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Abstract. Authenticated encryption schemes used in order to send one
message to one recipient have received considerable attention in the last
years. We investigate the case of schemes, we call authenticated 1→n

schemes, that allow one to encrypt efficiently in a public-key setting a
message for several, say n, recipients in an authenticated manner. We
propose formal security definitions for such schemes that work also for
n = 1 and which are stronger and/or more general than those currently
proposed. We then present a flexible mode of operation that transforms
any 1→1 authenticated encryption scheme working on small messages into
a 1→n authenticated encryption scheme working on longer messages. We
show that it allows the construction of efficient 1→n schemes that are
proved secure for the strongest security notion.
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1 Introduction

How to asymmetrically and efficiently encrypt a message for multiple recipients in
an authenticated manner? This question takes all its meaning for example in an
electronic email context where users are not fixed and not necessarily organized.
A sender would like some times to send a message to a unique recipient, and some
times extend this action to several, say n, recipients. Repeating the former ac-
tion n times would lead to a secure but inefficient protocol. Here the efficiency is
measured in computational time (including the number of long data treatments),
message expansion rate and simplicity of the making use.

MOTIVATIONS. Hybrid encryption is used in practice in order to encrypt a long
message. A public key encryption scheme is used to encrypt a key that can then
be used to symmetrically encrypt the message. In [27, 28, 9] the authors propose a
general framework based on (asymmetric) Key Encapsulation Mechanisms (KEM)
and (symmetric) Data Encapsulation Mechanisms (DEM). The KEM does not de-
pend on the message and the key is generated by KEM itself (KEMs are not encryp-
tion mechanisms). This well-used framework allows simpler designing and simpler
proofs for the confidentiality property of hybrid schemes that can be studied sep-
arately for each mechanism. Let’s consider Shoup’s KEM-DEM model. To encrypt



a message m for a recipient B, a sender A first computes (K, C0) ← KEM(pkB)
where pkB is the public key of B and then computes C1 = DEM(K, m) and sends
(C0, C1).

The symmetric key K used to encrypt the message m depends on the public
key of the recipient. Let’s assume now that the sender wants to send the same
message m to n recipients B1, . . . , Bn. The sender would like to have a common
symmetric key K to encrypt the (long) message m and then encrypt the (short)
key for each recipient. Encapsulation mechanisms are not well-suited to this use.
In order to be efficient, a solution is to use an asymmetric encryption scheme ASYM
instead of a KEM mechanism. Furthermore techniques of broadcast schemes can
be used here to reduce the cost of the sending of the symmetric key. Finally the
sender will have to proceed as in Fig.1.

1. choose a random lK-bit key K where lK the length of the key used in DEM

2. compute C0 = DEM(K, m)
3. for each recipient (or each public key resulting from the broadcast scheme):

compute C1,i = ASYM(pki, K)
4. send (C0, C1,1, . . . , C1,n)

Fig. 1. Hybrid scheme for multiple recipients

As noticed above, the operation in step 3 can be replaced by any encryption
mode that works on small messages and that send one message to n recipients.
This mode is not constrained to output n ciphertexts. The public keys used in the
encryption mode can be associated to groups of users. In applications where users
may be organized, for example with a tree structure, results from broadcast en-
cryption schemes apply. Frameworks of [13, 24, 15] for example can thus be used to
efficiently send a message in a confidential but unauthenticated manner to n users.

The rest of the paper consists in authenticating in a secure way the above
scheme. We show that another modification of Shoup’s KEM-DEM model should be
made in order to achieve some appropriate properties.

RELATED WORK. In an asymmetric setting, authenticity is usually provided by
signature schemes as defined in [14]. Many proposals such as [17, 30, 4, 16, 23, 12]
have been made in order to provide both confidentiality and authenticity but,
until recently, without formal security proof. A new primitive for authenticated
encryption has also been proposed in [11]. It allows the transformation of an
authenticated scheme that sends one small message to one recipient into an au-
thenticated scheme that sends one longer message to one recipient. In the last
few years several formal security definitions appeared in the literature and par-
ticularly in [1, 3, 2, 23, 10, 12]. However, though security notions for authenticated
encryption in the symmetric setting seem to be fixed in [6], in the asymmetric
setting the model is not stabilized. Indeed, each of the proposed security models is
different from the others and a strong general model is missing. Paradoxically, this



general question seems more improved in the very specific area of identity-based
cryptography where stronger or more general security definitions are proposed
particularly in [22, 7]. In order to send the same message to several recipients, we
have currently the choice to use the above mentioned trivial mode which is not
efficient, a specific identity-based scheme such as [7, 19], or one of the two propos-
als given in [21, 31]. The first one composes a signature scheme and an encryption
scheme but can only provide a weak authenticity capability. The second one seems
to resist the usual adversaries. Nevertheless both were proposed without a for-
mal security model and thus without security proof. It appears that efficient and
secure modes of operation that provide both confidentiality and authenticity for
multiple recipients are not trivial, particularly when using hybrid encryption, since
adversaries considered for such schemes are much stronger than usual adversaries.

CONTRIBUTIONS. We investigate the domain of authenticated schemes, we call
authenticated 1→n schemes, that send one message to several recipients and that
are not constrained to use identity-based nor pairing-based cryptography. We
study some criteria in order to construct such schemes, in particular we show
that Shoup’s KEM-DEM model has to be modified to obtain efficient and secure 1→n
schemes. We thus survey the current security definitions for authenticated asym-
metric (1→1) schemes and propose a general and/or stronger one. This definition
is then extended in section 3.1 to authenticated 1→n schemes and compared to the
informal definitions given in [7, 19]. We show that the transformation proposed in
[11] can be extended to a 1→n authenticated encryption scheme. More generally
we propose in section 3.3 a general and flexible mode of operation that trans-
forms any 1→1 authenticated encryption scheme working on small messages, into
a 1→n authenticated encryption scheme working on longer messages. We show
that it allows the construction of efficient 1→n schemes that are proved secure
for the strongest security notion thanks to the theorem 3. A particular one, that
makes use of a signcryption scheme, is finally compared to Zheng’s 1→n scheme
defined in [31]. In a secondary way, we review the result given in [11] when ap-
plied to authenticated encryption. In particular we give, with the theorems 1 and
2, two security results in a public key setting that correct the partial result of [11].

SECURITY ISSUES. Let k be the security parameter. The usual language of poly-
nomial security is used for definitions and main security results. We say that an
advantage is negligible if it is smaller than the inverse of any polynomial p(k) for
sufficiently large values of k. Nevertheless concrete security statements are also
given for each reduction. We thus fix for all players (and adversaries) of the paper
a computational model M (such as a Random Access Machine). In particular,
we assume that all players use the same computational resources. We denote by
M(k) the set of machines that are probabilistic and polynomial-time in k.

NOTATIONS. We denote by x ← A() the output of a randomized algorithm A,
|x| the length in bits of x and x←r {0, 1}l a random and uniform choice of x in
{0, 1}l.



2 1→1 Authenticated encryption schemes

2.1 Definitions

We give in this section definitions for classical authenticated public key encryption
schemes used to encrypt one message for one recipient and called 1→1 schemes.
The difference with usual public key schemes is that the encryption function
depends on both the public key of the recipient and the private key of the sender.
We also note that, as in usual public key encryption scheme, each user receives a
unique private key / public key pair. This choice is made also in [2, 12] and [22, 7].
So the authenticated encryption schemes considered here are not constrained to
have two different key generation algorithms, one for senders and one for receivers
as in [1, 3, 23, 10].

Definition 1 (1→1 Authenticated encryption) We define a 1→1 authenti-
cated encryption AE = (AG, AK, AE, AD) by four polynomial-time (in k) algorithms:

1. AG a general randomized setup algorithm that takes as input the security pa-
rameter and outputs a global information I;

2. AK a randomized algorithm that takes as input the global information I, and
outputs a private key / public key pair (sk, pk);

3. AEsk a randomized encryption algorithm, depending on the secret key sk of
the sender, that takes as input the public key of the recipient and a message
m, and outputs the public key pk of the sender and a ciphertext;

4. ADsk a decryption algorithm, depending on the secret key sk of the recipient,
that takes as input a public key and a ciphertext, and outputs a message m or
⊥ if the ciphertext is not valid.

The correctness requirement is that for all key pairs (skA, pkA), (skB , pkB) and
for all messages m: ADskB

(AEskA
(pkB ,m)) = m. Furthermore, it is assumed in

the following that sk contains pk.

Both privacy and authenticity must be studied for such schemes. Several for-
mal definitions for these properties appear in the literature and particularly in [1,
3, 2, 23, 10, 12] for usual schemes. Nonetheless, the proposed security models are
different from each others, depending on the following characteristics. Definitions
such as [22, 7] from identity-based cryptography are also considered since they
seem more stabilized.

TWO-USER vs MULTI-USER SETTING. The definitions of [1, 3, 23, 10] are given
in a two-user setting. These definitions can be useful for a first analysis of the se-
curity, but are unfortunately not sufficient to prove the security of a real scheme,
always used in a multi-user setting, since some results proved in the former model
become wrong in the latter one. The drawback of two-user setting proofs is under-
lined in [2] where an intuitive technique is given in order to obtain secure schemes
in a multi-user setting from secure ones in a two-user setting. However, we choose
the multi-user model as done in [12, 22, 7].



ORACLES. When modeling the privacy property (of encryption schemes) or the
authenticity property (of signature schemes), some access to oracles are given to
the adversary, namely a decryption oracle when attacking the confidentiality, or a
signature oracle when attacking the authenticity. This choice is justified by the fact
that in an unauthenticated public key encryption scheme only the public key of
the recipient is used to compute a ciphertext and only its private key is unknown
by the adversary. In the same way, for the signature scheme only the private
key of the sender is unknown by the adversary. In an authenticated encryption
scheme, the private key of a user is used in both the encryption algorithm and the
decryption algorithm, and both the private key of the sender and the public key
of the receiver contribute to the computation of a ciphertext. So, an adversary
should be given access to both the encryption and the decryption oracles of the
users. This is done only in [12, 22, 7]. Besides, in a multi-user setting these oracles
must be flexible ones (the terminology comes from [3]), i.e oracles which are not
restricted to encrypt (nor decrypt) for a particular user.

Let’s consider for example the scheme DHETM of [1] where a ciphertext from
A to B is defined by C = pkA ‖ C1 ‖ C2 where C1 is the symmetric encryption
of the message m under a key K1 and C2 is the result of a MAC function of C1

under a key K2, and where K1 ‖ K2 = H(pkskB

A ) (where H is a hash function and
pkskB

A is the static Diffie-Hellman key between A and B). If we consider an adver-
sary who is not given the decryption oracle of A, we can show that the scheme is
IND-CCA2 but we cannot say that the only way in practice for an adversary to
obtain information on the plaintext is to submit the ciphertext to the decryption
algorithm of B because if the adversary has access to the decryption algorithm
of A then he would obtain the plaintext. A similar reasoning can be made for the
authentication property. A solution for DHETM is to consider a security model
as in [1] where the private key used to encrypt is different from the private key
used to decrypt, or to break the symmetry of the encryption function in the com-
putation of K1 and K2.

OUTSIDER vs INSIDER SECURITY. As opposed to the outsider security, when
studying the insider security of a scheme we consider an adversary who can be
the sender when attacking the confidentiality or the receiver when attacking the
authenticity. In this case we can let the adversary choose his keys as in [1, 2,
12]. Insider security is thus stronger than outsider security but is not necessarily
required. It may be interesting in a 1→1 scheme to study for example the conse-
quences of the compromising of the private key of a sender on the indistinguability
property, or to study the non-repudiation property of the scheme.

GAMES. The confidentiality of a scheme is in most cases (for the stronger prop-
erty) modeled by a find-then-guess game where the adversary mounts a chosen
ciphertext attack, and is only disallowed to submit the received challenge to the
decryption oracle of the receiver. We concentrate here on the so-called IND-CCA2
property even if it can be considered as too strong in practice (see for example
[2]). For the authenticity, several possibilities exist, when defining the restrictive



condition on the forgery returned by the adversary. In some cases, we would like
a receiver of a ciphertext to be convinced that a sender A has effectively sent the
associated plaintext m, i.e. no adversary is able to construct a valid ciphertext for
a new plaintext m that is not submitted to the encryption oracle. This property
is denoted here by UF-wPTXT where UF-w stands for weak unforgeability and
PTXT stands for plaintext. Since the ciphertext must be produced for a recip-
ient B, we could require in a multi-user setting that (m, pkB) is not submitted
to the oracle. We denote this property by UF-PTXT. In this case the receiver
B is convinced that the sender has sent the message m to him. We could also
require that the ciphertext returned by the adversary is new, i.e. not returned by
the encryption oracle of the sender, or not returned by the encryption oracle of
the sender for a request of the type (pkB ,mi). These properties are denoted by
UF-wCTXT and UF-CTXT where CTXT stands for ciphertext.

The following model of security is a generalisation of the definitions of [12, 22,
7] where particular choices are made on the adversaries and on the games. We thus
consider an adversary who is given four flexible oracles: OAEA

,OAEB
, OADA

,OADB
,

which correspond to the encryption oracles of the sender and the receiver, and the
decryption oracles of the sender and the receiver. Such an adversary is denoted
by AOAEA

,OADB
,OAEB

,OADA .

Definition 2 (1→1 Outsider security) An authenticated 1→1 encryption
scheme AE is outsider-secure if:

1. AE is IND-CCA2 i.e. the advantage Advindcca2
AE,A (k) equals to

2.Pr[ I ← AG(1k), (skA, pkA)← AK(I), (skB , pkB)← AK(I), σ ←r {0, 1},
(s,m0,m1)← A

OAEA
,OADB

,OAEB
,OADA

1 (I, pkB , pkA), Cσ ← AEskA
(pkB ,mσ);

AOAEA
,OADB

,OAEB
,OADA

2 (I, pkB , pkA, s, Cσ) = σ]− 1

where s is the memory of A and Cσ is not submitted to OADB
, is negligible for

all A = (A1,A2) ∈M(k),
2. AE is UF-TXT i.e. the advantage Advuf−txt

AE,A (k) equals to

Pr[ I ← AG(1k), (skA, pkA)← AK(I), (skB , pkB)← AK(I);
AOAEA

,OAEB
,OADA

,OADB (I, pkB , pkA) = (pkA, c) / ADskB
(pkA, c) = m 6= ⊥]

where (pkA, c) is not a response of OAEA
for a request of the form (pkB ,mi)

(for UF-CTXT), or (pkA, c) is not a response of OAEA
(for UF-wCTXT), or

(pkB ,m) has not been submitted to OAEA
(for UF-PTXT), or m has not been

submitted to OAEA
(for UF-wPTXT), is negligible for all A ∈M(k).

For the insider security, we let the adversary choose skB when attacking the
unforgeability property and skA when attacking the IND-CCA2 property. We de-
note by O-UF the authenticity for outsider adversaries and I-UF the authenticity
for insider ones. We denote also the confidentiality property by O-IND-CCA2 for



outsider adversaries and I-IND-CCA2 for insider ones.

Finally, we obtain eight properties for the authenticity. We denote them by
x-UF-yTXT where x ∈ {O, I} and y ∈ {wP,P,wC,C}.

We have clearly for x ∈ {O, I}: x-UF-CTXT ⇒ x-UF-wCTXT and x-UF-
CTXT⇒ x-UF-PTXT⇒ x-UF-wPTXT. The UF-wPTXT property is sufficient in
some applications where we do not want to authenticate the recipient, in particular
where we would like to be able to forward an authenticated message to other
recipients. The only difference between x-UF-CTXT and x-UF-PTXT is on the
ability for an adversary to produce a new ciphertext but without changing the
message nor the recipient. Nevertheless we keep the x-UF-CTXT property since it
is the strongest authentication property. We note also that, in a multi-user setting
we have with the current definitions x-UF-wCTXT ; x-UF-PTXT ∀x ∈ {O, I},
since an adversary may submit to OAEA

many requests of the form (pki,mi) until
the ciphertext decrypts properly under pkB . Thus, the UF-wCTXT notion will
not be used in the following.

2.2 Authentication of a hybrid scheme

COMPOSITION METHODS. A solution to authenticate a hybrid scheme is to use
a composition method that combines a signature scheme S with an encryption
scheme E . Encrypt-then-Sign (EtS) and Sign-then-Encrypt (StE) are examples of
such schemes. These compositions are shown in [2] secure against insider adver-
sary in a two-user model where the adversary has only access to two oracles. A
technique is given to transform these compositions into secure ones in a multi-
users setting. Nevertheless, these compositions require two independent key pairs
for each users and have a message expansion rate which is not optimal.

AUTHENTICATED KEM . In order to avoid the mentioned drawbacks of general
composition schemes, one may use one-pass authenticated key exchange protocols
as defined in [25]. This solution was first adopted for example in [32, 20, 29]. This
technique was also applied to KEM mechanisms in [1, 10]. The generated symmet-
ric key depends then on both the key of A and the key of B. It is shown in [10]
that this construction may achieve an authentication property against outsider
adversary. As noted in the same paper, it does not allow to consider insider secu-
rity. Indeed since the KEM mechanism does not depend on the message, only the
symmetric key is authenticated. So, everyone who knows the key (a recipient) can
use the authenticated part and the key on another message, i.e. B may construct
C ′ = (pkA, C0, C

′
1 = DEM(K, m′)). As noted in [2], this is not an issue in several

applications for 1→1 schemes since the recipient is unchanged, in particular if
non-repudiation is not required.

SIGNCRYPTION. As shown in [10], a security against insider adversaries may be
achieved by considering a construction where the KEM part of the hybrid scheme
takes as input a public key pkB and the message m. This leads to a general scheme



of the form H-PKE described in Fig.2. The message to encrypt is then, contrary to
Shoup’s KEM-DEM model, an input of both the asymmetric part and the symmetric
part.

H-PKEskA(pkB , m) SCskA(pkB , m)

1. (K, C0)← KEMskA(pkB , m) 1. Choose a nonce x
2. C1 = DEM(K, m) 2. K1, K2 = H(pkx

B)
3. Send (pkA, C0, C1) 3. Λ = HK1(m)

4. Σ = x/(Λ + skA) mod q
5. C1 = DEM(K2, m)
6. Send (pkA, Λ, Σ, C1)

Fig. 2. H-PKE and SC Functions

Signcryption schemes, introduced in [30], were originally particular cases of H-PKE
schemes as defined in Fig.2. They were defined as schemes that “fulfill both the
functions of secure encryption and digital signature but with a cost smaller than
that required by signature-then-encryption”, and constitute another way to con-
struct authenticated hybrid schemes. They are computationally very efficient
schemes and allow some interesting properties such as the possibility for the sig-
nature part to be verifiable directly if the message is given with the public key of
the sender [4], non repudiation [23] and so insider security.

A signcryption function depends on the private key skA of the sender and
takes as input the public key pkB of a recipient and a message m. We denote by
SC a signcryption function that combines a hybrid scheme of the form KEM-DEM
and a signature scheme. An example described in Fig.2 is given in [31] where a
group of order q is chosen, H is a hash function, HK is a keyed hash function
under a key K and DEM is the CBC mode of the DES. The KEM part of this scheme
can be viewed as the first four steps. The efficiency comes from the fact that the
same nonce is used in steps 2 and 4.

2.3 An authenticated 1→1 scheme transformation

Recently, Y. Dodis and J. An proposed in [11] a new primitive that allows one
to transform a 1→1 authenticated encryption scheme working on small messages
into a 1→1 authenticated encryption scheme working on long messages.

Definition 3 (Concealment) A concealment scheme is defined by three poly-
nomial-time (in k) algorithms C = (Setup, Conceal, Open), such that:

1. Setup(1k) outputs a public concealment parameter ck possibly empty;
2. Concealck(m) is randomized and transforms a message m into a pair (h, b);
3. Openck(h, b) is deterministic and outputs m if (h, b) is valid or ⊥ otherwise;
4. correctness: we require that Openck(Concealck(m)) = m for all m and ck;
5. non triviality: we require that |b| � |m|. We denote by lb = |b|.



Hiding. C satisfies the hiding property if for all A = (A1,A2) ∈M(k),

Advhid
C,A(k) = 2.Pr[ ck ← Setup(1k), (m0,m1, s)← A1(ck), σ ←r {0, 1},

(h, b)← Concealck(mσ);A2(s, h) = σ]− 1 < 1/p(k).

Binding. C satisfies the binding property if for all A ∈M(k),

Advbind
C,A (k) = Pr[ ck ← Setup(1k); (b, h, h′)← A(ck) / Openck(h, b) 6= ⊥

and Openck(h′, b) 6= ⊥] < 1/p(k)

even if Openck(h, b) 6= Openck(h′, b).

Relaxed Binding. C satisfies the relaxed binding property if for all A ∈M(k),

Advr−bind
C,A (k) = Pr[ ck ← Setup(1k), (m, s)← A1(ck), (h, b)← Concealck(m),

h′ ← A2(s, h, b); Openck(h′, b) 6= ⊥] < 1/p(k).

We call for short (relaxed) concealment scheme a concealment scheme that is
non trivial and that satisfies the hiding and the (relaxed) binding properties. It is
shown in [11] that (relaxed) concealment schemes exist iff (universal one way hash
function (UOWHF)) collision resistant hash function (CRHF) exist. Furthermore,
the following constructions are proposed:

Example 1 (Concealment scheme) C is defined by:

1. Setup(1k) = ∅;
2. Conceal(m) = (DEM(τ,m), τ ‖ H(DEM(τ,m))) where τ is a nonce, DEM is a

one time encryption scheme (ind-pa), and H is a CRHF;
3. Open(h, b) = DEM−1(τ, h) if b = τ ‖ t and H(h) = t, ⊥ otherwise.

Authenticated encryption scheme transformation.
Let AE = (AG, AK, AE, AD) be a 1→1 authenticated encryption scheme working on
small messages and C = (Setup, Conceal, Open) be a concealment scheme. The
1→1 authenticated encryption scheme working on long messages is defined by
AE ′ = (AG′, AK′, AE′, AD′) where:

1. AG′(1k) outputs I = (I0, ck) where I0 ← AG(1k) and ck ← Setup(1k);
2. AK′(I) outputs (sk, pk) where (sk, pk)← AK(I0);
3. AE′skA

(pkB ,m) outputs (pkA, h, c) where (h, b)← Concealck(m) and
(pkA, c)← AEskA

(pkB , b);
4. AD′skB

(pkA, h, c) outputs Openck(h, ADskB
(pkA, c)).

Under the hypothesis that AE is a secure authenticated encryption scheme
(IND-CCA2 and UF-CTXT) working on small messages, an equivalence is claimed
in [11] between relaxed concealment schemes C and secure authenticated encryp-
tion schemes AE ′. A proof is given in a secret key setting (and so for outsider ad-
versary) but a correct proof of the direction “authenticated encryption⇒ relaxed



concealment” is missing. This result can be corrected by considering a super-
relaxed binding property.

Super-relaxed Binding. C satisfies the super-relaxed binding property if for all
A ∈M(k),

Advsr−bind
C,A (k) = Pr[ ck ← Setup(1k), (m, s)← A1(ck), (h, b)← Concealck(m),

h′ ← A2(s, h); Openck(h′, b) 6= ⊥] < 1/p(k).

The existence of super-relaxed concealment schemes can be shown from the
existence of concealment schemes that satisfy the hiding property (see appendix
A for the proof) with the following example.

Example 2 (Super-relaxed concealment scheme) C is defined by:

1. Setup(1k) = ∅;
2. Conceal(m) = (DEM(τ,m), τ ‖ Hy(DEM(τ,m)) ‖ y) where τ and y are nonces,

DEM is a one time encryption scheme (ind-pa), and H is an universal hash
function;

3. Open(h, b) = DEM−1(τ, h) if b = τ ‖ t ‖ y and Hy(h) = t, ⊥ otherwise.

The theorem 1 shows that a super-relaxed concealment is sufficient (and nec-
essary) to obtain an authenticated encryption scheme secure against outsider ad-
versary.

Theorem 1 Let AE be a 1→1 authenticated encryption scheme for short mes-
sages secure against outsider adversary (O-IND-CCA2 and O-UF-CTXT). C is
a super-relaxed concealment scheme iff AE ′ is a 1→1 authenticated encryption
scheme secure against outsider adversary (O-IND-CCA2 and O-UF-CTXT).

In fact, in a public key setting, we can show that a relaxed concealment scheme
is equivalent to an authenticated encryption scheme secure against insider adver-
sary.

Theorem 2 Let AE be a 1→1 authenticated encryption scheme for short mes-
sages secure against insider adversary (I-IND-CCA2 and I-UF-CTXT). C is a
relaxed concealment scheme iff AE ′ is a 1→1 authenticated encryption scheme
secure against insider adversary (I-IND-CCA2 and I-UF-CTXT).

Concrete security statements are given for these two theorems in Appendix
B.1 and B.2.

3 1→n Authenticated encryption schemes

3.1 Definitions

We define in this section authenticated public key encryption schemes used in
order to encrypt one message for n recipients and called 1→n schemes. We define
then security properties for such schemes.



Definition 4 (1→n Authenticated encryption) We define a 1→n authenti-
cated encryption scheme AM = (GM, KM, EM, DM) by four polynomial-time (in k)
algorithms:

1. GM a general randomized setup algorithm that takes as input the security pa-
rameter and outputs a global information I.

2. KM a randomized algorithm that takes as input the global information I, and
outputs a private key / public key pair;

3. EMsk a randomized encryption mode, depending on the secret key sk of the
sender, that takes as input a sequence PK of at most n public keys and a
message m and outputs the public key of the sender and a ciphertext C;

4. DMsk a decryption mode, depending on the secret key sk of the recipient, that
takes as input a public key and a ciphertext C and outputs a message m if C
is valid and ⊥ otherwise.

The correctness requirement is that for all public key / secret key pairs, for all
messages m, any encryption of m under pk1, . . . , pkn decrypts under ski (for
i ∈ {1, . . . , n}) to the message m. Furthermore, it is supposed in the following
that sk contains pk.

As for 1→1 authenticated encryption schemes, indistinguability and authen-
tication properties are required for such schemes. For the first one, we would like
(for the outsider security) that no adversary except the sender A and the receivers
can obtain information on the plaintext, i.e. can break the IND-CCA2 property.
The difficulty to construct a secure 1→n scheme comes from the authentication
property. We would like (again for the outsider security) that for all user B∗
(including a receiver), no adversary (outside {A,B∗}) including a recipient can
output a valid ciphertext for B∗ apparently from A. To our knowledge, except
maybe in the specific area of identity-based cryptography (see Remark 1), no se-
curity definition has ever been published for such authenticated 1→n schemes.
We propose to fill this gap with the formalization of the definition 5.

In the next, we denote by ODMBi
for ODMB1

, . . . ,ODMBn
and OEMBi

for OEMB1
,

. . . ,OEMBn
. So the precision “for i = 1, . . . , n” is omitted. We denote also by C|i

the part of C needed to a recipient Bi to decrypt the ciphertext.

Definition 5 (1→n Outsider security) Let n ≥ 1, and {B1, . . . , Bn} n recip-
ients of a message m from a sender A. We say that an authenticated 1→n en-
cryption scheme AM is outsider-secure if:

1. AM is IND-CCA2 for all adversaries A outside {A,B1, . . . , Bn}, i.e. the
advantage Advindcca2

AM,A (k) equals to

2.Pr[I ← GM(1k), (skA, pkA)← KM(I), (skBi
, pkBi

)← KM(I) for i = 1, . . . , n,

(s,m0,m1)← A
OEMA

,ODMA
,OEMBi

,ODMBi
1 (I, pkB1 , . . . , pkBn

, pkA), σ ←r {0, 1};
A
OEMA

,ODMA
,OEMBi

,ODMBi
2 (I, pkB1 , . . . , pkBn

, pkA, s, Cσ) = σ]− 1



where Cσ ← EMskA
({pkB1 , . . . , pkBn

},mσ) and for any i ∈ [1, n], Cσ|i is not
submitted to the oracle ODMBi

, is negligible for all A = (A1,A2) ∈M(k),
2. AM is UF-TXT for all Bi0 ∈ {B1, . . . , Bn} and all adversaries A outside
{A,Bi0}, i.e. the advantage Advuf−txt

AM,A (k) equals to

Pr[I ← GM(1k), (skA, pkA)← KM(I), (skBi
, pkBi

)← KM(I) for i = 1, . . . , n,

i0 ←r {1, . . . , n};A
OEMA

,ODMA
,OEMBi0

,ODMBi0 (I, skBi6=i0
, pkA, pkBi0

) = C
/ C = (pkA, c) and DMskBi0

(pkA, c) = m 6= ⊥]

where C|i0 is not given by OAEA
for a request of the form (PKi,mi) where

pkBi0
∈ PKi (for the UF-CTXT property), or (PKi,m) with pkBi0

∈ PKi

has not been submitted to OAEA
(for the UF-PTXT property), or m has not

been submitted to OAEA
(for the UF-wPTXT property), is negligible for all

A ∈M(k).

For n = 1 we have i0 = 1 and {skBi , i 6= i0} = ∅ as in definition 2. It is
also possible to define these properties for insider adversary, where A chooses skA

for the indistinguability and skBi0
for the unforgeability. As for 1→1 schemes,

we denote by x-UF-yTXT where x ∈ {O, I} and y ∈ {wP,P,C} the six inter-
esting different definitions for the unforgeability property of a 1→n scheme and
x-IND-CCA2 where x ∈ {O, I} the two different definitions for the confidentiality
property.

We note that the outsider adversary for the unforgeability properties is much
stronger for 1→n schemes than for 1→1 schemes, since he is able to decrypt all
C|i for i 6= i0, and in this way obtain the possible common symmetric key.

Remark 1 Previous informal security definitions are given in [7, 19] for identity-
based 1→n schemes. The indistinguability is defined in both cases for insider ad-
versary in an equivalent way than here. The unforgeability is defined with two
properties in [7]. The first one corresponds to the I-UF-wPTXT property. The
second one looks like the O-UF-CTXT property but it is not clear if the (outsider)
adversary may be another recipient. In [19] the I-UF-CTXT property is chosen.

3.2 Authentication of a 1→n scheme

An example of authenticated 1→n scheme is given in the RFC1421 standard [21],
destined to email applications. It uses a hybrid StE composition in order to send
a message to several recipients. A common message-encryption key K is asym-
metrically encrypted for each recipient by a sender A. These ciphertexts are then
attached to the Sign-then-Encrypt message. Thus, only the message is authen-
ticated, and it is easy for a recipient to add a new recipient B′ for the same
plaintext by only encrypting the key K under B′’s public key. B′ will believe that
A sent him the message. So the scheme can only be UF-wPTXT. As suggested
in [2] the identities of the recipients should be signed with the message. Even in
this case, the scheme is not I-UF-CTXT since the receiver can now construct a



new ciphertext by changing or re-encrypting the symmetric key. But in this case
neither the message nor the recipient can change. Nevertheless it shows that in
order to obtain the I-UF-PTXT property, the authentication part should depends
on the message and the identity of the recipient.

Let’s consider now a composition of a one-pass authenticated key exchange
protocol and a KEM mechanism. We have seen in section 2.2 that this technique
may achieve outsider security but not insider one. Let’s suppose now that we ap-
ply this technique to the multi-recipients version of the hybrid scheme described
in Fig.1, i.e. we make the function ASYM depend on the private key of the sender.
As before only the symmetric key would be authenticated. To send a message m
to n recipients B1, . . . , Bn the user A sends (C0,1, . . . , C0,n, C1 = DEM(K, m)) to all
users. Then a receiver Bi could re-use the authenticated encrypted key part C0,j

of a user Bj on another message, and send a new message to Bj apparently from A
with (C0,j , C

′
1 = DEM(K, m′)). Thus, this scheme can not achieve outsider security.

These examples show that, in order to obtain the stronger security property,
the authentication part should depend on the symmetric key, the message to
encrypt and the identity of the recipient. They show furthermore that the conse-
quences of a theoretical attack may be more tragic in practice in a multi-recipient
scheme than in a 1→1 scheme.

3.3 A 1→n mode of operation

We propose in this section a general mode of operation that transforms any au-
thenticated 1→1 scheme working on small messages into an authenticated 1→n
scheme working on long messages. This mode of operation makes use of an au-
thenticated 1→1 scheme AE = (AG, AK, AE, AD) as defined in section 2.1 and con-
cealment schemes C = (Setup, Conceal, Open) as defined in section 2.3.

We define AM = (GM, KM, EM, DM) an authenticated 1→n mode of operation
for AE in Fig.3.

Here, we have for i = 1, . . . , n, C|i = (pkA, h, ci). The sender has the choice,
depending on the context, to send the global output (pkA, h, c1, . . . , c#PK) to all
recipients, or to send only C|i to each Bi.

Theorem 3 If C is a relaxed concealment scheme, and AE is a secure 1→1 au-
thenticated encryption scheme (x-IND-CCA2 and x-UF-yTXT where x ∈ {O, I}
and y ∈ {wP,P,C}) working on small messages, then the given construction leads
to a secure 1→n authenticated encryption scheme (x-IND-CCA2 and x-UF-yTXT)
working on long messages.

Due to the power of the considered adversary for 1→n schemes super-relaxed
concealments are not sufficient here. The proof of the theorem 3 is presented
in appendix B.3. We show in particular that for x ∈ {o, i} and any adversary
A ∈ M(k) making qd(.) decryption-oracles queries and qe(.) encryption-oracles



1. GM takes as input the security parameter k, computes:

(a) I0 ← AG(1k)

(b) ck ← Setup(1k)
and outputs I = (I0, ck)

2. KM takes as input I and computes:
(a) (sk, pk)← AK(I) for each user

3. Encryption: EMskA takes as input a message m and a set PK of public
keys with #PK ∈ {1, . . . , n} and computes:
(a) (h, b)← Concealck(m)
(b) (pkA, ci)← AEskA(pkBi , b) for pkBi ∈ PK
and outputs (pkA, h, c1, . . . , c#PK)

4. Decryption: each owner of skBi recovers the message m with DMskBi
:

(a) ADskBi
(pkA, ci) = b

(b) outputs Openck(h, b) = m or ⊥

Fig. 3. Mode of operation AM

queries, there exist B,B′,B′′ ∈ M(k)3 whose running times are essentially the
same as that of A such that for all k

Advx−indcca2
AM,A (k) ≤ 2.qd(k).Advr−bind

C,B (k)+2n.Advx−indcca2
AE,B′ (k)+Advhid

C,B′′(k)+
2

2lb
,

where B′ makes at most n.qd(k) decryption-oracles queries and n.qe(k) encryption-
oracles queries. In the same way, we can show that

Advx−uf−ctxt
AM,A (k) ≤ qe(k).Advr−bind

C,B (k) + Advx−uf−ctxt
AE,B′ (k),

Adv
x−uf−(w)ptxt
AM,A (k) ≤ 2qe(k).Advr−bind

C,B (k) + Adv
x−uf−(w)ptxt
AE,B′ (k),

where, in both cases, B′ makes at most qd(k) decryption-oracles queries and qe(k)
encryption-oracles queries.

3.4 An efficient instantiation

In [31] the author proposes that in order to send a message m to several recipients
the scheme described in Fig.4. We denote by SC′ the signcryption scheme used in
the mode. SC′ is the SC function of Fig. 2 where the step 5 is changed. In this
construction, the authenticated part depends on both the message m (and the
identity of the receiver) and the symmetric key K. It was compared in [31] to the
RFC1421 [21] (which is not obsolete) and seems to be more efficient. Nevertheless,
it was proposed without proof of security.

We replace in the mode of operation, given in section 3.3, the general au-
thenticated 1→1 encryption scheme by a signcryption scheme and the general
concealment scheme by the example given [11] and described in the example 1.



Zheng’s construction. New construction.

Input : m

1. K ←r {0, 1}lK
2. c = DEM(K, m ‖ HK(m))
3. M = m ‖ HK(m)
4. for each receiver:

(pkA, hi, σi, ci) = SC′
skA

(pkBi , M)
where ci = DEM(K2, K)

Output: (pkA, c, h1, σ1, c1, . . . , hn, σn, cn)

Input : m

1. K ←r {0, 1}lK
2. c = DEM(K, m)
3. M = K ‖ H(c)
4. for each receiver:

(pkA, hi, σi, ci) = SCskA(pkBi , M)
where ci = DEM(K2, M)

Output : (pkA, c, h1, σ1, c1, . . . , hn, σn, cn)

Fig. 4. Comparison between two signcryption modes

We obtain for the encryption function EMskA
the construction of Fig.4, compared

to the construction of Zheng given in [31].
In both cases, the cost is (n+1) computations of a DEM function, 1 computation

of a hash function and n computations of signcryption functions. But if we look at
the length of data, we see that in the new construction the message to be signed
for each receiver is much smaller. This implies only 2 processings of long data
instead of n + 2.

From the theorem 3 and the security of the concealment scheme proved in
[11], we obtain that the new construction is secure in the sense of the definition
5 for all secure SC in the sense of the definition 2.

4 Conclusion and further work

We showed that the concealment primitive has another interesting application in
authenticated encryption. It allows us to define a secure and efficient mode of au-
thenticated encryption schemes when used to send a message to several recipients.
A further work would be first to prove the currently proposed authenticated 1→1
schemes in the security model described in this paper. Next we could see if we can
gain in efficiency in the instantiation by choosing an authenticated scheme AE
that is not necessarily secure against insider adversaries (as a signcryption scheme)
and which does not use a symmetric encryption scheme since we just need to en-
crypt a small message. Finally we note that the mode of operation could take
as input any authenticated encryption mode that sends one small message to n
recipients. In [5] it is shown that many 1→1 schemes can be transformed into
efficient (unauthenticated) m→n schemes (for m ≥ 1) by re-using the same ran-
domness for the n recipients. In [19] an example is given that shows it is possible
to use this technique in an authenticated encryption scheme. A general extension
of the results of [5] would thus be very useful for authenticated 1→n schemes.

Acknowledgements. The author would like to thank Yevgeniy Dodis for his con-
tribution on super-relaxed concealment schemes.
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A On super-relaxed concealment

It is known that if two users A and B have a public channel and a secret chan-
nel, then if A wants to transmit a message of length k securely to B, A must
send k bits over the secret channel or else one-way functions exist (see [26, 18]).
Thus, from theorem 1 non-trivial super-relaxed concealments imply one-way func-
tions. Furthermore, consider a Wegman-Carter [8] universal hash function H from
{0, 1}2µ(k) × {0, 1}k to {0, 1}ν(k). For a fixed y ∈ {0, 1}2µ(k) we view H(y, x)
as a function Hy(x) of x that maps k bits to ν(k) bits. This function satisfies
: if Y ←r {0, 1}2µ(k) then for all x ∈ {0, 1}k, x′ ∈ {0, 1}k \ {x}, and for all
a, a′ ∈ {0, 1}ν(k),

Pr
Y

[(HY (x) = a) and (HY (x′) = a′)] = 1/22ν(k).

This function can be constructed unconditionally. We can indeed define Hy(x) =
(y1x+y2){1,...,ν(k)} where y = (y1, y2), yi are considered as elements of GF (2µ(k))
and µ(k) = max(ν(k), k). Then, we have the following result.

Lemme 1 Let C = (Setup, Conceal, Open) be a concealment scheme that satisfies
the hiding property. Let H be an universal hash function as described above with
k = |h|. Then, the concealment scheme C′ defined by :



1. Setup′(1k) = Setup(1k) = ck;
2. Conceal′ck(m) = (h, b ‖ Hy(h) ‖ y) where y ←r {0, 1}2µ(k) and (h, b) ←

Concealck(m);
3. Open′ck(h′, b′) = ⊥ if Hy(h′) 6= t with b′ = b ‖ t ‖ y, or Openck(h, b) otherwise;

is a super-relaxed concealment scheme.

Proof. Since C is hiding, C′ is hiding too. Supposing C′ is not super-relaxed bind-
ing, we have an adversary that receives h and outputs h′ such thatHy(h) = Hy(h′)
for an Hy never seen by the adversary.

B Proofs

We use in all proofs the following well-known lemma.

Lemme 2 Let E,E′ and F be three events defined in some probability distribu-
tion such that Pr[E &F ] = Pr[E′ &F ]. Then,

|Pr[E]− Pr[E′]| ≤ Pr[F ].

B.1 Proof of theorem 1

Definition 6 (Relaxed∗ binding) We say that C satisfies the property Relaxed∗

Binding if the advantage

Advr∗−bind
C,A (k) = Pr[I0 ← AG(1k), (skA, pkA)← AK(I0), (skB , pkB)← AK(I0),

ck ← Setup(1k);AOAEA
,OAEB

,OADA
,OADB

1 (I0, pkB , pkA, ck) = (m, s),
(h, b)← Concealck(m), c = AEskA

(pkB , b);
h′ ← AOAEA

,OAEB
,OADA

,OADB
2 (s, h, c) / Openck(h′, b) 6= ⊥]

where c cannot be submitted to OADB
, is negligible for any A = (A1,A2) ∈M(k).

Lemme 3 For any adversary A ∈M(k) making qd(.) decryption-oracles queries
and qe(.) encryption-oracles queries, there exist B,B′ ∈ M(k)2 whose running
times are essentially the same as that of A such that for all k

Advr∗−bind
C,A (k) ≤ Advo−indcca2

AE,B (k) + Advsr−bind
C,B′ (k) +

1
2lb

where B makes at most qd(k) decryption-oracles queries and qe(k) encryption-
oracles queries.

Proof. Let’s fix a security parameter and an adversary A on the relaxed∗ bind-
ing property. We modify his game by giving him c = AEskA

(pkB , r1) where
r1 ←r {0, 1}lb \ {b} instead of c = AEskA

(pkB , b). We construct an adversary B on
the O-IND-CCA2 property as follows. BOAEA

,OAEB
,OADA

,OADB (I0, pkA, pkB) chooses
ck and runs AOAEA

,OAEB
,OADA

,OADB
1 (I0, pkB , pkA, ck) who outputs (m, s). Then B



constructs Concealck(m) = (h, b), outputs (b, r1) where r1 ←r {0, 1}lb \ {b} and
receives c∗ = AEskA

(pkB , b) or AEskA
(pkB , r1). Then B runs AOAEA

,OAEB
,OADA

,OADB
2

(s, h, c∗) who outputs h′. If Openck(b, h′) 6= ⊥ B returns b, else B returns r1. B can
simulate oracles for A with his own oracles. We have Advo−indcca2

AE,B (k) = |Pr[B →
b/b]− Pr[B → b/0]| = |Pr[A/game 0]− Pr[A/game 1]|.

Then, we can show that there exists B′ on the super-relaxed property. B′(ck)
generates I0 and keys for A and B, and runsAOAEA

,OAEB
,OADA

,OADB
1 (I0, pkB , pkA, ck)

who outputs (m, s). B′ outputs m and receives h where (h, b) = Concealck(m).
Then B′ constructs c = AEskA

(pkB , r1) where r1 ←r {0, 1}lb and runs
AOAEA

,OAEB
,OADA

,OADB
2 (s, h, c) who outputs h′. B′ outputs h′. Oracles can be simu-

lated with skA and skB . Since Pr[r1 = b] = 1/2lb we have:
Pr[B′] = Pr[A/game 1]− 1/1lb .

Lemme 4 For any adversary A ∈M(k) making qd(.) decryption-oracles queries
and qe(.) encryption-oracles queries, there exist B,B′,B′′ ∈M(k)3 whose running
times are essentially the same as that of A such that for all k

Advo−indcca2
AE′,A (k) ≤ 2.qd(k).Advr∗−bind

C,B (k) + 2.Advo−indcca2
AE,B′ (k) +

2
2lb

+ Advhid
C,B′′(k)

where B and B′ make at most qd(k) decryption-oracles queries and qe(k) encryption-
oracles queries.

Proof. Let’s fix a security parameter and an adversary A on the O-IND-CCA2
property of AE ′. The game of A is:

Game 0:
1. I ← AG′(1k),
2. (skA, pkA)← AK′(I),
3. (skB , pkB)← AK′(I),
4. A

OAD′
B

,OAE′
B

,OAD′
A

,OAE′
A

1 (I, pkB , pkA) = (s,m0,m1),
5. σ ← {0, 1},
6. Concealck(mσ) = (hσ, bσ),
7. cσ = AEskA

(pkB , bσ),

8. A
OAD′

B
,OAEB

,OAD′
A

,OAE′
A

2 (I, pkB , pkA, s, cσ, hσ) = σ′.

Where oracles are defined as real algorithms.

Game 1: We modify the game 0 as follows. When A2 makes a request to OAD′B
, if

c = cσ return ⊥. The probability to return ⊥ instead of m is equal to the proba-
bility to have Openck(h, bσ) 6= ⊥ with h 6= hσ. We can in this case construct an ad-
versary B on the relaxed∗ binding property. BOADB

,OAEB
,OADA

,OAEA (I0, pkA, pkB , ck)

runsA
OAD′

B
,OAE′

B
,OAD′

A
,OAE′

A
1 (I,pkB , pkA) who outputs (s,m0,m1), chooses σ ← {0, 1}

and outputs mσ. Then B receives (hσ, cσ), and runs A
OAD′

B
,OAE′

B
,OAD′

A
,OAE′

A
2 (I, pkB ,

pkA, s, cσ, hσ) who outputs σ′. B can simulate oracles for A with his own oracles



except for the request (cσ, h). So he just has to wait for the request (cσ, h) and
returns h. So we have |Pr[A/Game 0]− Pr[A/Game 1]| ≤ qd(k).Pr[B].

Game 2: We replace in game 1 cσ by cσ = AEskA
(pkB , r1) where r1 ←r {0, 1}lb \

bσ. We construct an adversary B′ on the O-IND-CCA2 property of AE . First

B′OADB
,OAEB

,OADA
,OAEA (I0, pkB , pkA) generates ck and runs A

OAD′
B

,OAE′
B

,OAD′
A

,OAE′
A

1 (I,
pkB , pkA) who outputs (s,m0, m1). Then B′ chooses σ ←r {0, 1}, constructs
Concealck(mσ) = (hσ, bσ) chooses r1 ←r {0, 1}lb \ bσ and outputs (r1, bσ). B′

receives c∗ = AEskA
(pkB , r1) or c∗ = AEskA

(pkB , bσ) and runs A
OAD′

B
,OAE′

B
,OAD′

A
,OAE′

A
2

(I, pkB , pkA, s, c∗, hσ) who outputs σ′. If σ′ = σ then B′ outputs bσ else B′ outputs
r1. Thanks to the modification made in game 1, B′ can simulate oracles for A with
his own oracles ans we have |Pr[A/Game 1] −Pr[A/Game 2]| ≤ Advo−indcca2

AE,B′ (k).

In the last game the only link between (m0,m1) and the challenge is given
by hσ. We construct an adversary B′′ on the hiding property as follows. B′′(ck)

generates I0, keys for A and B and runs A
OAD′

B
,OAE′

B
,OAD′

A
,OAE′

A
1 (I, pkB , pkA) who

outputs (s,m0,m1). B′′ outputs (s,m0,m1) and receives hσ where σ ←r {0, 1}
and (hσ, bσ) ← Conceal(mσ). Finally B′′ constructs c∗ = AEskA

(pkB , r1) where

r1 ←r {0, 1}lb and runs A
OAD′

B
,OAE′

B
,OAD′

A
,OAE′

A
2 (I, pkB , pkA, s, c∗, hσ) who outputs

σ′, Then, B′′ outputs σ′. B can simulate oracles for A with skA anf skB . Since
Pr[r1 = bσ] = 1

2lb
we have Pr[A/game 2] = Pr[B′′] + 1

2lb
.

Lemme 5 For any adversary A ∈M(k) making qd(.) decryption-oracles queries
and qe(.) encryption-oracles queries, there exist B,B′ ∈ M(k)2 whose running
times are essentially the same as that of A such that for all k

Advo−uf−ctxt
AE′,A (k) ≤ qe(k).Advr∗−bind

C,B (k) + Advo−uf−ctxt
AE,B′ (k)

where B and B′ make at most qd(k) decryption-oracles queries and qe(k) encryption-
oracles queries.

Proof. Let’s fix a security parameter and an adversary A on the O-UF-CTXT
property of AE ′ which succeed in the following game.

Game 0:
1. I ← AG′(1k),
2. (skA, pkA)← AK′(I),
3. (skB , pkB)← AK′(I),
4. AOAE′

A
,OAE′

B
,OAD′

A
,OAD′

B (I, pkB , pkA) = (c, h),
5. A succeeds if AD′skB

(pkA, c, h) = m 6= ⊥ and (c, h) is not returned by OAE′A
for

a request of the type (pkB ,mi).

Where oracles are defined as real algorithms.

Let’s denote by (mi, pki) the ith request to OAE′A
, and (pkA, ci, hi) the answer.

Let E be the event that (c, pkB) = (ci, pki) for one i ∈ [1, qe]. We have Pr[A] =
Pr[A/E].Pr[E] + Pr[A/E].Pr[E] where Pr[A/E] = Pr[A → (ci, h)/h 6= hi &



Openck(h, ADskB
(pkA, ci)) 6= ⊥]. In case where the event E happens, we con-

struct an adversary B on relaxed∗ binding as follows. BOADB
,OAEB

,OADA
,OAEA (I0,

ck, pkA, pkB) chooses i0 ← {1, . . . qe} and runs AOAE′
A

,OAE′
B

,OAD′
A

,OAD′
B (I, pkB , pkA)

who outputs (c, h). The oracle OAE′A
(pk, mi) is simulated as follows. If i 6= i0 then

B proceed as in the real algorithm. Else, B outputs mi0 , receives (ci0 , hi0), and
return (ci0 , hi0). B simulates the other oracles of A with his own oracles except
for the decryption request (ci0 , hi) to OAD′B

where ci0 cannot be submitted to
OADB

. For this request, if h = hi0 then B returns mi0 , else B returns ⊥. We can
suppose that the event to output ⊥ instead of a message mi does not happen
since we can show that there exists another adversary A′ (better than A) that
do not make this request. With probability 1/qe(k), c = ci0 and B returns h. So
Pr[B] = 1/qe(k).Pr[A/E].

Then, we construct another adversary B′ on the O-UF-CTXT property of AE .
First B′OAEA

,OAEB
,OADA

,OADB (I0, pkA, pkB) chooses ck ← Setup(1k) and runs
AOAE′

A
,OAE′

B
,OAD′

A
,OAD′

B (I, pkB , pkA) who outputs (c, h). Then, B′ outputs c. OAE′A
,

OAE′B
, OAD′A

,OAD′B
can be simulated with OAEA

, OAEB
,OADA

, OADskB
and since we

are in the case where the event E does not happen, we have Pr[B′] = Pr[A/E].

Lemme 6 For any adversary A ∈ M(k), there exists B ∈ M(k) whose running
time is essentially the same as that of A such that for all k

Advhid
C,A(k) ≤ Advo−indcca2

AE′,B (k)

where B makes no decryption-oracles querie and neither encryption-oracles querie.

Proof. The proof is easy and is left to the reader.

Lemme 7 For any adversary A ∈ M(k), there exists B ∈ M(k) whose running
time is essentially the same as that of A such that for all k

Advsr−bind
C,A (k) ≤ Advo−uf−ctxt

AE′,B (k)

where B makes no decryption-oracles querie and 1 encryption-oracles querie.

Proof. Let’s fix a security parameter and an adversary A on the super-relaxed
binding property. Then, we construct an adversary B on the O-UF-CTXT prop-

erty of AE ′ in the following way. B
OAE′

A
,OAE′

B
,OAD′

A
,OAD′

skB (I, pkB , pkA) runs A1(ck)
who outputs (m, s). Then, B submits (pkB ,m) to his oracle OAE′A

and receives
(c = AEskA

(pkB , b), h) with (h, b) = Concealck(m). Then B runs A2(ck, s, h) who
returns h′. B outputs (c, h′).

B.2 Proof of theorem 2

Lemme 8 For any adversary A ∈M(k) making qd(.) decryption-oracles queries
and qe(.) encryption-oracles queries, there exist B,B′,B′′ ∈M(k)3 whose running
times are essentially the same as that of A such that for all k

Advi−indcca2
AE′,A (k) ≤ 2.qd(k).Advr−bind

C,B (k) + 2.Advi−indcca2
AE,B′ (k) + Advhid

C,B′′(k) +
2

2lb



where B′ makes at most qd(k) decryption-oracles queries and qe(k) encryption-
oracles queries.

Proof. Let’s fix a security parameter and an adversary A on the I-IND-CCA2
property of AE ′. The game of A is:

Game 0:
1. I ← AG′(1k),
2. (skB , pkB)← AK′(I),
3. A

OAD′
B

,OAE′
B

1 (I, pkB) = (s, skA,m0,m1),
4. σ ← {0, 1},
5. Concealck(mσ) = (hσ, bσ),
6. cσ = AEskA

(pkB , bσ),

7. A
OAD′

B
,OAE′

B
2 (I, pkB , s, cσ, hσ) = σ′.

Where oracles are defined as real algorithms.

Game 1: We modify the game 0 as follows. When A2 makes a request to OAD′B
,

if c = cσ then return ⊥. The probability to return ⊥ instead of m is equal to the
probability to have Openck(h, bσ) 6= ⊥ with h 6= hσ. We can in this case construct
an adversary B on the relaxed binding property. B(ck) generates I0, keys for

B and runs A
OAD′

B
,OAE′

B
1 (I, pkB) who outputs (s, skA,m0,m1). Then B chooses

σ ← {0, 1} and outputs mσ. B receives (bσ, hσ) = Concealck(mσ), constructs

cσ = AEskA
(pkB , bσ), and runs A

OAD′
B

,OAE′
B

2 (I, pkB , s, cσ, hσ) who outputs σ′. B
can simulate oracles with skB , so he just has to wait for the request (cσ, h) and
returns h. So we have |Pr[A/Game 0]− Pr[A/Game 1]| ≤ qd(k).Pr[B].

Game 2: We replace in game 1 cσ by cσ = AEskA
(pkB , r1) where r1 ←r {0, 1}lb \

bσ. We construct an adversary B′ on the I-IND-CCA2 of AE . First B′OADB
,OAEB (I0,

pkB) generates ck and runs A
OAD′

B
,OAE′

B
1 (I, pkB) who outputs (s, skA,m0,m1).

Then B′ constructs Concealck(mσ) = (hσ, bσ) with σ ←r {0, 1},, chooses r1 ←r

{0, 1}lb \ bσ, and outputs (skA, r1, bσ). B′ receives c∗ = AEskA
(pkB , r1) or c∗ =

AEskA
(pkB , bσ) and runs A

OAD′
B

,OAE′
B

2 (I, pkB , s, c∗, hσ) who outputs σ′. If σ′ = σ,
B′ outputs bσ else B′ outputs r1. Thanks to the modification made in game 1, B′
can simulate oracles OAD′B

,OAE′B
with his oracles and we have |Pr[A/Game 1] −

Pr[A/Game 2]| ≤ Advi−indcca2
AE,B′ (k).

In the last game the only link between (m0,m1) and the challenge is given
by hσ. We construct an adversary B′′ on the hiding property as follows. B′′(ck)

first generates I0 and keys for B. Then B′′ runs A
OAD′

B
,OAE′

B
1 (I, pkB) who outputs

(s, skA,m0,m1). B′′ outputs (s,m0,m1) and receives hσ where σ ←r {0, 1} and
(hσ, bσ)← Conceal(mσ). Finally B′′ constructs c∗ = AEskA

(pkB , r1) where r1 ←r

{0, 1}lb and runs A
OAD′

B
,OAE′

B
2 (I, pkB , s, c∗, hσ) who outputs σ′. B′′ outputs σ′. B′′

can simulate oracles with skB . We have Pr[r1 = bσ] = 1
2lb

and Pr[A/game 2] =
Pr[B′′] + 1

2lb
.



Lemme 9 For any adversary A ∈M(k) making qd(.) decryption-oracles queries
and qe(.) encryption-oracles queries, there exist B,B′ ∈ M(k)2 whose running
times are essentially the same as that of A such that for all k

Advi−uf−ctxt
AE′,A (k) ≤ qe(k).Advr−bind

C,B (k) + Advi−uf−ctxt
AE,B′ (k)

where B′ makes at most qd(k) decryption-oracles queries and qe(k) encryption-
oracles queries.

Proof. Let’s fix a security parameter and an adversary A on the I-UF-CTXT
property of AE ′. The game of A is defined by:

Game 0:

1. I ← AG′(1k),
2. (skA, pkA)← AK′(I),
3. AOAE′

A
,OAD′

A (I, pkA) = (skB , c, h),
4. A succeeds if AD′skB

(pkA, c, h) = m 6= ⊥ and (c, h) is not returned by OAE′A
for

a request of the type (pkB ,mi).

Where oracles are defined as real algorithms.

Let’s denote by (mi, pki) the ith request to OAE′A
, and (pkA, ci, hi) the an-

swer. Let E be the event that (c, pkB) = (ci, pki) for one i ∈ [1, qe]. We have
Pr[A/E] = Pr[A → (ci, h)/h 6= hi & Openck(h, AEskB

(pkA, ci)) 6= ⊥]. In case
where the event E happens, we construct an adversary B on relaxed binding.
B(ck) first generates I0 and keys for A. Then he chooses i0 ← {1, . . . qe} and
runs AOAE′

A
,OAD′

A who returns (skB , c, h). The oracle OAD′A
is simulated with skA

as the real algorithm. The oracle OAE′A
(pk, mi) is simulated as follows. If i 6= i0

B proceed as in the real algorithm. Else B returns mi0 and receives (hi0 , bi0). He
computes AEskA

(pk, bi0) = ci0 and answers (ci0 , hi0) to A. With probability 1/qe,
c = ci0 and B returns h. So Pr[B] = 1/qe.Pr[A/E].

Then, we construct B′ on the I-UF-CTXT property of AE . B′OAEA,OADA (I0,
pkA) generates ck and runs A who outputs (skB , c, h). Then B′ returns (skB , c).
OAE′A

and OAD′A
can be simulated with OAEA

and OADA
and since we are in the case

where the event E does not happen, we have Pr[B′] = Pr[A/E].

Lemme 10 For any adversary A ∈M(k), there exists B ∈M(k) whose running
time is essentially the same as that of A such that for all k

Advhid
C,A(k) ≤ Advi−indcca2

AE′,B (k)

where B makes no decryption-oracles querie and neither encryption-oracles querie.

Proof. The proof is easy and is left to the reader.



Lemme 11 For any adversary A ∈M(k), there exists B ∈M(k) whose running
time is essentially the same as that of A such that for all k

Advr−bind
C,A (k) ≤ Advi−uf−ctxt

AE′,B (k)

where B makes no decryption-oracles querie and 1 encryption-oracles querie.

Proof. Let’s fix a security parameter and an adversary A on the relaxed bind-
ing property. We construct an adversary B on the I-UF-CTXT property of AE ′

in the following way. BOAE′
A

,OAD′
A (I, pkA) generates keys for B and runs A1(ck)

who outputs (m, s). B submit (pkB ,m) to his oracle OAE′A
and receives (c =

AEskA
(pkB , b), h) with (h, b) = Concealck(m). B runs A2(ck, s, h, b) who outputs

h′, and returns (skB , c, h′).

B.3 Proof of theorem 3

We note that for n = 1 we have AM = AE ′ and theorems 2 and 1 give the wanted
results. For n ≥ 1 we first consider outsider adversaries. For insider adversary the
proof is roughly the same exceptA chooses A’s private key for the indistinguability
and Bi0 ’s private key for the unforgeability.

Lemme 12 For any adversary A ∈M(k) making qd(.) decryption-oracles queries
and qe(.) encryption-oracles queries, there exist B,B′,B′′ ∈M(k)3 whose running
times are essentially the same as that of A such that for all k

Advo−indcca2
AM,A (k) ≤ 2.qd(k).Advr−bind

C,B (k) + 2n.Advo−indcca2
AE,B′ (k) +

2
2lb

+ Advhid
C,B′′(k)

where B′ makes at most n.qd(k) decryption-oracles queries and n.qe(k) encryption-
oracles queries.

Proof. Let’s fix a security parameter and an adversary A for the following game.

Game 0:
1. I ← GM(1k);
2. (skA, pkA)← KM(I);
3. (skBi

, pkBi
)← KM(I) for i = 1, . . . n;

4. A
OEMA

,ODMA
,OEMBi

,ODMBi
1 (I, pkB1 , . . . , pkBn

, pkA) = (s,m0,m1);
5. σ ←r {0, 1};
6. (hσ, bσ)← Concealck(mσ);
7. (pkA, cσ,i)← AEskA

(pkBi , bσ) for i = 1, . . . , n;
8. Cσ = (pkA, hσ, cσ,1, . . . , cσ,n);

9. A
OEMA

,ODMA
,OEMBi

,ODMBi
,

2 (I, pkB1 , . . . , pkBn
, pkA, s, Cσ) = σ′;

10. A succeeds if σ′ = σ.

Where oracles are defined as real algorithms. We denote by (pk, hj , cj,1, . . . , cj,n),
where cj,l for l 6= i may be an empty string, the queries to the ODMBi

oracles.



Game 1: We modify the game 0 as follows. When A2 makes a request to ODMskBi
:

if (pkA, cj,i) = (pkA, cσ,i) then return ⊥. The probability to return ⊥ instead of m
is equal to the probability to have Openck(hj , bσ) 6= ⊥ with hj 6= hσ. We construct
an adversary B on the relaxed binding property. B(ck) first generates I0 ← AG(1k)
and keys for A,B1, . . . , Bn, then B runs A1 who outputs (s,m0,m1). B choose σ in
{0, 1} and outputs mσ. Then B receives (hσ, bσ), constructs the ciphertexts cσ,i =
AEskA

(pkBi
, bσ) for i = 1, . . . , n, and runs A2 with Cσ = (pkA, hσ, cσ,1, . . . , cσ,n).

B can simulate oracles with the private keys, so he has just to wait for the request
(pkA, hj , cσ,i) and outputs hj . So we have |Pr[A/Game 0] − Pr[A/Game 1]| ≤
qd(k).Pr[B].

Game 2: We replace cσ,1 by cσ,1 = AEskA
(pkB1 , r1) where r1 ←r {0, 1}lb \ bσ. We

construct an adversary B′ on the O-IND-CCA2 property of AE . First
B′OADB1

,OAEB1
,OAEA

,OADA (I0, pkB1 , pkA) generates ck and (skBi
, pkBi

)← KM(I0) for
i = 2, . . . , n, and runs A1 who outputs (s,m0,m1). Then B′ chooses σ in {0, 1},
constructs Concealck(mσ) = (hσ, bσ) and outputs (r1, bσ) with r1 ←r {0, 1}lb \bσ.
Then, B′ receives c∗ = AEskA

(pkB1 , r1) or AEskA
(pkB1 , bσ), calls OAEskA

with
(pkBi

, bσ) for i = 2, . . . , n and runs A2 with Cσ = (pkA, hσ, c∗, cσ,2, . . . , cσ,n)
who outputs σ′. If σ′ = σ B′ outputs bσ else B′ outputs r1. Thanks to the mod-
ification made in game 1, B′ can simulate the oracles for A with his own oracles
and we have |Pr[A/Game 1]− Pr[A/Game 2]| ≤ Advo−indcca2

AE,B′ (k).

Games i = 3, . . . n + 1: we proceed as in game 2 with cσ,(i−1). We obtain:
|Pr[A/Game i− 1]− Pr[A/Game i]| ≤ Advo−indcca2

AE,B′ (k).

In the last game the only link between (m0,m1) and the challenge Cσ is
given by hσ. We construct an adversary B′′ on hiding property as follows. B′′(ck)
first generates I0 ← AG(1k) and keys for A,B1, . . . , Bn. Then, B′′ runs A1 and
outputs the same response. B′′ receives hσ where σ ←r {0, 1} and (hσ, bσ) ←
Conceal(mσ). Finally B′′ constructs cσ,i = AEskA

(pkBi
, r1) for i = 1, . . . , n where

r1 ←r {0, 1}lb and runs A2 with Cσ = (pkA, hσ, cσ,1, . . . , cσ,n). Finally, B′′ outputs
the same bit than A2. B′′ can simulate oracles with the private keys. We have
Pr[r1 = bσ] = 1

2lb
and Pr[A/Game n + 1] = Pr[B′′] + 1

2lb
.

Lemme 13 For any adversary A ∈M(k) making qd(.) decryption-oracles queries
and qe(.) encryption-oracles queries, there exist B,B′ ∈ M(k)2 whose running
times are essentially the same as that of A such that for all k

Advo−uf−ctxt
AM,A (k) ≤ qe(k).Advr−bind

C,B (k) + Advo−uf−ctxt
AE,B′ (k)

Adv
o−uf−(w)ptxt
AM,A (k) ≤ 2qe(k).Advr−bind

C,B (k) + Adv
o−uf−(w)ptxt
AE,B′ (k)

where B′ makes at most qd(k) decryption-oracles queries and qe(k) encryption-
oracles queries.

Proof. Let’s fix a security parameter and an adversary A for the following game.

Game 0:



1. I ← GM(1k);
2. (skA, pkA)← KM(I);
3. (skBi , pkBi)← KM(I) for i = 1, . . . , n;
4. i0 ←r {1, . . . , n};
5. A

OEMA
,ODMA

,OEMBi0
,ODMBi0 (I, skBi6=i0

, pkA, pkBi0
) = C;

6. A succeeds if DMskBi0
(pkA, C) = m 6= ⊥.

Where oracles are defined as real algorithms.

C is of the form (h, c1, . . . , cn) where ci for i 6= i0 may be empty strings and (h, ci0)
is not given by OEMA

for a request of the form (PKi,mi) where pkBi0
∈ PKi . Let

(pkA, hl, cl,1, . . . , cl,n) be the lth answer of OEMA
for l ∈ [1, qe] corresponding to a

query (PKl,ml).

Case 1. Let’s suppose that there exists l ∈ [0, qe] such that cl,i0 = ci0 and
h 6= hl. We can in this case construct an adversary B on the relaxed binding prop-
erty. B(ck) first generates I0 ← AG(1k) and keys for all users. Then he chooses
l0 ∈ [1, qe] and runs A. B simulates the oracle OEMA

as follows. For l 6= l0 B pro-
ceed as in the real algorithm with skA. For l = l0, B outputs ml. Then he receives
(hl0 , bl0), computes cl0,i = AEskA

(pkBi
, bl0) for each pkBi

∈ PKl0 , and answers
to A the concatenation of pkA, hl0 and all cl0,i. The others oracles are simulated
with privates keys as real algorithms. Finally B outputs h. With probability 1/qe

A outputs C such that ci0 = cl0,i0 , and B wins, i.e. Pr[B] = 1/qe.Pr[A/E].

Case 2. Let’s suppose now that cl,i0 6= ci0 for all l ∈ [0, qe], i.e. ci0 is a new
AE ’s ciphertext from A to Bi0 . We can in this case construct an adversary B′

on the O-UF-CTXT property of AE . B
′OADBi0

,OAEBi0
,OAEA

,OADA (I0, pkBi0
, pkA) con-

structs keys for Bi for i ∈ {1, . . . , n} \ i0, chooses ck, and runs A. B′ can simulate
the oracles for A with his own oracles. Then, B′ outputs (pkA, ci0) and we have
Pr[B′] = Pr[A/E].

We can adapt the proof for the O-UF-PTXT property. Let’s suppose that in
the game 0 that (m,PK) with pkBi0

∈ PK has not been submitted to OAEA
. Since

schemes must verify the correctness property, (h, ci0) is not given by OEMA
for a

request of the form (PKi,mi) where pkBi0
∈ PKi. So, we have just to add some

verifications in case 2. Let b be the plaintext corresponding to ci0 . Let’s suppose
that (pkBi0

, b) has been submitted to OAEA
by B′, i.e. there exists (PKl,ml) in the

list of A’s queries to OEMA
such that pkBi0

∈ PKl and Conceal(ml) = (hl, bl) with
bl = b. If hl = h then ml = m and (PK,m) with pkBi0

∈ PK has been submitted.
Else we can construct an adversary B′′ = B on the relaxed binding property as in
case 1. This adaptation works also for the O-UF-wPTXT property.


