Smooth visibility from a point
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Abstract- We propose a solution in dual space to the prob-
lem of computing the tangents of a plane Bezier curve that
pass through a point, an important problem in the analysis
of visibility. Our solution reduces to the intersection of a line
with a Bezier curve in dual space. It is equivalent in complex-
ity to the standard solution, but introduces an alternative,
geometric interpretation of the problem. This new character-
ization has promise for the solution of more general problems
in visibility. We also compare the dual solution to the solu-
tion using polar theory, which reduces to the intersection of
two algebraic curves after implicitization.

Keywords: visibility, tangents through a point, duality, po-
lar.

1 Introduction

The tangents of a plane curve that meet a point P (Fig-
ure 1) define important boundaries of visibility from P
for robotics, graphics, and geometric analysis. A short-
est path from P will begin along one of these tangents
(Figure 2). A point light at P will cast shadows bounded
by these tangents, when the curve is interpreted as an
opaque obstacle (Figure 3). The 2-dimensional silhou-
ette from the viewpoint P is defined by the visible points
of tangency (Figure 1).

The solution to the discrete polygonal version of this
problem, where the curve is replaced by a polygon, is
straightforward (Figure 4). For each vertex of the poly-
gon, consider the outward-pointing normals of its two
adjacent edges. Vertices such that one outward-pointing

Figure 1: Tangents through a point

Figure 2: A shortest path



Figure 3: Casting a shadow

Figure 4: The polygonal problem

normal points towards the point P and the other points
away become the discrete analog of the points of tan-
gency on the curve. A smooth solution using curves
1s more involved, yet preferable for its precision and,
if properly implemented, its improved efficiency over a
densely sampled polygon. We are especially interested
in the solution of our problem for Bezier curves, since
they are the dominant modeling tool for curves.

The classical solution to the tangents of a curve C
through a point P uses polar theory [10]. The points of
the curve whose tangents intersect P are the intersec-
tions of two algebraic curves: the curve C' and the polar
of P with respect to C' (Figure 7).

The standard parametric solution (e.g., [4]) solves
for the points C'(t) = (x(t),y(t)) of the curve whose
normal N (t) is orthogonal to the line to P = (p1,p2)
(Figure 5):

(C(t)=P)-N(t)=0 (1)

F(t) = (2(t) — p1,y(t) — p2) - (=¥ (1), 2'(t)) = 0

This is a univariate equation of degree 2n — 1 in ¢, where
n is the degree of C'(t).

In this paper, we propose a solution that reduces
to the intersection of a line and a Bezier curve of de-
gree 2n — 1 in dual space. This compares favourably
with the polar solution. A curve-curve intersection 1s
replaced by a simpler line-curve intersection. Also, the

Figure 5: As normals orthogonal to the line to P

dual of a Bezier curve can be easily represented as a ra-
tional Bezier curve (Theorem 3.4), while the polar of a
curve cannot. Consequently, the intersection of implicit
algebraic curves in the polar solution is replaced by the
more familiar intersection of parametric Bezier curves.

The dual solution is similar in efficiency to the stan-
dard parametric solution (1), since the intersection of a
line and a parametric curve of degree 2n — 1 is compa-
rable to the solution of a univariate equation of degree
2n—1. The major difference is in point of view and gener-
alizability. The dual method introduces a new paradigm
with great potential for the solution of visibility prob-
lems in dual space, in which an algebraic solution is re-
placed by a geometric solution. In other work, we will
show that it can lead to a better solution for the common
tangents of two curves [3] (and we shall appeal to some
of the results from this paper). We are also presently
working on a solution to the common tangent planes
of two surfaces that has no comparable solution under
the algebraic interpretation. By studying the dual solu-
tion for the simpler problem of the tangents through a
point, we establish a template for the dual space method
and clearly distinguish the geometric and algebraic ap-
proaches.

The basic argument of our solution in dual space is
as follows. In dual space, points become lines and lines
become points. In particular, the point P dualizes to the
line P* and the tangent lines of a curve dualize to the
points of a so-called tangential curve (Figure 6). In dual
space, the intersections of the line P* with the tangential
curve encode the tangent lines through P (Figures 8-
10). In particular, an intersection point maps back to
a line, which must be a tangent (since the intersection
lies on the tangential curve) that contains P (since the
intersection also lies on P*).

We review the polar solution in the next section,
and present our algorithm, including several examples,
in Section 3. The paper ends with some conclusions and
suggestions for future work. Throughout this paper, we
shall work in projective 2-space. We recall some of the
important properties of projective 2-space in the follow-



Figure 6: The tangent space of a curve, and its dual (clipped to z € [-1,1])

ing definition.

Definition 1.1 Projective 2-space P? is the space
{(x1,®2,23) : ; € N, not all zero} under the equiva-
lence relation (w1, 22,23) = k(x1,22,23), k # 0 € R.
The point (x1, %2, x3) in projective 2-space is equivalent
to the point (z—;, z—g) in Cartesian 2-space. Points of P?
with vs = 0 are associated with points at infinity. The
8 coordinates in projective 2-space are called homoge-
neous coordinates. We distinguish the third homoge-
neous coordinate by calling it the projective coordi-
nate.

The use of projective space 1s motivated by the fact
that the equation of a line 1s invariant under multiplica-
tion by a constant: the line az 4+ by 4+ ¢ = 0 is equivalent

to the line kax + kby + ke = 0 for k # 0.

2 Polar theory

The classical mathematical method for finding the tan-
gents of a curve C' through a point P involves polar the-
ory.

Definition 2.1 Let C be a plane algebraic curve defined
by the polynomial f(x1,x2,23) = 0 of degree n and let
P = (p1,p2,p3) be a point, where both C' and P are
expressed in projective 2-space. The (first) polar of P
with respect to C is an algebraic curve of degree n — 1

defined by

of , of, of
pl@xl Pzﬁxz

or P-Vf=0/[10]

Example 2.2 The first polar of P = (5,0,1) with re-
spect to the circle x3 + 23 — 23 = 0 is the line 5(2x1) —
203 =0 oraey = % in Cartesian space (Figure 7). In this
special case of a circle, the first polar can also be com-
puted using inversion: it is the line through the inverse
P’ of P and perpendicular to PP’.

The first polar of (1,1, 1) with respect to the quartic
trisectriz curve (22 + y* — 2ax)? = a?(2? + y?) [5] is the
cubic curve p(z,y) = (4 —4a)(23 + zy?) + 4(y® + 2%y) +
(6a? — 12a)z? — (4a + 2a?)y? — 8ary + 6a’zr — 2a’y = 0.

Theorem 2.3 The intersections of C' and the first polar
of P with respect to C' define the locus of points of C
whose tangents intersect P (Figure 7).

Figure 7: The polar of a point with respect to a circle



Polar theory leads to the following algorithm for
the computation of the tangents from a Bezier curve C'
through a point P:

1. Tmplicitize C' (i.e., translate from the paramet-
ric to the implicit representation of C'), yielding

f(xla T2, $3) — 0

2. Compute the first polar of P with respect to C', say
g(xla T2, $3) — 0

3. Intersect the algebraic curves f(xq,z2,23) = 0 and
g(xla T2, $3) — 0

The first step, implicitization, involves resultants [6,
9]. The implicitization of a Bezier spline is particularly
challenging. For example, the Bezier spline of Figure 1
has 69 segments, yielding a set of algebraic curves.

For steps (2) and (3), Sederberg [8] has developed a
robust and efficient algorithm for the computation of po-
lars of piecewise algebraic curves, algebraic curves in the
Bernstein basis, as well as the subsequent intersection of
the algebraic curve and its polar.

In conclusion, the polar method is awkward for
parametric Bezier curves, since it is fundamentally a
method for implicit curves.

3 A dual solution

In this section, we present our algorithm in dual space for
computing the tangents through a point. This algorithm
works directly with Bezier curves. Our basic algorithm
for computing the tangents from a curve C' through a
point P is as follows:

(1) Dualize P and the tangent space of C, to the line
P* and the tangential curve C*.

(2) Intersect the line P* and curve C* in dual space.

(3) Map the intersections in dual space back to lines in
primal space. These are the tangents of C' through
P.

We shall now elaborate on the components of this algo-
rithm and add refinements to handle points at infinity.

We begin with a definition of our duality. Although
the most natural point-line duality is between the line
az +by+ ¢ = 0 and the point (a, b, ¢) in projective space
[2], we choose two subtly different dualities that map a
different coefficient of the line equation to the projective
coordinate. This choice is motivated by the fact that
lines dualized to points with zero projective coordinates
will be mapped to infinity (Definition 1.1) and effectively
lost by the duality.

Definition 3.1 In the a-duality, the line ax+by+ec = 0
is dual to the point (b,c,a) € P?. In the b-duality, the
line ax+by+c = 0 1s dual to the point (a,c,b) € P2. The
tangential a-curve (resp., b-curve) of a plane curve
C(t) is the curve C*(t) C P? where C*(t) is the a-dual
(resp., b-dual) of the tangent at C(t). Properties of the
tangential curve are discussed in [3].

The a-dual of the horizontal line by+¢ = 01is (b, ¢, 0).
That is, horizontal lines are mapped to infinity and the
tangential a-curve is not a robust representation of hor-
izontal tangents. Consequently, we restrict the tangen-
tial a-curve to the representation of steep tangents, as
follows.

Definition 3.2 A curve’s tangent space can be divided
wnto shallow and steep tangents. A tangent ax+by+c =0
is steep if |a| > |b| (its angle to the x-axis is greater than
45 degrees). A tangent is shallow if |a| < |b].

Lemma 3.3 The tangential a-curve clipped by x = %1,
C*NA{(z,y) : « € [=1,1]}, represents the steep tangents
of the curve C.

Proof: Diagonal lines ax +ay + ¢ = 0 form the bound-
ary between steep and shallow lines. They dualize to
(£a,c,a) € P?, or x = £1 in Cartesian space, for both
a-duality and b-duality. B

The top right of Figures 8-10 illustrates clipped tan-
gential a-curves (of the curves on the left of each figure).
It is simple to clip a curve by « € [—1,1].

The tangential b-curve is a perfect complement to
the a-curve. Although b-duality maps vertical lines to
infinity, the tangential b-curve clipped by # = £1 is a ro-
bust representation of the shallow tangent space. Thus,
we compute the steep tangents through P using the a-
curves and the shallow tangents through P using the
b-curve, as follows.

(1a) Dualize P and the tangent space of C', using a-
duality, to P¥ and C¥. Clip C% to z € [-1,1].

(1b) Dualize P and the tangent space of C, using b-
duality, to P and Cy. Clip C} to z € [-1,1].

(2a) Intersect the line P and the clipped curve C¥ in
a-dual space.

(2b) Intersect the line P¥ and the clipped curve C} in
b-dual space.

(3a) Dualize the intersections in a-dual space back to
steep tangents through P in primal space.

(3b) Dualize the intersections in b-dual space back to
shallow tangents through P in primal space.



In summary, the tangents through P are calculated
by two line-curve intersections, one in a-space and one in
b-space. The two intersections mesh perfectly to gener-
ate all of the tangents through P, in a mutually exclusive
manner. The clipping of the curves to « € [—1, 1] makes
the intersection very efficient, since intersection with a
Bezier curve involves subdivision, which is related to the
length of the curve.

Figures 8-10 offer examples of the dual algorithm,
varying from simple to complicated. In each case, primal
space with the tangents of C' through P is illustrated on
the left, a-dual space with the tangential a-curves and
dual line P} is illustrated on the top right, and b-dual
space with the tangential b-curves and dual line Py is
illustrated on the bottom right.

The individual steps of the algorithm, dualization
and intersection, require some elaboration. A crucial
fact is that the tangential curve of a Bezier curve can be
expressed as a rational Bezier curve. This simplifies the
intersection in dual space, since intersection of Bezier
curves is well understood.

Theorem 3.4 Let C(t) be a plane Bezier curve of de-
gree n with control points {(b; 1, b; 2) Y7, over the param-
eter interval [t1,t2]. The tangential a-curve C7 (1) is a
rational Bezier curve of degree 2n — 1 over [i1,12] with
weights {wg }2"5 " where:

min(n—1,k)
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and control points {c}3 5" where:
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Proof: We omit the proof due to lack of space and its
technical nature. The reader is referred to [3] for a full
proof. B

The representation of the tangential b-curve as a
rational Bezier curve is analogous.

The line-curve intersection of steps (2a) and (2b)
is the intersection of two Bezier curves. It is simple to
represent a line as a Bezier curve of degree 1, and inter-
section with a line is a particularly simple case of Bezier
curve intersection. The intersection of Bezier curves is

well understood and efficient [7]. We use the classical
subdivision approach, where the two curves are recur-
sively subdivided into shorter segments until their inter-
section can be adequately approximated by the intersec-
tion of two lines.

We end this section by explaining why we did not
use the duality az + by + ¢ = 0 — (a,b,¢). Tt maps
lines through the origin to infinity. Since a horizontal
line can pass through the origin, as can a vertical line,
this duality does not cooperate well with either of the
other dualities.

4 Conclusions

In this paper, we have studied a new approach to com-
puting the tangents through a point, a basic visibility
operation. An algebraic method that reduces to the
solution of a univariate equation of degree 2n — 1 was
replaced by a geometric method that reduces to the in-
tersection of a line and Bezier curve of degree 2n — 1 in
dual space. Although, in the context of this problem,
the two approaches are similar, the dual method has the
better capacity for generalization and other important
visibility problems, especially for motion and lighting in
3-space, can be attacked anew using the dual approach.
By studying the dual solution for the tangents through
a point, we see the development of this new method as
it mutates away from the algebraic solution.

The simplicity of the dual method of this paper
makes it feasible for many visibility computations from a
point to be lifted from an approximate polygonal world
to a more realistic curved world. The next step is the
application of this smooth tangent operation to the con-
struction of smooth visibility graphs, shortest path mo-
tion amongst smooth obstacles, lighting of smooth en-
vironments, and other visibility analysis in a smooth
curved world.
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Figure 9: A second example
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