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Abstract

Increasingly, software (SW) in embedded systems can be updated due to the rising share
of flashable electronic control units (ECUs). However, current SW installation procedures
are insecure: An adversary can install SW in a given ECU without any sender authentication
or compatibility assessment. In addition, SW is installed on an all-or-nothing basis: With
the installation, the user acquires full access rights to any functionality. Concepts for solving
individual deficiencies of current procedures have been proposed, but no unified solution has
been published so far.

In this technical report we propose a method for secure SW delivery and installation in
embedded systems. The automotive industry serves as a case example leading to complex
trust relations and illustrates typically involved parties and their demands. Our solution
combines several cryptographic techniques. For example, public key broadcast encryption
enables secure SW distribution from any provider to all relevant embedded systems. Trusted
computing allows to bind the distributed SW to a trustworthy configuration of the embedded
system, which then fulfills a variety of security requirements. Finally, we outline the manage-
ment of flexible access rights to individual functionalities of the installed SW, thus enabling
new business models.

Keywords: secure software installation, broadcast encryption, trusted computing, property-
based attestation, rights enforcement
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Chapter 1

Introduction

Control unit hardware (HW) and software (SW) in embedded systems used to be tied together
as one single product and rarely changed once the system had been shipped. Nowadays, HW
and SW in an electronic control unit (ECU) have become separate products. SW can be
updated or upgraded after shipment and add customer value due to the ubiquitous use of
flashable1 ECUs. Examples are the ECUs in a modern car where updates can increase the
engine performance and reduce emission levels. Other examples are upgrades of the car
navigation system and updates of the road information data.

Current procedures for installing SW in an embedded ECU are insecure—details about the
deficiencies will be given in Section 2. Historically, these deficiencies didn’t matter because
SW installation was focused on warranty-based replacement of defective SW. The system
owner was informed of costly recalls and received the SW updates free of charge, e.g., when
safety-relevant subsystems like airbags or the ESP2 contained SW bugs. Recently, a paradigm
shift has taken place: Value-added SW components can be distributed to interested owners
and new business models allow the extraction of revenues even after shipment, e.g., when car
owners pay annual fees for updates of the navigation system data.

The secure delivery of SW to embedded systems and the management of the corresponding
digital rights differ from any existing Digital Rights Management (DRM) system known to
the authors. First, the distribution currently necessitates a skilled intermediary between
SW provider3 and user because the installation process relies on system-specific equipment
which is only available to maintenance personnel. For example, an SW update in a vehicle
ECU is usually installed via a manufacturer-specific diagnostic tester that is only intended
for maintenance providers.4 Second, different classes of such intermediaries exist: Depending
on their equipment and capabilities, maintenance providers usually have different installation
rights. In the automotive example, an uncertified garage might not be granted the right to
install SW for safety-relevant ECUs such as the airbag ECU. Third, a newly developed SW
component is not necessarily compatible with any target ECU and the SW of all other ECUs

1A flashable ECU is a microcontroller capable of reprogramming its memory for application programs and
data based on so-called flash memory technology [Dai02].

2The Electronic Stability Program (ESP) helps to control a vehicle when it approaches the limits of stability.
3By SW provider we mean any party that develops SW for the embedded system, e.g., the original manu-

facturer of the system and his suppliers, but also independent SW developers.
4In the automotive example, maintenance providers such as dealers, garages and road service teams typically

carry out the SW installation procedure as the car owner lacks the necessary equipment and skill set [HS04].
Although diagnostic testers are reported to have been cloned or stolen in some cases, the vast majority of SW
updates is still carried out by maintenance providers.
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in the embedded system. For example, an average compact-class vehicle contains 40 ECUs,
while high-end and luxury class vehicles can have up to 70 ECUs.5 Last, new business models
for embedded systems will induce new requirements. Due to the high value of the embedded
system and the potential consequences of system failure, non-repudiation will be an important
requirement. For example, if an honest car owner has an accident due to defective SW, his
dealer and the SW provider may not be able to deny the installation.

We propose a procedure for secure SW delivery and installation in embedded systems.
We combine a variety of different cryptographic techniques to build such a secure procedure.
The main contribution of our proposal is the secure installation procedure itself based on
Public Key Broadcast Encryption (PKBE) and trusted computing. Another contribution
will be a requirement model for all parties that participate in a typical distribution and
installation setting. To the authors’ knowledge, neither a suitable procedure nor a general
requirement model has been previously published although several individual requirements
have been proposed [BMW02, HS04, Stö03].

The use of the PKBE scheme proposed in [DF03] has several advantages in this particular
setting.6 First, it enables efficient one-way communication from SW providers to a potentially
large, but select set of embedded systems, even though they have to be considered stateless
receivers.7 Specifically, the length of the message header does not grow with the number of
intended receivers8 as in the case of a standard Public Key Infrastructure (PKI).9 Second, the
proposed PKBE scheme allows the revocation of an unbounded number of receivers. Even if
a large number of receivers has been compromised or is to be excluded, messages can still be
broadcast to the remaining receivers. Last, it gives non-discriminatory access to the broadcast
channel. The public key property allows any (not necessarily trusted) party to broadcast to
any chosen set of receivers. Specifically, the manufacturer of the embedded system cannot
exclude any SW provider from the broadcast channel or otherwise prevent competition.10

Trusted Computing is the enabling technology for an embedded system to become a
trusted receiver of broadcast messages. Based on minimum additional hardware and cryp-
tographic techniques such as attestation and sealing, an embedded system can be trusted
to be in a particular configuration. The assessment of the compatibility of a particular SW
component with the embedded system can be based on this configuration. In order to avoid
discrimination of certain SW providers, we suggest the use of property-based attestation as
introduced in [SS05].11

Section 2 briefly summarizes the work of other authors and illustrates deficiencies of the

5The Volkswagen Phaeton has 61 ECUs [HMF+03]. In addition, each OEM usually has different car
models with differing ECU configurations. The ECU configuration of a particular model changes during
the production life cycle due to an update of HW or SW components [HMF+03, Sch03]. The compatibility
of an SW component does not only depend on the target ECU hardware, but also on other ECUs in the
vehicle [AJ03, HWM03, Oef04].

6Broadcast encryption was introduced in [FN94] based on symmetric encryption schemes. Several improve-
ments were proposed, e.g., in [NNL01, HS02, JHC+05]. We refer to PKBE in [DF03].

7Stateless receivers contain a set of secret keys which can’t be updated throughout the system’s lifetime.
8Intended receivers are all embedded systems to which the SW provider wishes to distribute a specific SW.
9If standard PKI was used on a broadcast channel, the message header length would be O(|U \RU |), where

U is the set of receivers and RU the set of revoked receivers with |RU | ≪ |U|. In the PKBE scheme from [DF03],
the message header length is only O(|RU |).

10Non-discrimination is also important on the receiving end: For instance, the European Commission Regu-
lation 1400/2002 prevents discrimination of independent maintenance providers. The manufacturer must give
them access to necessary material and technical information, e.g., spare parts and diagnostic equipment.

11Similar methods are “semantic attestation” and “property attestation” [HCF04, PSHW04].
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current SW installation practice. Our overall system model is explained in Section 3. The
security requirement model follows in Section 4, while the proposed solution is discussed in
Section 5. We conclude and highlight open questions in Section 6.
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Chapter 2

Related Work

Several types of embedded systems exist and specific literature on each type is available.
However, we consider a modern vehicle to be the most challenging example, namely due to
the specific qualities of SW distribution and installation as outlined in Section 1. In particular,
the high number of ECUs and their variants leads to a complex assessment of compatibility.
Therefore, we focus on automotive literature and add an example from the field of IT security.

2.1 Current Practice and Deficiencies

A typical procedure for installing SW in an automotive ECU is described in [Dai02]. It is
performed by a so-called flashloader, a standard SW environment that allows for in-system
re-programming of ECUs. After initialization of the installation mode, the flashloader erases
the programmable memory of the ECU. Then it writes the new SW into the programmable
memory. Finally, the procedure ends with the deinitialization of the installation mode.

Current installation procedures rarely apply any cryptographic techniques [Dai02, DS04,
HWM03]. The use of signatures has been proposed, but not yet implemented [HS04, HWM03,
Mül04]. However, the only signature mentioned in the proposals is that of the manufacturer.1

If the manufacturer must sign every SW component prior to installation, he is capable of
discriminating individual SW providers. In addition, we illustrate several other deficiencies
with some examples. First, the intellectual property contained in the SW is not protected with
cryptographic techniques such as encryption, opening the door for reverse-engineering attacks.
Second, the installation rights of the maintenance providers are not verified in the course of
an installation. Hence anyone with the necessary equipment—including an adversary—can
install any (potentially malicious) SW component. Third, the owner cannot prove that he has
legally2 acquired an SW component that has been installed in his embedded system. Even if
the manufacturer applies a signature, the owner can still be accused of having acquired the
SW illegally, e.g., without payment of license fees. Fourth, the embedded system does not
verify compatibility. Even if signatures are used, they only prove the source of the SW, not
compatibility. SW might be erroneously accepted by an incompatible embedded system due
to the manufacturer’s signature. Last, no rights management is currently applied. Techniques

1The proposals generally do not specify whether they refer to the manufacturer of the embedded system or
that of the relevant ECU.

2By legal acquisition we mean the installation of a compatible SW component from a maintenance provider
with the necessary installation rights including payment of all license fees to the SW provider.
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such as expiry dates or usage counters are not yet implemented and prevent the introduction
of more flexible business models. In the automotive example, those techniques would allow
to sell additional horsepower or country-specific navigation data for a limited time frame or
number of usages.

2.2 Other proposed solutions

A framework for international automotive SW installation standards is introduced in [DS04].
However, it doesn’t consider any DRM or security aspects. An infrastructure for installing
SW from any external interface is proposed in [HS04]. Although compatibility is ensured by
checking if the hash values of all involved SW components form a valid SW release,3 further
security aspects are not covered. Requirements such as confidentiality, integrity, non-rejection
and authenticity are mentioned, but not considered in the proposed architecture and left open
to the specific implementation of each vehicle manufacturer. Several other papers introduce
the concept of distributing SW to embedded systems in the field [BMW02, Stö03], but even
if security requirements are mentioned, no specific proposal to fulfill them is mentioned.

A proposal for “end-to-end security” of SW installation in vehicles is made in [Mül04].
However, the signing of the SW component by “an authorized party” is the only protective
measure, which provides only a partial solution4 to the requirements that we will introduce in
Section 4. Another proposal for secure SW installation is made in [HWM03]: It contains an
authentication phase, in which the diagnostic tester is authenticated, as well as an installation
routine, which verifies checksums or signatures of the SW provider. Again, only some of the
requirements are fulfilled.5

Relevant IT security literature focuses on enforcement of access control policies for down-
loaded executable content by a secure operating system (OS) or by a secure SW environment
which encapsulates the content [JPLI99]. However, embedded ECUs often do not have a
standardized operating system. When SW is installed, the whole program memory can be
erased and replaced with a new SW component. Therefore, we cannot assume a secure OS or
SW environment in every ECU; the content thus needs to be analyzed prior to installation.

3An SW release is an SW configuration which has been released by the vehicle manufacturer. An SW
configuration is a valid and operational set of SW components and corresponding coding parameters which
can be programmed in the ECUs of a vehicle [HS04].

4For example, it does not prevent discrimination of independent SW providers as the vehicle manufacturer
is assumed to take over the role of the authorized party.

5For example, signatures on the receiving end are omitted. Therefore the proposal does not prevent repu-
diation of a successful installation by the vehicle owner.
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Chapter 3

Model

3.1 Introduction of Roles

The following roles (see Figure 3.1) will be used throughout the remainder of this report:

(O) OEM: The Overall Equipment Manufacturer (OEM) develops, assembles and delivers
the embedded system to the users. In order to do so, O cooperates with suppliers that
develop and/or manufacture components for the embedded system. The initial SW
components at shipment time may be either from O or from his suppliers. Automotive
examples are car manufacturers such as DaimlerChrysler, Ford, GM or Toyota.

(S) SAP: SW Application Programmers (SAPs) develop SW components for the embed-
ded system. They may either be (i) suppliers that participate in developing and/or
assembling the embedded system or (ii) independent programmers that develop SW
components (updates and/or upgrades) and distribute them after shipment. Automo-
tive examples are suppliers such as Bosch, Delphi, Denso, Siemens and Visteon.

Henceforth, we use the term SW provider as a synonym for “OEM or any SAP”.

(I ) ISP: The Installation Service Providers (ISPs) maintain the embedded system, i.e., me-
chanical parts, ECU HW and SW. As part of their maintenance services, they install
updates and/or upgrades of SW components. They have equipment that is necessary
for the installation procedure and capabilities that allow them to correctly install SW
components. Automotive examples are car dealers, garages and road service teams.

We model the installation rights of I as clearance levels (see Definition 1).1

(L) LP: The License Provider (LP) distributes licenses for SW components that the SW pro-
viders O and S have developed. Prior to distribution of a license, L needs to establish
terms and conditions with the SW providers in which the model for sharing license
revenues is detailed.2 To the authors’ knowledge, automotive examples don’t exist yet,
but might be established as joint-ventures of OEMs and SAPs.

1Other models for installation rights can easily be integrated into our proposal. For the purpose of this
report, clearance levels serve as an example.

2A discussion of licensing models, e.g., pay-per-use, pay-per-installation, is beyond the scope of this report.

8



TTP (T)

ISP (I) UP (U)

SAP (S)
Insecure
Secure

OEM (O)

LP (L)

Figure 3.1: Roles within the overall model

UP
u0

u1 u2 un

Figure 3.2: Internal structure of the user platform

(U ) UP: The User Platform (UP) is manufactured by O and purchased by the user. The
user is interested in SW for U and willing to pay for it if it offers a perceivable value-
added. We define U ’s configuration as the collective information on each SW (and
implicitly HW) component that is installed in U . The obvious automotive example for
U is a car.

We assume U to have the internal structure depicted in Figure 3.2: u0, u1, . . . , un are
components of U . In the implementation of an embedded system, they correspond
to ECUs. u0 is assumed to be the major part of the trusted computing base (see
Section 5.2.1) and provides a central installation and license service. u0 is the only com-
ponent capable of distributing new SW to the other components ui , 1 ≤ i ≤ n. Due to
cost constraints, we cannot assume the ui to be high-performance components, i.e., their
computational resources are limited, especially related to cryptographic techniques. The
SW distribution from u0 to the ui is performed over an internal communication network
to which all components are connected.3

3If several communication networks coexist, we assume that they are interconnected via gateways and form
a coherent network. In the automotive example, this holds true for communication networks—so-called data
busses—such as CAN, LIN and MOST.
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(T) TTP: The Trusted Third Party (TTP) has two different certification tasks: First, T
creates SW certificates for SW providers. These certificates confirm the properties of a
newly developed SW component. By SW properties we mean characteristic features of
SW such as functionality, interfaces, memory and processor requirements or supported
protocols. Second, T creates clearance level certificates which certify I ’s right to install
specific SW components.

In the automotive example, the role of the TTP is currently taken over by O . This
implies a trust model in which each Sd must trust O . However, an independent T
becomes necessary if O is not fully trusted and discrimination of Sd should be avoided.
An independent T might evolve out of safety standards authorities such as the NHTSA4

in the USA or the Euro NCAP5 in Europe.

3.2 Model Formalization

After having introduced the model informally in Section 3.1, we now continue with a formal
definition of roles, objects, technical terms, basic protocols and cryptographic primitives.

3.2.1 Formalization of Roles

OEM There is a single OEM O in our model. Nevertheless, extending the model to several
OEMs is straightforward.

SAPs The set S of SAPs is defined as S := {S1,S2, . . .}. We use index d for SAP Sd .

SW providers OEM and SAPs have very similar roles in our model as they both offer
SW components. In order to simplify the notation, we summarize them with P in the
following way: P is the set of all SW providers, which is defined as P := {P0,P1,P2, . . .}.
We match P with O and S as follows, using index d throughout the report:

P0 := O , Pd := Sd ∀ d ≥ 1

ISPs The set I of ISPs is defined as I := {I1, I2, . . .}. We use index j for ISP Ij .

LP There is a single license provider L in our model. Nevertheless, extending the model to
several license providers is straightforward.

UPs The set U of user platforms is defined as U := {U1,U2, . . .}. We use index k for user
platform Uk , which has an internal structure with nk + 1 components as depicted in
Figure 3.2. The components of Uk are denoted uk ,i , with 1 ≤ k ≤ |U| and 0 ≤ i ≤ nk .

TTP There is a single trusted third party T in our model.

4National Highway Traffic Safety Administration, http://www.nhtsa.dot.gov/
5http://www.euroncap.com/
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3.2.2 Formalization of Objects

There are two types of objects in our model: messages and SW components. The former
will be introduced in Section 3.2.4, the latter are the objects generated by P, certified by T ,
licensed by L, installed by I and used by U :

SW components Each SW component sm is an element of the language SW := {s1, s2, . . .} ⊆
{0, 1}∗ of all SW components. We use the index m for SW component sm .

3.2.3 Preliminaries

We have already informally used several terms that need formal definition in order to facilitate
requirement definition and security analysis. Before explaining the basic protocol steps, we
define these terms. However, the reader may skip the definitions and trust in the fact that
they are intuitive and self-explanatory. If questions arise in later sections, we recommend to
return to the definitions:

Definition 1 A clearance level c ∈ C with C ⊂ N is a right of an ISP Ij to install a
well-defined set of SW components SWc ⊆ SW. The minimum clearance level cmin ∈ C
of an SW component s defines the smallest clearance level that an ISP may have when
installing s. It is determined with an implementation-specific function MinClearance : SW →
C, which assigns an unambiguous minimum clearance level cmin to every SW component s.
With cmin

m we always refer to the correct minimum clearance level of sm defined by cmin
m ←

MinClearance(sm). MinClearance is used to define SWc :

SWc := {s ∈ SW | c ≥ MinClearance(s)}

An ISP Ij is said to be compliant with a clearance level c if he fulfills all requirements
of this level, e.g., regarding equipment and skills. We denote this fact with Ij |= c. 2

Many models for defining the requirements of clearance levels are possible; their discussion
is beyond the scope of this report. In general, the definition is the output of a multi-party
protocol between T , O , S and I.

Definition 2 The terms and conditions T &Cm are a set of legally binding rules of conduct
between SW provider Pd and license provider L for SW component sm . 2

For example, T &Cm specifies what Pd delivers to L and what L pays as remuneration to Pd .
As T &Cm is a complex legal concept, we cannot fully model it mathematically. However, we
focus on one aspect: T &Cm specifies the set of all allowed usage rights Rtotal

m as follows.

Definition 3 A usage right r is a permission for a user platform Uk to perform specific
operations on an SW component sm . An allowed usage right is a usage right that L may
grant to Uk without violating T &Cm . This defines the set Rtotal

m of all allowed usage rights:

Rtotal
m := {r | r is an allowed usage right for sm under T &Cm}

An allowed rights set Rm is a set of allowed usage rights Rm ⊆ Rtotal
m . 2

Definition 4 A license σlic unambiguously defines the target user platform Uk , the corre-
sponding SW component sm and the rights set Rm that is granted. 2
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Definition 5 Let a usage parameter p of SW sm be a variable that influences the mode of
execution of sm . A correct usage parameter of sm is a usage parameter that influences sm
in such a way that it complies with the corresponding license, i.e., the user platform Uk can
only perform the operations defined by the rights set Rm . 2

Definition 6 Let the specified functionality of an SW component sm be its input-output
behavior as described by the honest SW provider Pd of sm . A software sm and a platform Uk

are compatible iff, after an installation of sm on Uk , sm provides the specified functionality.
Otherwise, sm and Uk are incompatible. 2

Definition 7 A SW property q is a specific quality of an SW component, where the set of
all SW properties is denoted with Qtotal

SW . A platform property Q is a specific quality of a
user platform Uk , where the set of all platform properties is denoted with Qtotal

UP . 2

There is an unlimited number of properties. However, only a subset of these is relevant
for our installation procedure. We therefore need to define this subset based on a statement
regarding compatibility.

Definition 8 The compatibility test function compares SW and platform properties:6

CompatTest : P(Qtotal
SW ) × P(Qtotal

UP ) → {true, false} outputs true on input (Qm ,Qk ) iff an
SW component sm with properties Qm ⊆ Qtotal

SW and a user platform Uk with properties
Qk ⊆ Qtotal

UP are compatible. Otherwise, it outputs false. 2

We suppose that the trusted component uk ,0 of Uk is capable of computing the compat-
ibility test function CompatTest based on the properties Qm of sm and the properties Qk

of Uk . For this purpose, uk ,0 interprets Qm and derives required properties for Uk such as
interfaces, minimum memory and minimum processing power. If Uk has all of the required
properties, CompatTest returns true.

Definition 9 An SW property q is compatibility-relevant iff adding q ∈ Qtotal
SW changes

the output of CompatTest for at least one set of SW and platform properties, i.e., iff the
following condition holds:

∃ Qm ⊆ Qtotal
SW \ {q}; ∃ Qk ⊆ Qtotal

UP ; ∃ind ∈ {true, false} :

CompatTest(Qm ,Qk ) = ind ∧ CompatTest(Qm ∪ {q},Qk ) = ¬ind

Henceforth we assume Qtotal
SW only contains compatibility-relevant SW properties.7 2

Definition 10 With Qtotal
m we denote the complete property set of SW component sm :

Qtotal
m := {q ∈ Qtotal

SW | sm has property q} ⊆ Qtotal
SW

It is determined with an implementation-specific function DetermProps : SW → P(Qtotal
SW ),

which determines the complete property set Qtotal
m of an SW component sm . With Qtotal

m we al-
ways refer to the correct and complete property set of sm defined by Qtotal

m ← DetermProps(sm).
We define a property set of SW component sm as Qm ⊆ Qtotal

m . 2

6With P(X ) we denote the power set of the set X , i.e., the set of all subsets of X .
7Unfortunately in practice, the set of compatibility-relevant SW properties is unknown because finding

them would necessitate a series of tests of all possible SW properties with all possible platform properties. As
both property sets are unlimited, the tests would last indefinitely. In the automotive example, standardization
as well as a reasonable test depth and breadth ensure that the SW provider identifies most of these properties.
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Definition 11 The target component for an SW sm is the component uk ,i , i ∈ {1, . . . ,nk}
of Uk that the trusted component uk ,0 chooses for installing sm . The implementation-specific
function Target : P(Qtotal

SW )×P(Qtotal
UP ) → {1, . . . ,nk} takes as input the SW properties Qm ⊆

Qtotal
SW of sm and the platform properties Qk ⊆ Qtotal

UP of Uk and outputs the index i of the
target component uk ,i . 2

For example, Target might consider criteria such as available memory space, processor
speed, location and proximity of all components.

3.2.4 Formalization of Basic Protocols

An SW installation procedure consists of several basic protocols. In this section, we define
them independently of each other. However, we leave the actual implementation of these
basic protocols to Section 5.3.

Prior to the actual protocols, we introduce our protocol notation. We are concerned with
protocols between several parties X1 , . . . ,Xn that exchange messages. We model each party as
an interactive probabilistic algorithm. A common model for such algorithms is an Interactive
Turing Machine (ITM) (for an example, see [GMR89]). An ITM is a deterministic multi-tape
Turing machine consisting of the following components: (i) a local read-and-write tape, (ii)
a local read-only random tape filled with uniformly distributed random bits (before the start
of computation), and (iii) a read-only receiving tape as well as a write-only sending tape for
communication with other machines (see [Gol01] for more details).
We denote a protocol Protocol between the interactive algorithms X1 , . . . ,Xn as follows:

(X1 : outX1
; . . . ;Xn : outXn ) ← Protocol(X1 : inX1

; . . . ;Xn : inXn ; ∗ : in)

Each party Xi provides its input values inXi
and may obtain output values(s) outXi

after the
end of protocol Protocol. In our notation, we separate parties with semicolons, whereas we
separate the input and output values of a party with commas. We denote the common input,
i.e., input values of all parties, with the placeholder ∗. If a party isn’t required to provide any
input value to the protocol, or if it doesn’t obtain any output value, then we indicate this by
the symbol −. This concludes the protocol notation, and the basic protocols follow.

The SystemSetup protocol is the first basic protocol to be executed. In this protocol, all
public parameters and all secrets (for example, private and shared cryptographic keys) are
generated and properly distributed to the appropriate parties. In all subsequent protocols,
we do not explicitly mention public parameters and secrets. Instead, we assume that each
interactive algorithm knows its secret(s) and the public parameters. For example, they may
be encoded in the ITM’s state transitions. In addition, each interactive algorithm is familiar
with the relevant definitions of Section 3.2.3 and the cryptographic primitives of Section 3.2.5.

We illustrate the first two basic protocols in Figure 3.3. We start with the protocol for
certification of the ISPs’ clearance levels, followed by the protocol for SW certification:

Clearance Level Certification: This protocol occurs between an ISP Ij and the TTP T .
We assume that the index j of Ij has already been assigned in the SystemSetup protocol:

(Ij : ζclear
j , indclear

j ;T : reqclear, ind clear
T ) ← ClearCert(Ij : c;T : −; ∗ : j )

We explain the meaning of the input and output values. Starting with the input values,
c is the requested clearance level and j is the index of Ij . The output values of Ij are
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Clearance level certification ClearCert

Ij T

−
reqclear

−−−−−−−−−−−−−→

←−
ζclear
j

−−−−−−−−−−−−−

SW certification SWCert

Pd T

−
reqSW

−−−−−−−−−−−−−→

←−
ζSW
m , σSW

m
−−−−−−−−−−−−−

Figure 3.3: Illustration of two basic protocols

the clearance level certificate ζclear
j and an acceptance indicator ind clear

j ∈ {true, false},

indicating whether Ij accepts the output values of ClearCert as correct (indclear
j = true).

The output values of T are the certification request reqclear and an acceptance indicator
ind clear

T , indicating whether T accepts the output values of ClearCert.

SW Certification: This protocol occurs between a provider Pd and T . We assume that the
index d of Pd has already been assigned in the SystemSetup protocol:8

(Pd : ζSW
m , σSW

m , indSW
d ;T : reqSW,m, indSW

T ) ← SWCert(Pd : s;T : m; ∗ : d)

The input values are the SW component s to be certified, the SW index m and the
index d of SW provider Pd , where the SW index m is a counter for the number of SW
components that T has certified. The output values of Pd are the SW certificate ζSW

m ,
the integrity proof σSW

m for sm and an acceptance indicator indSW
d . The output values

of T are the certification request reqSW, the updated SW index m and an acceptance
indicator indSW

T .

Usage Rights Definition: This protocol occurs between an SW provider Pd and the license
provider L:

(L : Rtotal
m ;Pd : Rtotal

m ) ← RightsDef(L : inL;Pd : inPd
; ∗ : m)

The input values are the generic values inL and inPd
as well as the index m of SW sm .

The output value of both parties is the set Rtotal
m of all allowed usage rights.

8In a different trust model, O might be the party that certifies SW. This would significantly reduce the
workload on T . However, it would require all S ∈ S to trust O or result in dispute if O denied fair evaluation.
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Uk Ij L

−
req inst

−−−−−−−−→

−
req inst

−−−−−−−−→

←−
σlic

−−−−−−−−

←−
σinst

−−−−−−−−

−
σconf

−−−−−−−−→

←−
σack

−−−−−−−−

Figure 3.4: Illustration of the 3-party protocol SWInstallExternal

After SW certification, the SW provider needs to distribute the SW components to the ISPs
in order to allow them to perform the installation procedure. The following protocol describes
this SW distribution process that provides copy protection and authenticity of the distributed
SW. Details about the cryptographic background will be given in Section 5.3.1.

SW distribution: This protocol occurs between a provider Pd and the set I of all ISPs. It
is one-way from Pd to I in the sense that I only receives messages, but cannot send:9

(Pd : −; I : senc
m , σprop

m , ζSW
m ) ← SWDistrib(Pd : ζSW

m , σSW
m ,RU ; I : −; ∗ : −)

The input values are the SW certificate ζSW
m , the integrity proof σSW

m and the subset
RU = {Uk1

,Uk2
, . . .} ⊆ U of revoked10 user platforms. Pd obtains no output value,

whereas the output values of I are the protected SW component senc
m , a verifiable

statement σ
prop
m of Pd with respect to sm ’s properties and the SW certificate ζSW

m .

SW Installation External: The following protocol describes an actual SW installation. We
show the flow of messages in Figure 3.4. This protocol occurs between a user platform
Uk , an ISP Ij and the license provider L:

(Uk : σinst, σack, ind inst
k ,Qk ; Ij : req inst, σlic, σconf , ind inst

j ;L : req inst, ind inst
L )

← SWInstallExternal(Uk : m,Rm , ζclear
j , ζSW

m , σprop
m ,Qk ; Ij : senc

m ;L : Rtotal
m ; ∗ : k , j )

The input values of user platform Uk are the index m of sm , the requested usage rights
Rm , Ij ’s clearance level certificate ζclear

j , the SW certificate ζSW
m of sm , the property

statement σ
prop
m of Pd with respect to sm and the platform properties Qk of Uk . The

input value of ISP Ij is the protected SW component senc
m , whereas the license provider

9Specifically, the ITM Pd has no receiving tape and the ITMs I have no sending tape.
10Initially all user platforms are non-revoked. The SW providers consider a user platform revoked only if it

has violated the protocol, e.g., published secret information or violated the granted usage rights.
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u0 ui

−
mac inst

−−−−−−−−−−−−−→

←−
macconf

−−−−−−−−−−−−−

−
macack

−−−−−−−−−−−−−→

Figure 3.5: Illustration of the basic protocol SWInstallInternal

L’s input value is the set Rtotal
m of all allowed usage rights of sm . The common input

values are the indices k and j of Uk and Ij respectively.

The output values of user platform Uk are the external installation package σinst, con-
taining SW component and license, the external installation acknowledgement σack of
Ij , an acceptance indicator ind inst

k and the updated platform properties Qk . The out-
put values of Ij are the SW installation request req inst and the external installation
confirmation σconf generated by Uk , the license σlic generated by L and the acceptance
indicator ind inst

j . The output values of L are the SW installation request req inst of Uk

and the acceptance indicator ind inst
L .

SW Installation Internal: The following protocol (see Figure 3.5) is initiated by the trusted
component uk ,0 of user platform Uk during a run of protocol SWInstallExternal. uk ,0 ini-
tiates the protocol only if it has already received a correct installation package σinst,
where the conditions for correctness will be detailed in Section 5.3.2. The other protocol
participant is the target component uk ,i for sm (see Definition 11). As the index k is
unambiguous, we will simply refer to the components by u0 and ui :

(u0 : macconf , ind inst
0 ; ui : mac inst,macack, s, p, ind inst

i )

← SWInstallInternal(u0 : i ,m, s; ui : −; ∗ : −)

The input values of the trusted component u0 are the index i of target component ui , the
index m of the SW component sm to be installed and the SW component s. There is no
input to ui and no common input. The output values of u0 are the internal installation
confirmation macconf and the acceptance indicator ind inst

0 , whereas the output values of
ui are the internal installation package mac inst, the internal installation acknowledge-
ment macack, the SW component s, the usage parameter p and the acceptance indicator
ind inst

i .

3.2.5 Formalization of Cryptographic Primitives

(GenKeySig, Sign, Verify) is a tuple that denotes the key generation, signing and verifying of
a UF-CMA-secure11 digital signature scheme which ensures authenticity and non-repudiation.

11For definitions of security notions, we refer to [BDPR98, ADR02].

16



σX ← Sign(K sign
X ,M ) means the signing of the message M with X ’s signing key K sign

X , re-
sulting in the signature tuple σX := (M , sigM ). Note that σX contains both the message M
and the actual signature sigM . Two auxiliary functions split the signature tuple into its two
components: M ← Msg(σX ) and sigM ← Sig(σX ). ind ← Verify(K test

X , Msg(σX ), Sig(σX ))
means the verification of σX with the test key K test

X , which we sometimes abbreviate with
ind ← Verify(K test

X , σX ). The result is the Boolean value ind ∈ {true, false}.

(GenKeyPKBE, RegPKBE, EncPKBE, DecPKBE) is a tuple that denotes the key generation,
user registration, encryption and decryption of an IND-CCA1-secure PKBE scheme (see Ap-
pendix B). T uses GenKeyPKBE to set up all the parameters of the scheme, e.g., the set of
all public keys Kenc, which is available to any party. T uses RegPKBE to compute the set of
secret decryption keys Kdec

k to be delivered to a user Uk . C ← EncPKBE(Kenc,RU ,M ) is used
by a (not necessarily trusted) sender to encapsulate a message M with the set of public keys
Kenc in such a way that only the unrevoked users U \RU can recover it. DecPKBE(Kdec

k ,C ) is
used by a non-revoked user Uk to decipher C with his private key set Kdec

k . DecPKBE returns
M iff the user is non-revoked, i.e., Uk ∈ U \ RU . Otherwise, DecPKBE returns ⊥.12

(GenKeySE, EncSE, DecSE) is a tuple that denotes the key generation, encryption and de-
cryption algorithms of an IND-CPA-secure symmetric encryption scheme.

MAC(KX ,Y ,M ) is a function that calculates the strongly unforgeable Message Authentication
Code (MAC) of message M under the shared key KX ,Y of X and Y . The result macM ←
MAC(KX ,Y ,M ) is a MAC tuple macM := (M , µM ) that contains both the message M and
the actual MAC µM . Two auxiliary functions split the MAC tuple into its two components:
M ← Msg(macM ) and µM ← Code(macM ). We denote the verification of macM with the
key KX ,Y with ind ← Verify(KX ,Y , Msg(macM ), Code(macM )).

12In this report, the message is an SW component s. For efficiency reasons, the sender does not encrypt s,
but instead encrypts a symmetric session key under which s is encrypted. However, to simplify the notation
we do not explicitly introduce the session key in our notation.
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Chapter 4

Security Requirements

We consider the security requirements of each role separately. The following terms will be
used in this section: When the installation result is success, we mean a complete run of the
protocol SWInstallExternal with acceptance indicators ind inst = true for each of the three
protocol participants. This includes installation of a legal SW component and delivery of a
legal license. A legal SW component is an SW component with a valid SW certificate (output
indSW

T = true in protocol SWCert) and a valid property statement (correct σ
prop
m in protocol

SWDistrib). A legal license is a license that was generated by L and acquired by Uk , such that
the output of both Uk and L in protocol SWInstallExternal is ind inst = true. By failure we
mean that no SW is installed, i.e., Uk ’s configuration does not change and SWInstallExternal

leads to ind inst = false for at least one protocol participant. A legal ISP Ij for a specific SW
sm has a correct clearance level certificate (output indclear

T = true in protocol ClearCert) and
a clearance level c matching the minimum clearance level cmin

m of sm , i.e., c ≥ cmin
m .

4.1 Common Requirements

(COR) Correctness: If all involved parties behave correctly and follow the specified pro-
tocols, then the installation result must be success.

We detail what it means for a party to behave correctly: First, all correct parties create
correct signatures and MACs. Second, a correct user platform Uk only requests allowed
usage rights for legal and compatible SW components. Third, a correct Uk only requests
SW from an ISP Ij that is legal for sm .

4.2 OEM Requirements

(OPE) Policy Enforcement: O requires enforcement of the following policies:

• (OPE1) Rights Enforcement. The terms and conditions of O , which define
the set of all allowed usage rights Rtotal

m , should not be circumvented. Formally
this means: The output p of protocol SWInstallInternal to the target component ui

must be a correct usage parameter (see Definition 5).

• (OPE2) Compatibility Enforcement. If an SW component sm and a user
platform Uk are incompatible (see Definition 6), then any installation attempt of
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sm in Uk must fail. Formally this means that for incompatible sm and Uk the
output ind inst

k of protocol SWInstallExternal to Uk must be ind inst
k = false.

• (OPE3) ISP Clearance Enforcement. If an ISP has an insufficient clearance
level for an SW component, then any attempt of this ISP to install the SW com-
ponent in a user platform must fail. For example, this protects the OEM from
warranty claims of the user when the user platforms fails after a faulty SW instal-
lation carried out by an illegal ISP. Formally this means that the output ind inst

k of
protocol SWInstallExternal to user platform Uk may be ind inst

k = true only if ISP
Ij is legal for the installed SW component sm .

(OCF) Confidentiality: No party except O and the trusted component u0 of Uk may be
capable of reading SW developed by O in cleartext prior to installation. This is meant
to protect the intellectual property contained in the SW. For example, S may not be
capable of copying an SW component of O and subsequently certifying it as its own
product. Formally this means: The SW installation packages σinst and mac inst, which
contain the SW sm in protected form, must at least provide IND-CCA1 security.1

However, we only consider conditional access to the SW. Complementary measures,
e.g., fingerprinting [BS95, CKLS97, Her03, KK04], are beyond the scope of this report.
Note that requirement OCF also excludes Ij from reading the cleartext. However, Ij
will still be necessary in most installation procedures because it possesses assets such
as the necessary skills, installation equipment, maintenance area and spare parts.

(OI) Integrity: The installed SW component must be unmodified. Formally this means
that no successful installation may simultaneously fulfill the following two conditions:
1. User platform Uk runs protocol SWInstallExternal with index m of SW sm as input.
2. Protocol SWInstallInternal outputs a different SW s to ui , that is s 6= sm .

4.3 SAP Requirements

S shares all requirements with O ; the role O and the letter “O” simply need to be replaced
by S and “O” where necessary. However, S has one additional requirement:

(SND) Non-discrimination: The identity of an SAP Sd may neither influence Sd ’s ability
to send over the broadcast channel nor the result of the installation procedure. For
example, Uk may not be manipulated in such a way that it only accepts SW from specific
SW providers. We formalize: Let sm be an SW component that is legal, compatible
with a user platform Uk and developed by SAP Sd = Pd . Further, let Ij be a legal ISP
for sm and the rights set Rm be allowed. Then if Uk , Ij and L behave correctly, the
installation result of protocol SWInstallExternal must be success, no matter what the
adversarial coalition P \ {Pd} does.

1The PKBE scheme of [DF03] only provides IND-CCA1 security, although the authors assume it to be
IND-gCCA2-secure. We therefore restrict our ambitions to IND-CCA1 security. In addition, we cannot hope to
achieve IND-CCA1 security after σ

conf is generated because the cleartext of any SW component sm is contained
in the target component ui . In contrast to other applications, e.g., secure e-mail, sm cannot be stored as
ciphertext in ui because ui is too weak to perform decryption on the fly. However, the attacker at least needs
to get access to a user platform Uk in which sm is installed.
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4.4 ISP Requirements

(INR) Non-repudiation: If the installation result is success, then the ISP must be able to
prove origin and result of the installation to any honest party. We formalize: Let Uk ,
Ij and L run the protocol SWInstallExternal with result success. Then Ij must obtain
proof of the following two statements:

1. Uk initiated the protocol run.

2. The installation result is success.

(ICE) Clearance Enforcement: This requirement is identical to OPE3. For example, this
justifies an ISP’s effort to obtain a clearance level certificate.

(IND) Non-discrimination: A legal Ij must be able to install any legal and compatible
SW component that Uk requests. For example, the SW provider may not be able to
separate ISPs with an identical clearance level into subgroups and exclude individual
subgroups from the SW installation process. We formalize: Let sm be an SW component
that is legal and compatible with a user platform Uk . Further, let Ij be a legal ISP for
sm and Rm be an allowed rights set. Then if the parties Uk and L behave correctly, the
installation result must be success.

(IFP) Frame-Proofness: If the installation result is failure, then the ISP may not be
wrongly accused of treachery, e.g., of having installed SW. We assume the burden of
proof is on the accuser. We formalize: Let the result of a run of protocol SWInstallExternal

be failure. Then there may be no adversary A that proves to an honest verifier the in-
stallation result success for the same protocol run. The required proof is σack.

4.5 License Provider Requirements

(LNR) Non-repudiation: The receivers of a legal license cannot repudiate its receipt. For
example, Uk cannot receive a legal license and later refuse payment. We formalize: Let
the output value ind inst

L of the installation protocol SWInstallExternal to L be ind inst
L =

true. Further, let the receiver(s), i.e., Ij or the owner of Uk or both, claim that the

installation result was ind inst′ = false. Finally, let the actual installation result be
ind inst ∈ {true, false}. Then any honest verifier V must decide in favor of the actual
installation result ind inst.

4.6 User Requirements

(UNR) Non-repudiation: After the installation procedure, Uk must be able to prove the
result, i.e., either success or failure, to any honest party. We formalize: Let the instal-
lation result be ind inst ∈ {true, false}, where true and false represent success and
failure respectively. Then Uk must obtain the correct output value ind inst

k = ind inst,
such that any honest verifier accepts the correctness of ind inst

k .

(UIO) Installation Origin: No SW installation may be performed without request by Uk .
For example, this prevents a malicious Ij from installing any SW without prior consent
by Uk ’s owner. We formalize: Any installation attempt in a correct user platform Uk
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must fail if Uk does not initiate the corresponding run of protocol SWInstallExternal

with an SW installation request req inst.

(UA) Authenticity: The installed SW component and the license must be authentic. We
formalize both aspects of UA: Let a run of protocol SWInstallExternal with input value
m of Uk and output value s to ui result in success. Then s must equal sm and the
license σlic used in this protocol run must have originated from L.

21



Chapter 5

Proposed Solution

5.1 Overview

This section provides a summary of the proposed installation procedure (see Figure 5.1).
The procedure consists of a setup period (Phases A–D) and the actual installation (Steps
1–6). The protocols for these two parts will be detailed in Section 5.3. Section 5.2 introduces
the trust and communication channel assumptions on which the protocols rely. Finally, we
formally analyze the security of our proposed solution in Section 5.4.

In the setup period, the system parameters, e.g., security parameters of the cryptographic
schemes, are chosen; all cryptographic keys are generated and properly distributed. Then
each Ij requests a clearance level certificate from T and obtains it if he is compliant with
the requested clearance level. This certification is performed once per Ij and repeated only
if existing certificates expire. In parallel, each SW provider requests an SW certificate from
T for each of his SW components. After SW certification, the SW provider establishes terms
and conditions with L. Both steps need to be done for each SW component.1 Finally, each
Pd distributes his SW components to the members of I via the broadcast channel.

The actual installation starts with the selection of an SW component by Uk . If Uk confirms
the SW to be appropriate, then Uk sends an installation request to Ij . Ij obtains a license
from L. After delivery of SW and license to Uk , Uk checks whether the license is legal. If so,
the trusted component uk ,0 instructs the target component uk ,i to install the SW. Uk then
confirms the successful installation to Ij and awaits Ij ’s acknowledgement. After receiving
the acknowledgement, uk ,0 instructs uk ,i to use the SW.

5.2 Assumptions

Although we neither explicitly mention expiry dates nor random nonces, we assume they are
used in any implementation of the system. Otherwise, privileges cannot be withdrawn and
replay attacks become possible. For example, an adversary might reuse a signature from a
previous protocol run, which the legitimate party wouldn’t create in the current protocol run.

In addition, we omit the discussion of identity fraud which is not yet relevant in the
idealized model. In any implementation, however, identity fraud has to be prevented with
a verification by the receiving party that the sending party and her signing key match. For

1However, an SW provider and the license provider might establish more general terms and conditions that
cover a whole set of SW components.
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Figure 5.1: Installation procedure in six steps

example, a clearance level certificate of Ij might contain name and address of Ij , thus allowing
the owner of Uk to verify the match between certificate and ISP.

5.2.1 Trust Relations

All honest parties are assumed to keep their secrets private, e.g., signature keys. There are
no specific trust assumptions for the members of P and I. For the other roles we assume:

L: All SW providers trust L to adhere to their terms and conditions.2

U : All parties trust the members of U to (i) keep their SW confidential, (ii) comply with the
specified protocols and (iii) adhere to licenses. Due to the cost pressure that embedded
systems have to experience we cannot assume each component of an arbitrary Uk to be
fully trusted. Therefore, we distinguish between two types of components as introduced
in Section 3.1: uk ,0 is fully trusted and the uk ,i , 1 ≤ i ≤ nk are only partially trusted.

Every party trusts uk ,0, which securely stores Uk ’s private keys. uk ,0 verifies the trust-
worthiness of the uk ,i via a shared secret K0↔i : uk ,0 only sends SW to a component
uk ,i that possesses a secret key K0↔i embedded by uk ,i ’s manufacturer. There are sev-
eral ways for uk ,0 to obtain this key. For example, uk ,0 may receive it by means of a
certificate from the manufacturer in which the symmetric key is encrypted with uk ,0’s

public key K pub
k ,0 in an asymmetric encryption scheme EncAE:

Sign(K sign
Manuf , EncAE(K pub

k ,0 ,K0↔i ))

2This implies a high level of trust in L. It might be reduced to a lower trust level by introducing techniques
for tracing an L that violates the terms and conditions, e.g., double spender detection. However, due to the
focus on secure SW delivery and installation, we omit any advanced licensing techniques.
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We highlight further implementation aspects of uk ,0, e.g., sealing of the PKBE keys
with the properties of a correct uk ,0, in Appendix C.

The components uk ,i , 1 ≤ i ≤ n, are not fully trusted, but receive appropriate and
cost-efficient protection measures. At production time, they are trusted and receive the
shared secret K0↔i from their manufacturer. We assume the uk ,i to delete this key and
their memory if an adversary tries to steal their data with an attack on HW or SW;
after key deletion, they are no longer trusted. Depending on the commercial value of the
SW they contain, the uk ,i receive different protection measures, e.g., tamper-resistant
memory for the most valuable components,3 but only minimal protection for low-value
components. Finally, we assume the uk ,i to be reliable, i.e., complete an installation
request in limited time. The Trusted Computing Base (TCB) of Uk thus comprises uk ,0

and the deletion mechanism of the uk ,i .

T : Every party trusts T . For example, this includes correct certification of SW properties
and clearance levels as well as correct publishing of all public keys.

5.2.2 Communication channels

The communication channels are represented in Figures 3.1 and 3.2. All of them are assumed
to preserve integrity, thus avoiding bit errors. In addition, all but two channels are assumed
to be secure, i.e., authentic and confidential. The first exception is the one-way broadcast
channel, which is neither authentic nor confidential. However, it is non-discriminatory : (i) all
SW providers can send over the channel and (ii) the channel has global reach to all members
of I. The second exception is Uk ’s internal communication network. Due to cost constraints
on Uk ’s components, it is only assumed to provide integrity and reliability. By reliable we
mean that each message reaches its recipient after a limited amount of time.4 Finally, the
channels between L and Ij as well as between Ij and Uk are assumed to be reliable.

5.3 Protocols

5.3.1 Setup

The setup period starts with the SystemSetup protocol, in which T sets up the PKBE scheme,
publishes the public keys and provides each Uk with his private key set. In addition, every
party generates a private signing key and provides all other parties with the public test key,
e.g., using T to certify and distribute the public keys. The setup period further consists of
four phases A–D (see Figure 5.1):

Phase A: Each ISP Ij applies for certification of a particular clearance level c. We show the
implementation of the certification protocol ClearCert in Figure 5.2, where the operator
〈〉 denotes the evaluation of a Boolean statement, e.g., 〈5 > 3〉 = true, and ∧ denotes
the Boolean and operator.

Phase B: Each SW provider Pd sends SW requests to T in order to obtain SW certifi-
cates and integrity proofs for his SW components. We show the implementation of the
certification protocol SWCert in Figure 5.3.5

3In the automotive example, this might be the ECUs of airbags or the ESP.
4In a practical implementation, this amount should be in the order of hours or lower.
5Based on a comment of an ISPEC 2005 reviewer, we made a modification to the SW submission procedure
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Ij T

reqclear ← Sign(K sign
j , c)

−
reqclear

−−−−−−−−−−−−−→

c ← Msg(reqclear)

ind clear
T ←

〈

Verify(K test
j , reqclear)

〉

∧ 〈c ∈ C〉 ∧ 〈Ij |= c〉

if ind clear
T = true

then ζclear
j ← Sign(K sign

T , (j , c))

else ζclear
j ← abort

←−
ζclear
j

−−−−−−−−−−−−−

ind clear
j ←

〈

Verify(K test
T , (j , c), Sig(ζclear

j ))
〉

Figure 5.2: Implementation of protocol ClearCert

Phase C: Each SW providers Pd negotiates the terms and conditions for all his SW compo-
nents with the license provider L. As the negotiation is implementation-specific, we omit
any details on the input values and messages exchanged during the protocol RightsDef.
Nevertheless, we state that each protocol run provides both participants with the set
Rtotal

m of all allowed usage rights for SW component sm .

Phase D: Each SW providers Pd distributes his SW components to the ISPs I. We show the
implementation of the SW distribution protocol SWDistrib in Figure 5.4. Pd encrypts6

the SW component sm together with T ’s signature on (m, sm). Adding the signature
will allow the user platform to verify the authenticity of sm , i.e., the fact that the
deciphered SW component is equal to the SW component that T had certified. Pd then
signs a statement on the properties of sm . Finally, he broadcasts the encrypted SW
component senc

m together with his property statement σ
prop
m and the SW certificate ζSW

m .

in order to eliminate a potential security vulnerability. The published paper [AHS05] included a hash-based
authenticity check leading to a parallel encrypt-and-sign scheme. We have replaced it with a more secure
sign-then-encrypt scheme based on [ADR02].

6We stress that the broadcast encryption scheme protects sm between Pd and U\RU , although the broadcast
channel only leads from Pd to I. The corresponding Ij executes the final delivery of the broadcast message to
the respective Uk .
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Pd T

reqSW ← Sign(K sign
d , s)

−
reqSW

−−−−−−−−−−−−−→

m ← m + 1

sm ← Msg(reqSW)

indSW
T ←

〈

Verify(K test
d , reqSW)

〉

if indSW
T = true

then

cmin
m ← MinClearance(sm)

Qtotal
m ← DetermProps(sm)

ζSW
m ← Sign(K sign

T , (m, cmin
m ,Qtotal

m ))

σSW
m ← Sign(K sign

T , (m, sm))

else

ζSW
m ← abort

σSW
m ← abort

←−
ζSW
m , σSW

m
−−−−−−−−−−−−−

(m,cmin
m ,Qtotal

m ) ← Msg(ζSW
m )

indSW
d ←

〈

Verify(K test
T , ζSW

m )
〉

∧
〈

Verify(K test
T , (m, s), Sig(σSW

m ))
〉

Figure 5.3: Implementation of protocol SWCert
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Pd I

(m, cmin
m ,Qtotal

m ) ← Msg(ζSW
m )

(m, sm) ← Msg(σSW
m )

senc
m ← EncPKBE(Kenc,RU , (m, sm , Sig(σSW

m )))

σprop
m ← Sign(K sign

d , (m,Qtotal
m ))

−
senc
m , σ

prop
m , ζSW

m
−−−−−−−−−−−−−→

Figure 5.4: Implementation of protocol SWDistrib

5.3.2 Installation of an SW Component

After the setup phase, the installation procedure for a specific SW component can start. We
show the implementation of protocol SWInstallExternal on pages 29 and 30. The following
steps explain the protocol; their numbering corresponds with Figure 5.1. Throughout the
protocol, we generically use Uk to indicate the target platform; however, unless otherwise
specified, all calculations of Uk are actually performed by the trusted component u0 of Uk :

1. The user platform Uk obtains as input the index m of the SW component sm that is
to be installed.7 As additional input, Uk obtains the SW certificate and the property
statement of sm and the clearance certificate of Ij . Based on this input, Uk verifies that
sm is legal and compatible and that Ij is legal for sm . If the verification succeeds, Uk

sends an SW installation request req inst to Ij .
8

Note that u0 of Uk tracks the properties Qk of platform Uk and updates them after
each SW installation.

2. Ij passes the request on to L in order to obtain a license. L verifies that the requested
rights are allowed. If so, L creates the license σlic and sends it to Ij . Ij signs the protected
SW component senc

m as well as the license σlic to create the installation package σinst.

7How the SW component is selected is implementation-specific. In a practical implementation, either
the owner of Uk or the ISP are likely to actually perform the selection in Uk ’s place. The owner may be
interested in a particular sm because he wants to enhance Uk ’s functionality. The ISP may recommend an
installation of sm because a defective SW component needs to be replaced. Several procedures for initiating
the installation request can be implemented depending on the trust model. In a classical procedure, the owner
might physically sign a paper-based installation request and trust Ij to initiate the correct installation request.
In a more technical procedure, the owner might initiate the request himself after identifying himself to u0 of
Uk with the help of a smartcard.

8Compared to [AHS05], these verifications have moved from Step 4 to 1. The reason is that now Uk cannot
issue an unnecessary SW request of an inappropriate SW component. This in turn saves Ij from requesting
an unnecessary license and delivering an unnecessary installation package.
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3. Ij sends the installation package σinst to Uk .

4. Uk verifies the validity of the SW installation package regarding correctness and au-
thenticity. During verification, u0 needs to decrypt the protected SW component senc

m

with its private PKBE keys. If the verification succeeds, then Uk initiates the protocol
SWInstallInternal. Finally, Uk generates a confirmation σconf of the installation result.

5. Uk sends the installation confirmation σconf to Ij .

6. Ij sends an acknowledgement back to Uk . The acknowledgement σack is the indicator
for Uk that Ij received the installation confirmation. Afterwards, Uk actually uses the
SW component sm . Specifically, u0 of Uk instructs ui to use sm with a correct usage
parameter p as part of protocol SWInstallInternal.

We show the details of subprotocol SWInstallInternal on page 31. Note that this subpro-
tocol only uses symmetric cryptography. Specifically, MACs and symmetric encryption
replace signatures and asymmetric encryption respectively.

The trusted component u0 stores all licenses and periodically checks if any of them has expired.
When a license expires, u0 recalculates the correct usage parameter p and tells ui to execute
the SW with this new parameter. For example, the new parameter might instruct ui to
completely stop using the SW or switch off some functionality.

5.4 Security Analysis for Proposed Solution

The security aspects of the proposed solution will be informally analyzed by verifying the
requirements as defined in Section 4. For each requirement, the corresponding steps of the
installation procedure will be indicated. Whenever we refer to u0, we mean a correct and
unrevoked uk ,0 of Uk . By ui we mean uk ,i of Uk .

5.4.1 Common

(COR) Correctness: Let all parties behave correctly and execute the specified protocols of
the setup period. Further, let the participants of protocol SWInstallExternal behave cor-
rectly. We show that under these two assumptions, a run of protocol SWInstallExternal

results in success, which is equivalent to all acceptance indicators ind inst being equal to
true. To simplify the argument, we note that all signature and MAC verifications of the
form 〈Verify()〉 must succeed because the signatures and MACs have been generated by
correct parties and sent over communication channels that preserve integrity. Further,
all index and value comparisons of the form 〈x = y〉 must succeed because the verifying
parties use matching certificates and statements with correct index.

The acceptance indicator ind inst
k

′′
must equal true because sm and Uk are compatible

and Ij is legal for sm . The acceptance indicator ind inst
L must equal true because Uk only

requests allowed usage rights. The acceptance indicator ind inst
k

′
must equal true because

ind inst
k

′′
equaled true and SWInstallInternal only contains MAC verifications prior to the

generation of ind inst
0

′
. ind inst

j must equal true because ind inst
k

′
equaled true. Finally,

ind inst
k must equal true because ind inst

k

′
equaled true.
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Implementation of protocol SWInstallExternal

Uk Ij L

(m ′,Qtotal
m ) ← Msg(σprop

m )

(m ′′, cmin
m ,Qtotal

m

′
) ← Msg(ζSW

m )

(j ′, c) ← Msg(ζclear
j )

ind inst
k

′′
←

〈

Verify(K test
d , σprop

m )
〉

∧
〈

Verify(K test
T , ζSW

m )
〉

∧
〈

Verify(K test
T , ζclear

j )
〉

∧
〈

m = m ′
〉

∧
〈

m = m ′′
〉

∧
〈

Qtotal
m = Qtotal

m

′
〉

∧
〈

CompatTest(Qtotal
m ,Qk )

〉

∧
〈

j ′ = j
〉

∧
〈

c ≥ cmin
m

〉

if ind inst
k

′′
= true

then

req inst ← Sign(K sign
k , (k ,m,Rm))

else

abort

−
req inst

−−−−−−−−→

−
req inst

−−−−−−−−→

(k ,m,Rm) ← Msg(req inst)

ind inst
L ←

〈

Verify(K test
k , req inst)

〉

∧
〈

Rm ⊆ Rtotal
m

〉

if ind inst
L = true

then

σlic ← Sign
(

K sign
L ,

(k ,m,Rm)
)

else

σlic ← abort

←−
σlic

−−−−−−−−
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Continuation of protocol SWInstallExternal

Uk Ij L

←−
σlic

−−−−−−−−

σinst ← Sign(K sign
j , (senc

m , σlic))

←−
σinst

−−−−−−−−

(senc
m , σlic) ← Msg(σinst)

(m ′′′, s, sigSW
m ) ← DecPKBE(Kdec

k , senc
m )

i ← Target(Qtotal
m ,Qk )

ind inst
k

′
← ind inst

k

′′
∧

〈

m ′′′ = m
〉

∧
〈

Verify(K test
j , σinst)

〉

∧
〈

Verify(K test
L , (k ,m,Rm), Sig(σlic))

〉

∧
〈

Verify(K test
T , (m, s), sigSW

m )
〉

∧
〈

SWInstallInternal : ind inst
0

′
= true

〉

σconf ← Sign(K sign
k , (σlic, ind inst

k

′
))

−
σconf

−−−−−−−−→

(σlic′, ind inst
k

′
) ← Msg(σconf)

ind inst
j ← ind inst

k

′
∧

〈

Verify(K test
k , σconf)

〉

if ind inst
j = true

then

σack ← Sign(K sign
j , σconf)

else

σack ← abort

←−
σack

−−−−−−−−

ind inst
k ← ind inst

k

′
∧

〈

Verify(K test
j , σconf , Sig(σack))

〉

Qk ← UpdateProps(Qtotal
m ,Qk )
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Implementation of protocol SWInstallInternal

u0 ui

senc
i ← EncSE(K0↔i , s)

mac inst ← MAC(K0↔i , (i ,m, senc
i ))

−
mac inst

−−−−−−−−−−−−−→

(i ′,m, senc
i ) ← Msg(mac inst)

ind inst
i ← 〈Verify(K0↔i , (i ,m, senc

i ),

Code(mac inst))〉

if ind inst
i = true

then

s ← DecSE(K0↔i , senc
i )

macconf ← mac(K0↔i , (0,m))

else

macconf ← mac(K0↔i , (0, abort))

←−
macconf

−−−−−−−−−−−−−

ind inst
0

′
← 〈Verify(K0↔i , (0,m), Code(macconf))〉

ind inst
0 ← ind inst

0

′
∧

〈

SWInstallExternal : ind inst
k = true

〉

if ind inst
0 = true

then

Calculate correct p

macack ← mac(K0↔i , (i ,m, p))

else

macack ← mac(K0↔i , (i ,m, abort))

−
macack

−−−−−−−−−−−−−→

(i ′,m ′, p) ← Msg(macack)

ind inst
i ← ind inst

i ∧

〈Verify(K0↔i , (i ,m, p),

Code(macack))〉
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5.4.2 OEM

(OPE1) Rights Enforcement: We assume to the contrary of OPE1 that there exists at
least one run of protocol SWInstallExternal which leads to ui using sm with an incorrect
usage parameter. To prove OPE1, we lead this assumption to a contradiction. The
incorrect usage parameter has two possible explanations: Either ui is compromised or
it received an authentic usage instruction (i ,m, p) with incorrect usage parameter p
from u0.

9 Due to the trust assumptions, ui can’t be compromised: Neither ui nor u0

disclose the shared key and therefore ui can’t be maliciously reprogrammed. Thus ui

must have received an incorrect usage parameter p from u0. However, this can again
only have two explanations: u0 either incorrectly processed the usage rights during
calculation of macack or it correctly processed disallowed usage rights. Due to the trust
assumptions, u0 cannot process the usage rights incorrectly. Thus u0 must have received
disallowed usage rights. Due to the calculation of ind inst

L , the disallowed usage rights
must have been approved by L. However, due to the trust assumptions, L cannot
approve a disallowed rights set. This concludes the proof by contradiction.

(OPE2) Compatibility Enforcement: We suppose to the contrary that the installation of
at least one SW component sm in Uk succeeds although sm and Uk are incompatible (see
Definition 6 on page 12). To prove OPE2, we lead this assumption to a contradiction.
As the installation result is success, the output ind inst

k of protocol SWInstallExternal to
Uk must have equaled true. Due to the calculation of ind inst

k , the intermediate results

ind inst
k

′
and ind inst

k

′′
must also have equaled true. Due to the calculation of ind inst

k

′′
, the

compatibility test CompatTest(Qm ,Qk ) must have generated output true. Due to the
correctness of u0, the compatibility test can only have generated the incorrect output
true due to an incomplete property set Qm ⊂ Qtotal

m (see Definition 10 on page 12).

Due to the authentication of Qm as part of ind inst
k

′′
, the incomplete property set must

have originated from T . However, any property set from T must be complete due to
the correctness of T . This concludes the contradiction.

(OPE3) ISP Clearance Enforcement: We suppose to the contrary of OPE3 that a dis-
honest ISP Ij succeeds in installing at least one SW component sm in at least one user
platform Uk although Ij is not legal for sm . As argued in OPE2, the intermediate result

ind inst
k

′′
of protocol SWInstallExternal must have been true. Due to the calculation of

ind inst
k

′′
, u0 must have accepted c ≥ cmin

m . As u0 is correct, it must have received incor-
rect clearance level information c or cmin

m (or both). Due to the authentication of these

values in the calculation of ind inst
k

′′
, the incorrect clearance level information must have

originated from T . However, any clearance information from T must be correct due to
the trust in T and the verifications in the two protocols ClearCert and SWCert. This
concludes the proof by contradiction.

(OCF) Confidentiality: Intuitively, the privacy of an SW component is protected by the
IND-CCA1 security of the PKBE scheme in protocol SWDistrib and the IND-CPA security
of the symmetric encryption scheme in protocol SWInstallInternal. Only an unrevoked

9We stress the importance of the assumptions in Section 5.2 regarding replay attacks. If in contrast to the
assumptions a MAC cannot be verified to be fresh, the adversary can replay an old MAC and thus activate
usage with an expired usage parameters.
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trusted component can decrypt the PKBE ciphertext; only trusted and target compo-
nent can decrypt the symmetric ciphertext. Formally, we have to prove:

(i) The joint signature and encryption of SW component sm , consisting of signature σSW
m

from protocol SWCert and encryption senc
m from protocol SWDistrib, at least preserves

the IND-CCA1 security of the PKBE encryption scheme.

(ii) The encrypt-then-mac method in protocol SWInstallInternal increases the IND-CPA

security of the symmetric encryption scheme at least to IND-CCA1 security.

Following the notation in [ADR02], we prove (i) with the following theorem. The
corresponding proof is detailed in Appendix D:

Theorem 1 If E is an IND-CCA1-secure encryption scheme and S is a UF-CMA-secure
signature scheme, then StE is IND-CCA1-secure in the Insider-security model. 2

The authors of [BN00] prove (ii). Specifically, Theorem 4.9 of [BN00] proves that an
IND-CPA-secure encryption scheme together with a strongly unforgeable MAC scheme
leads to an IND-CCA2-secure encrypt-then-MAC message authentication scheme.

(OI) Integrity: The proof is by contradiction. To the contrary of OI, let the installation
result be success and the installed SW s in protocol SWInstallInternal be different from
the SW sm with index m that Uk requested in protocol SWInstallExternal. As s and
sm are different, ui must either have been incorrect or correctly processed an incorrect
senc
i . Due to the trust assumptions, ui has either been correct or dysfunctional after key

deletion. As the installation result was success (ind inst
k = true and thus ind inst

0 as well
as ind inst

i = true), ui must have been correct and senc
i incorrect. Due to the calculation

of ind inst
i in protocol SWInstallInternal, senc

i must have originated from u0. This gives
again two possibilities: u0 is incorrect or correctly processed an incorrect input senc

m .
Due to the trust assumptions, we can exclude an incorrect u0. Due to the calculation
of ind inst

k

′
, u0 rejects senc

m unless it is a valid ciphertext and contains a tuple (m, sm)
that has been witnessed and signed by T . If senc

m is incorrect, then T confirmed an
incorrect (m, sm) in the form of signature σSW

m in protocol SWCert. However, due to
the trust assumptions we can exclude an incorrect T . We have contradicted all possible
explanations for s 6= sm .

5.4.3 SW Application Programmer

(SND) Non-discrimination: The proof is almost identical to the proof of COR. The only
difference in the assumptions of both requirements is the (in)correctness of the adver-
sarial coalition P \ {Pd}. Yet the input values to the correctly behaving participants
of protocol SWInstallExternal have been generated by the correctly behaving parties Pd

and T . The adversarial coalition thus cannot influence the installation result, which
together with the arguments for OCR proves SND.

Note that the channel assumptions (see Section 5.2.2) are crucial in this proof. If the
channel wasn’t public or if the broadcast message didn’t reach all members of I, then
the proof would not hold. In addition, the public key property of the PKBE scheme
complements the public access to the channel itself.
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5.4.4 Installation Service Provider

(INR) Non-repudiation: We show how an honest ISP Ij proves both statements to any
honest verifier V:

1. Let the adversary A claim that Uk did not initiate the successful run of protocol
SWInstallExternal. As the installation result is success, Ij must have received the
SW installation request req inst that Uk has generated. Due to the correctness of L
and Uk and the calculation of ind inst

L as well as ind inst
k

′
, A cannot forge the index

k of Uk within req inst. With req inst as proof, Ij convinces any honest V that Uk

signed the tuple (k ,m,Rm) in order to initiate the protocol. This contradicts A.

2. Let the adversary A claim that the installation result is failure although the actual
result is success. As Uk is correct, the installation result is success only if Uk has
sent the installation confirmation σconf and if Ij has acknowledged the receipt of

σconf . Ij thus possesses a non-repudiable proof of the acceptance indicator ind inst
k

′
,

which must equal true by the initial assumption. Any honest verifier will accept
this proof for the installation result success, which contradicts A.

Note that both proofs strongly rely on the assumptions regarding freshness, non-
expiration and identity verification (see Section 5.2). If these assumptions do not
hold, then the proof fails as the adversary can combine messages from several
protocol runs to deceive the verifier.

(ICE) Clearance Enforcement: The arguments for OPE3 also prove ICE.

(IND) Non-discrimination: The proof is almost identical to the proof of COR. The only
difference in the assumptions of both requirements is the (in)correctness of the adver-
sarial coalition A = P. A can only influence the result of protocol SWInstallExternal via
three input values: ζSW

m , σSW
m and senc

m . The first two input values are output values of
protocol SWCert, which ensures correctness of both values through the correctness of T
and the restriction of A’s input to the SW component s. The third input value senc

m is
an output value of protocol SWDistrib, where A has full control over senc

m . However, A

cannot tamper with any input value in this protocol due to the calculation of ind inst
k

′
,

where Uk verifies the correctness of m and sm using T ’s signature. A thus cannot forge
any of the three input values, which together with the arguments for COR proves IND.

(IFP) Frame-Proofness: The proof is by contradiction. Let the adversary A deliver a
valid proof σack for the installation result success although the actual result was failure
and Ij behaved correctly. Thus at least one of the acceptance indicators ind inst must
equal false. However, this leads to a contradiction for each indicator as long as the
trust assumptions on Uk and L as well as the channel assumptions hold:

1. If ind inst
L equals false, then the license equals σlic = abort and thus ind inst

k

′
=

false, which implies σack = abort. The proof of A is therefore invalid.

2. If ind inst
j equals false, then σack = abort and A’s proof is invalid.

3. If ind inst
k equals false, then either the verification of σack failed or ind inst

k

′
= false.

Due to the correctness of Ij , the verification of σack can only fail if σack = abort,

which would contradict the validity of A’s proof. Therefore ind inst
k

′
= false, which

again implies σack = abort and an invalid proof of A.
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This concludes the contradiction for all three indicators.

5.4.5 License Provider

(LNR) Non-repudiation: The verifier V is actually part of the implementation. We present
it here for ease of reading: V first asks L for the SW installation request req inst. If it
is correct, then V defines success, i.e., ind inst = true, as the (intermediate) installa-

tion result. Only if the license receiver(s) still claim ind inst′ = false, then V asks the

receiver(s) for the installation confirmation σconf . After the extraction of ind inst
k

′
, V

defines ind inst = ind inst
k

′
as the installation result.

To prove the correctness of this verifier V, we have to distinguish two cases that lead to
dispute. L and the license receiver(s) call V if either

1. ind inst = false and the output ind inst
L = true to L was incorrect or

2. ind inst = true and the output ind inst
L = true to L was correct.

Note that the license receiver(s) are honest in case 1 and malicious in case 2.

1. L accepts the installation confirmation σconf and the installation result ind inst =
ind inst

k

′
= false due to the correctness of Uk .

2. The malicious receiver(s) cannot deceive V due to the correctness of Uk . As the

installation result is success by the initial assumption, ind inst
k

′
= true and the

verifier agrees with L that ind inst = true.

We stress that the freshness of the license σlic is crucial in the above proof. If Uk accepts
the same σlic twice in two different protocol runs although the freshness information is
identical, then a malicious license receiver can easily deceive the verifier by combining
messages from both protocol runs.

5.4.6 User

(UNR) Non-repudiation: We have to prove the correctness of ind inst
k as well as the cor-

rectness of the verifier in case of dispute. We start with a proof by contradiction
that ind inst

k is correct. Let ind inst
k = ¬ind inst be the incorrect output value of protocol

SWInstallExternal to Uk . There are two alternatives:

1. False positive: ind inst
k = true and ind inst = false

2. False negative: ind inst
k = false and ind inst = true

We lead both alternatives to a contradiction:

1. As ind inst = false and ind inst
k = true, by definition of ind inst at least one of

the output values ind inst
L and ind inst

j to L and Ij must equal false. Due to the

correctness of L, ind inst
L must equal true. Otherwise, L wouldn’t have created a

legal license and Uk would have calculated ind inst
k

′
= false and thus ind inst

k =
false. Therefore ind inst

j must equal false. However, Ij delivered a correct σack

to Uk—otherwise ind inst
k would have equaled false—and thus by definition of the

protocol SWInstallExternal, ind inst
j must have equaled true.
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2. As ind inst
k = false, the installation result is ind inst = false by definition and the

contradiction is obvious. Note that Uk doesn’t use sm due to the calculation of
ind inst

0 in protocol SWInstallInternal.

It remains to show the construction of a verifier V for the installation result and to prove
its correctness. Although V is part of the implementation, we show it here for ease of
reading. As ind inst

k is correct, a dispute only arises if an adversary A maliciously claims

ind inst′ = ¬(ind inst
k ) although the actual installation result is ind inst = ind inst

k . V asks
A for the installation confirmation σconf and Uk for the installation acknowledgement
σack. If σconf is valid and indicates ind inst

k

′
= false, then V decides ind inst = false.

If σconf indicates ind inst
k

′
= true, then V verifies

〈

Verify(K test
j , σconf , Sig(σack))

〉

. If the

signature is valid, then V decides ind inst = true, otherwise ind inst = false. Note that
in both cases V obtains the same result as a correct Uk .

(UIO) Installation Origin: To the contrary of UIO, we assume that the installation result

is success although Uk did not generate req inst. However, this implies that ind inst
k

′′
=

false and thus ind inst
k = false. Therefore the installation result must be failure. This

concludes the contradiction.

(UA) Authenticity: As the installation result is success, we have ind inst
k = ind inst

k

′
=

ind inst
k

′′
= true. Due to the calculation of ind inst

k

′′
and ind inst

k

′
by a correct Uk , all

SW indices match. Due to the calculation of ind inst
k

′
based on input sigSW

m from a cor-
rect T , the equality s = sm holds for the variable s of Uk in protocol SWInstallExternal.
Due to the correctness of u0 and ui , the equality must also hold for the output s to ui

in protocol SWInstallInternal.

Uk ensures the authenticity of σlic in the calculation of ind inst
k

′
. Note that both authen-

ticity proofs rely on the correctness of the public test keys from SystemSetup.
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Chapter 6

Conclusion

In this report we have proposed a procedure for secure SW delivery and installation in em-
bedded systems. It integrates installation service providers as intermediaries between SW
provider and embedded system and categorizes them into separate clearance levels. Com-
patibility of the SW component and the target system is checked prior to installation. The
fulfillment of a variety of requirements and the introduction of an elementary license system
allows any SW provider to establish new business models that are currently not supported.
The SW provider’s intellectual property is protected and a variety of digital rights is sup-
ported. From the embedded system owner’s point of view, the procedure prevents installation
of illegal SW and supports warranty claims against the SW provider in case of defective SW
with unambiguous evidence.

Public Key Broadcast Encryption (PKBE) enables efficient communication with embed-
ded system on an insecure one-way channel. Even if the key material of delivered systems
is not changed throughout the lifetime, an unbounded number of embedded systems can be
revoked or excluded. The access to the broadcast channel is non-discriminatory, allowing
any SW provider to distribute SW components after certification by a Trusted Third Party
(TTP). The use of Trusted Computing (TC) concepts induces the necessary trust in the em-
bedded system. Based on minimal TC hardware and a secure operating system kernel, the
embedded system can be transformed into a trusted computing base (in an open environ-
ment). For example, this allows any SW provider to have trust in the confidentiality of his
SW components. The use of property-based SW certification and sealing of the embedded
system’s configuration replaces the currently criticized attestation mechanisms which might
be used for discrimination of individual SW providers.

Several opportunities for future work remain. For example, the need for a TTP should
be reduced. One subject of investigation is the generation of the private key material by the
embedded systems themselves and subsequent aggregation into a PKBE infrastructure. In
addition, it would be interesting to consider proof-carrying code instead of SW certification
by a TTP.
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Appendix A

Summary of Abbreviations and

Variable Names

A.1 Abbreviations

CAN Controller Area Network

ECU Electronic Control Unit

ESP Electronic Stability Program

Euro NCAP European New Car Assessment Programme

DRM Digital Rights Management

HW Hardware

ISP Installation Service Provider

ITM Interactive Turing Machine

LIN Local Interconnect Network

LP License Provider

MAC Message Authentication Code

MOST Media Oriented System Transport

NHTSA National Highway Traffic Safety Administration

OEM Overall Equipment Manufacturer

OS Operating System

PKBE Public Key Broadcast Encryption

PKI Public Key Infrastructure

SAP Software Application Programmer

SW Software

SWP SW Provider

TC Trusted Computing

TCB Trusted Computing Base

TTP Trusted Third Party

UP User Platform

URL Uniform Resource Locator
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A.2 Variable Names

A.2.1 Roles

O OEM

S Set of all SAPs

Sd ∈ S Specific SAP with index d

P Set of all SWPs

Pd ∈ P Specific SWP with index d

I Set of all ISPs

Ij ∈ I Specific ISP with index j

L License provider

T Trusted third party

U Set of all user platforms

RU Set of all revoked user platforms

Uk ∈ U Specific user platform with index k

uk ,i Specific component in a specific user platform Uk

u0 Trusted component of a user platform, shorthand for uk ,0

ui Target component within a user platform, shorthand for uk ,i

A.2.2 Variables Related to the Preliminaries

SW Set of all SW components

sm Specific SW component with index m

C Set of all clearance levels

c Clearance level of an ISP

SWc Set of all SW components installable with clearance level c

cmin Minimum clearance level of an SW component

cmin
m Minimum clearance level of a specific SW component sm

T &Cm Terms and conditions of a specific SW component sm
Rm Set of usage rights for a specific SW component sm

r ∈ Rm Usage right for a specific SW component sm
Rtotal

m Set of all allowed usage rights of a specific SW component sm
p Usage parameter of an SW component

σlic License for an SW component

Qtotal
SW Set of all SW properties

Qtotal
m Set of all properties of a specific SW component sm
Qm Set of properties of a specific SW component sm

q Specific SW property

Qtotal
UP Set of all user platform properties

Qk Set of all properties of a specific user platform Uk

Q Specific user platform property

43



A.2.3 Output Variables of the Basic Protocols

X Party participating in a protocol

inX Input value of party X

outX Output value of party X

reqclear Clearance level certification request from an ISP to the TTP

ind clear
T Acceptance indicator of the TTP T in protocol ClearCert

ζclear
j Clearance level certificate of a specific ISP Ij

ind clear
j Acceptance indicator of ISP Ij in protocol ClearCert

reqSW SW certification request from an SWP to the TTP

indSW
T Acceptance indicator of the TTP T in protocol SWCert

ζSW
m SW certificate for a specific SW component sm

σSW
m Integrity proof for a specific SW component sm

sigSW
m = Sig(σSW

m ) Integrity signature for a specific SW component sm

indSW
d Acceptance indicator of SWP Pd in protocol SWCert

senc
m SW component sm in protected form (signed and PKBE encrypted)

σ
prop
m Property statement of SWP Pd with respect sm

req inst SW installation request from Uk

σinst SW installation package from Ij in protocol SWInstallExternal

σconf Installation confirmation from Uk in protocol SWInstallExternal

σack Installation acknowledgement from Ij in protocol SWInstallExternal

ind inst
k Acceptance indicator of user platform Uk

ind inst
j Acceptance indicator of ISP Ij

ind inst
L Acceptance indicator of license provider L

senc
i SW component sm in protected form (symmetrically encrypted for ui)

mac inst SW installation package from u0 in protocol SWInstallInternal

macconf Installation confirmation from ui in protocol SWInstallInternal

macack Installation acknowledgement from u0 in protocol SWInstallInternal

ind inst
0 Acceptance indicator of trusted component u0

ind inst
i Acceptance indicator of target component ui

44



A.2.4 Cryptographic Keys

Kenc Set of public keys of a PKBE scheme

Kdec
k Set of private keys of Uk in a PKBE scheme

K sign
d Signature key of SW provider Pd

K sign
j Signature key of ISP Ij

K sign
L Signature key of the license provider L

K sign
k Signature key of user platform Uk

K sign
T Signature key of the TTP T

K sign
Manuf Signature key of a manufacturer Manuf

K test
d Test key of SW provider Pd

K test
j Test key of ISP Ij

K test
L Test key of the license provider L

K test
k Test key of user platform Uk

K test
T Test key of the TTP T

K0↔i Key shared between trusted component u0 and target component ui

K pub
k ,0 Public key of the trusted component uk ,0
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Appendix B

Public Key Broadcast Encryption

In a PKBE scheme, any (not necessarily trusted) party can distribute an SW component s
on the broadcast channel. Specifically, this holds true for each SW provider S , making the
channel non-discriminatory. In the setup phase, T splits the set of all user platforms U into a
well-chosen subset scheme in such a way that each Uk is part of several subsets. Two of these
schemes were introduced in [NNL01] and extended to the public key property in [DF03]. T
chooses the security parameters, e.g., key lengths, and generates a public key as well as a
private key for each subset. All public keys are supposed to be known to any party while
T gives the private key of each subset only to those Uk that are elements of the subset. T
can generate the keys at any time after setup and provides Uk with its private keys when Uk

is manufactured. For memory efficiency reasons, the user does not need to store each of his
private keys.1 In the automotive case example, the manufacturer of the trusted computing
HW might take over the role of T . However, it might even be O if all SW providers trust O .

In the distribution phase, the SW provider first needs to select a set U of intended users.
Then he computes a selection of subsets—called “cover” of U—in such a way that only the
members of U are contained in the subsets and that the number of subsets remains small.2

Finally, he encrypts s with a session key and, in turn, the session key with the public keys of
all subsets in the cover. On the receiving end, each Uk in the cover has the necessary private
keys for decrypting the session key and subsequently s. Nobody else—specifically, neither
the original SW provider nor any Uk outside the cover—can decrypt the session key, thus
providing confidentiality. Although T can decrypt any session key based on the master key,
the setup phase can be carried out in such a way that all potential users receive their key set
and the master key is destroyed.

In our model, PKBE has one main advantage over a regular Public Key Infrastructure
(PKI): PKBE is significantly more efficient regarding message header length, i.e., it needs
far fewer encryptions of the session key when a message is sent over the one-way broadcast
channel. In addition, PKBE in [DF03] even comprises a regular PKI. Each user is contained
in a subset of size 1 to which only he holds the private key. Therefore a sender can distribute
s even to a very small set of intended recipients by encrypting—in the worst case—the session
key with the public subset key of each intended user.

The selection of the intended users might be based on two criteria. Firstly and most

1In [DF03], the authors present two alternatives with user storage requirements O(log |U|) and O(log2 |U|)
respectively where U is the set of user platforms and |U| its cardinality.

2[NNL01] presents an algorithm that finds a cover of size O(|RU |), where RU is the set of revoked users.
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importantly, all revoked users are excluded, e.g., when a trusted component u0 has been
compromised and traced. Secondly, all potentially incompatible users might be excluded.
For example, if a high-end SW component s can only be installed in a specific luxury class
vehicle, the SW provider might exclude any compact class vehicle. However, Uk still performs
a compatibility test. In the example, the compact class vehicle would refuse to install s anyway
due to lacking compatibility. Therefore, the second selection step is unnecessary and even
increases the message header length.

Note that [DF03] is based on a Hierarchical Identity-Based Encryption (HIBE) scheme
as proposed in [HL02, GS02, BBG05]. The currently most efficient HIBE scheme is [BBG05]
and was published after [DF03]. When implementing [DF03], the HIBE scheme [GS02] should
thus be replaced with [BBG05].
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Appendix C

Implementation

The proposed solution is relevant for an actual implementation. The cryptographic primitives,
e.g., signatures, PKBE and symmetric encryption schemes, are readily available and their
security has been proven. The roles that we have introduced either exist today or might be
taken over by a party that can easily evolve out of existing players in the respective industries.

Trusted computing hardware is currently being developed by several industry groups and
standards bodies such as the Trusted Computing Group.1 An adaptation of the hardware,
e.g., Trusted Platform Module or tamper-resistant memory, to an embedded environment
seems feasible. In this scenario, the private key material of Uk is stored in a tamper-resistant
memory and all other keys are stored in either tamper-resistant memory or encrypted form.
All SW tasks are separated from each other by the operating system, preventing tasks from
eavesdropping and modifying the physical memory or processor instructions. Secure operating
systems can be based on secure microkernel architectures. For a discussion of these architec-
tures, we refer to [SS03]. Due to the proposed installation procedure, only one component per
embedded system needs to be a trusted computing base. This respects cost requirements of
the respective industries that prevent the use of trusted hardware in every single component
of the system.

Property-based sealing allows to bind the private PKBE keys to a correct configuration of
u0. We derive it from property-based attestation as introduced in [SS05] (for a similar method
see [HCF04, HF05]). In contrast to attestation, which only proves Uk ’s platform configuration
at a certain point of time, sealing allows to permanently bind secret information to a correct
platform configuration. For this purpose, a trusted module of u0 stores the private PKBE
keys, but releases them only if u0 is in a trustworthy configuration defined by u0’s properties.
Each time that the task for decrypting PKBE ciphertext calls the trusted module and asks
for the private keys, the module determines the current properties of the platform and checks
if they match with the properties of a trustworthy configuration. The module releases the
private keys only in case of a match. For further details on the implementation of u0, we refer
to [AHSS05].

1URL: https://www.trustedcomputinggroup.org/. For details, see [Tru02, Tru03a, Tru03b].
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Appendix D

Proof of Theorem 1

We detail the proof sketch of [ADR02]. In Section (4) of the proof of Theorem 1 in [ADR02],
the authors show that IND-gCCA2 security of the base encryption scheme paired with UF-CMA

security of the base signature scheme implies IND-gCCA2 security of the resulting StE sign-
cryption scheme. By signcryption we mean any composition of a signature and an encryption
scheme that provides privacy and authenticity.

The basic idea of our proof is as follows. We assume to the contrary of our Theorem 1 that
there exists an IND-CCA1 adversary A′ which is capable of distinguishing the signcryptions of
two messages M0 and M1 although the base schemes are IND-CCA1 and UF-CMA-secure. If A′

existed, it would break the IND-CCA1 security of the signcryption scheme. However, with the
help of this distinguisher A′ we construct an adversary A which is capable of distinguishing
the encryptions of two messages S0 and S1 in the base encryption scheme, thus breaking
IND-CCA1 security of the base encryption scheme and contradicting the initial assumption.

Proof Let there be a distinguisher A′ of the StE scheme whose success probability ǫ is non-
negligible in the security parameter λ. Based on A′ we construct a distinguisher A of the
base scheme E that also has non-negligible success probability (see pages 50 and 51).

The challenger for the base encryption scheme runs the key generation algorithm and
obtains the public encryption key as well as the secret decryption key of receiver R. The
challenger keeps the decryption key DKR secret and passes the encryption key EKR on to A.

A runs the key generation algorithms of E and S and combines the resulting keys with the
public key EKR obtained from his challenger. A passes the generated keys SDK S , VEK S and
VEKR on to A′. Specifically, VEKR contains the encryption key EKR which the challenger
of A chose. We note that A′ also obtains the secret signing and decryption key SDK S of S
because the proof is in the Insider-security model.

Subsequently, A′ issues adaptive chosen-ciphertext oracle queries. We denote the query
stage of A′ with query and the state information about the query history with state. As
there is no de-signcryption oracle, A needs to impersonate this oracle and correctly answer
the queries. When A′ queries a signcryption C , then A sends C to his own decryption oracle
(which does exist) and obtains the decryption S . A then verifies whether S is a valid signature
and sends M to A′ as the answer to the oracle query.

When A′ decides that the query stage is over, A′ starts the find stage, indicated with
find, in order to find two message M0 and M1 on which it wishes to be challenged. A′

sends both messages to A, who signs both messages, thus creating two valid signcryptions,
and forwards them to his challenger C. C tosses a coin b in order to encrypt one of the two
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Construction of adversary A against E from adversary A′ against StE

C A A′

(EKR,DKR) ← GenKeyEnc(1λ)

−
EKR

−−−−−−−−→

(EK S ,DK S ) ← GenKeyEnc(1λ)

(SK S ,VK S ) ← GenKeySig(1λ)

(SKR,VKR) ← GenKeySig(1λ)

SDK S ← (SK S ,DK S )

VEK S ← (VK S ,EK S )

VEKR ← (VKR,EKR)

−
SDK S ,VEK S ,VEKR

−−−−−−−−→

Repeat

(C , state) ← A′(SDK S ,VEK S ,

VEKR, state; query)

←−
C

−−−−−−−−

←−
C

−−−−−−−−

S ← DecDKR
(C )

−
S

−−−−−−−−→

ind ← Verify(VK S ,S )

if ind = true

then

M ← Msg(S )

else

M ← false

−
M

−−−−−−−−→50



Continuation of construction of adversary A

C A A′

(M0,M1, state) ← A′(state; find)

←−
M0,M1

−−−−−−−−

S0 ← SigSKS
(M0)

S1 ← SigSKS
(M1)

←−
S0,S1

−−−−−−−−

b ← {0, 1}

Cb ← EncEKR
(Sb)

−
Cb

−−−−−−−−→

−
Cb

−−−−−−−−→

b ′ ← A′(Cb , state; guess)

←−
b ′

−−−−−−−−

←−
b ′

−−−−−−−−
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messages selected at random. Then C sends the resulting challenge ciphertext Cb to A, which
in turn passes it on to A′ without any modification.

A′ starts the guess stage, indicated with guess, and outputs his guess b ′. A′ then sends
b ′ to A, who simply passes b ′ on to his challenger C as his own guess.

By the construction of A, a correct guess b ′ of A′ for StE always implies a correct guess of
A for E . Both adversaries thus have the same non-negligible success probability, contradicting
the initial assumption that E is IND-CCA1-secure. We stress that A′ cannot distinguish A’s
answers to his oracle queries from the answers of a real oracle. ¥
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