
ANALYZING NANOSCALE HYPERSPECTRAL DATASETS OF HYBRID 
PEROVSKITES WITH MACHINE LEARNING

Jonathan Perkins1, Ethan Taylor1, Kannatassen Appavoo1

Department of Physics, University of Alabama at Birmingham

MOTIVATION

BACKGROUND

a

• Hybrid perovskites (HP’s) 
have recently generated 
unprecedented growth in 
opto-electronic 
technologies.

• Used in photovoltaics (solar 
cells), light-emitting diodes, 
neuromorphic computing... 
etc.

• Deeper understanding of 
phase stabilization is 
critically needed

Hyperspectral datasets of 
HP were acquired via 

scanning electron 
microscopy (SEM) and 
cathodoluminescence 
(CL) spectroscopy, a 

powerful tool for 
mapping materials below 

the diffraction limit.

Machine learning is 
increasingly being 

used to understand 
complex data in 

novel ways beyond 
human perception.

METHODS
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• NMF is a machine 
learning algorithm that 
produces a parts-based 
representation of data.1

• 1 complex matrix is 
decomposed into 2 
matrices of lower rank.

• Right: Wide-field HP cell 
(top), HP grain 
boundary (bottom)

• Blind NMF with 2 to 
6 components and 
explained variance 
(EVR) suggest 3 
components are 
sufficient 

• We enforced 
sparseness (degree 
to which a vector is 
populated by zeros) 
on the loss function 
to varying amounts

RESULTS AND DISCUSSION
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• 3-component NMF with high spectral sparseness 
at 200 iterations decomposes the perovskite and 
lead iodide signatures into separate components.

• HP degrades into lead iodide at grain boundaries 
where it has higher exposure to humidity.

In CL, A beam of 
electrons excites 
the atoms in the 
HP which emits 
photons to be 
directed by a 

hyperbolic mirror 
into a charge-

coupled device 
(CCD).
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FURTHER STUDIES

Preliminary 
investigations using 

a variational 
autoencoder 

revealed inverse 
correlations 

between lead 
iodide presence (Z1) 
and  HP dominance 

(Z2) 
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