed protocol, include
multi-prime and multi-power RSA, as well as rebalanced RSA. Multi-power RSA is not
recommended due to security concerns [7]. In [6], we find that rebalanced RSA is
approximately 3 times faster than standard RSA. We have benchmarked multi-prime
RSA, which is widely accepted and has become part of the PKCS#1 v2.1 standard, at
more than 1.7 times as fast as standard RSA. Significantly, all these techniques can be
combined, and we expect the result to be more than 10 times as fast as standard RSA
using multi-prime, rebalanced, and batch RSA, or approximately 4.4 times as fast as
standard RSA using just batch RSA and multi-prime RSA (which provides extremely
reasonable security) for 1024-bit keys. Since the cost of our proposed key exchange
protocol is approximately the cost of a single RSA decryption, we can use benchmarks of
RSA decryption time to determine the maximum number of key exchanges a server can
perform per second.

 We modified an open source library for SSL, known as OpenSSL, to support
multi-prime RSA as specified in the PKCS#1 v2.1 document, and benchmarked the
resulting RSA decryption / signing performance on an Intel Xeon 2 Ghz processor
running Redhat Linux 7.3. The results are summarized in Table 1 below.

 1024-bit modulus 2048-bit modulus 4096-bit modulus

2 primes 155 26 4
3 primes 264 49 8
4 primes 386 76 12

Table 1: RSA decryption (or signature) operations per second

 The table indicates that a typical web server running on modern hardware should
be able to perform over 260 key exchanges per second using a 1024-bit RSA modulus
with 3 primes and our proposed key exchange protocol. Furthermore, if batch RSA were
implemented, we anticipate this number would jump to over 675 key exchanges per
second. In combination with rebalanced RSA we could exceed 1000 key exchanges per
second, but it is unclear how safe this approach is from a standpoint of security.
Similarly, the protocol can be made more efficient by using smaller RSA moduli (512 bit
moduli are currently in widespread use, even though such moduli have been broken by
distributed computing efforts in the past), although this would seriously compromise the
security of the protocol. We note that the same Xeon 2 Ghz processor used for these
benchmarks could perform a maximum of approximately 150 SSL key exchanges per
second in an unmodified 512-bit RSA OpenSSL configuration (with Diffie-Hellman Key
Exchange enabled).

Conclusion

 In conclusion, we feel that our suggested signcryption primitive has proven to be
a useful one. Protocol designers can easily use it to achieve extremely powerful security
guarantees in a wide variety of settings. It is efficient, backwards compatible, and easily
implemented. Using the latest fast variants of RSA [6], the signcryption operation can be
used to dramatically improve both the performance and security of RSA based key
exchange protocols such as those in SSLv3. Furthermore, protocols using signcryption
often have lower round complexity than their counterparts using plain signature and
encryption operations (as evidenced by our removal of a round from the minimum round
SSL key exchange). Protocols and applications that already rely on separate RSA
signature and encryption operations can be made conceptually simpler, more efficient,
and more secure in a straightforward fashion by simply replacing those operations with
signcryption. Signcryption is inherently less likely to be abused by practitioners due to its
extremely strong security guarantees, which more closely match the idealized view of the
strength of cryptographic primitives most people find to be intuitive. Our scheme also
provides many small hidden benefits that will likely find use in time. (For example, it is
possible to send the portion of the RSASCS-PSEP encoding that needs to be signed over
to another machine, using any authenticated channel, for it to be signed there. The
machine performing the signing operation learns nothing about the ciphertext.)

 While the signcryption standard we proposed is ideally suited to most RSA public
key environments, a few drawbacks remain. For applications where extremely low
bandwidth is available and short messages must be exchanged, the minimum ciphertext
length of our scheme may be unacceptable. It may also be in appropriate for settings
where it is impractical to perform the padding operation in the presence of the full RSA
public keys of both the sender and recipient (i.e. extremely low memory environments
such as smart cards). These drawbacks could have been further minimized at the cost of
extra complexity in the implementation of the scheme. We believe these drawbacks are
extremely minor in light of the many advantages of using RSASCS-PSEP, and thus we
recommend the standard in its present form.

Bibliography

[1] Y. Zheng, Digital signcryption or how to achieve cost(signature & encryption) <<

cost(signature) + cost(encryption), in Burton S. Kaliski Jr., editor, Advances in
Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science,
pages 165-179. Springer-Verlag, 17-21 August 1997.

[2] RSA Laboratories, PKCS #1 v2.1: RSA Encryption Standard, June 2002.
[3] Yevgeniy Dodis, Michael J. Freedman, and Shabsi Walfish, Parallel Signcryption

with OAEP, PSS-R, and other Feistel Paddings, in Cryptology ePrint Archive, Report
2003/043, http://eprint.iacr.org/2003/043, March 2003.

[4] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and
encryption. In Lars, Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,
Lecture Notes in Computer Science. Springer-Verlag, 28 April – 2 May 2002.

[5] A. Fiat. Batch RSA. In G. Brassard, ed., Proceedings of Crypto ’89, vol. 435 of
LNCS pp. 175-185, Springer-Verlag, 1989

[6] Dan Boneh, Hovav Shacham. Fast Variants of RSA. RSA CryptoBytes, vol. 5, no. 1
(2002), pages 1–9.

[7] Personal communication from Victor Shoup, regarding the difficulty (or lack thereof)
of factoring integers of the special form N = p2q used by multi-power RSA

